Discrete Mathematics, exercise sheet 12
Solutions

Definitions:
Let D be a digraph and ¢ : A — R. A potential is a function 7w : V' — R. We say that = is feasible (with re-
spect to ¢) if m(v) —7(u) < c(e) for every e € [u,v]p. (We can also write e = ww if there are no parallel edges.)

A cost function ¢: A — R is called conservative is there is no negative cost directed cycle.

1. (1 point) Let # : V' — R be everywhere 0, that is, w(v) = 0 for every v € V. When is this a feasible
potential?

Solution: 1If the cost function is nonnegative: c¢(uv) > 0 for every uv € A.

2. (2 points) Show that if a feasible potential exist for a given ¢, then a nonnegative feasible potential also
exists.

Solution: Let k := max,ey |7(v)] and 7’(v) = m(v) 4+ k for every v € V. This is still a feasible potential,
since (m(v) — k) — (7(u) — k) = w(v) — 7(u) < c(e).

3. (1+1+2+42 points) Let D be a digraph and ¢ : A — R is a conservative cost function, m; and my are
feasible potentials. Show that:

e 7 + 4 is also a feasible potential.
° % and m are feasible potentials.
e min(m,m2) is a feasible potential. What about max(my,m2)?

e |m ] is a feasible potential if ¢ is integer valued. Is it true for [m]?

Solution:

e same as in Problem 2.

o 37r1(v)47r47r2(v) o 37r1(u)47-47r2(u) _ %(m(v) _ Wl(u)) + %(71.2(”) _ 772(“)) < %c(uv) + %c(uv) _ c(uv)

e Look at a fixed u and v. Suppose that m1(u) = min(m(u), m2(u)).
Then min(7(v), m2(v)) — min(m (u), m2(v)) = min(m(v), m2(v)) — m1(u) < m(v) — 7 (u) < c(uv). So
it is still a feasible potential.

A similar argument works for the maximum: Suppose that 71 (v) = min(m (v), m2(v)).
max (71 (v), ma(v)) — max(my(u), me(u)) = 71 (v) — max(mi(u), e (u)) < 71 (v) — w1 (u) < e(uv).

e 71 (v) — m(u) < c(uw), by reorganizing the sides m(v) < e(uv) + 7(u).
|71(v)] < |e(uv)+m(u)] Since ¢ is integer valued, |71 (v)| < ¢(uv)+ |m(u)| and this is what we wanted.
The same works for [m].



4. (3 points) Let D be a digraph, s,t € V and ¢: A — R is a conservative cost function. We will call an
arc a € A beautiful if there is a minimum cost directed s — t path containing a. Show that if path P is an
s — t path and all of its arcs are beautiful, then P is a cheapest path.

Solution: From Gallai’s theorem, there is a m feasible potential for ¢. From Duffin’s theorem,
min{¢(P) : P is an s — ¢ path} = max{n(t) — 7(s) : 7 is a feasible potential}

Take the optimal feasible potential 7 from Duffin’s theorem, and work with that. We will call an edge uv an
"tight edge” if w(v) — w(u) = c(e).

For any path P’ with vertices s = vg,v1,v2 ...t = v,

c(P) = Z;:ol c(vivig1) > Z;:ol (m(vig1) — w(v;)) = w(t) — w(s) If P’ is a cheapest path, all of its edges are
tight edges. Therefore every beautiful edge is tight, and if we build a path from tight edges, it will be a
cheapest path.

5. (2 points) Let D be a digraph s,t € V and ¢ : A — R is a cost function, but it is not everywhere
nonnegative. We pick a constant k and make a new nonnegative cost function, c*(a) = c(a) + k for every
a € A. Using Dijkstra’s algorithm with cost function ¢™ do we always get a cheapest s — t path with respect
to the original cost?

Solution: No. For example, D has a path of length 2 with edge weights —10, —10 and a path of length 3
with edge weights —10,—10, -9, if we add k£ = 10 to them, we have weights 0,0 versus 0,0,1. Dijkstra’s
algorithm picks 0 4+ 0 but in the original graph, —10, —10, —9 is the cheapest path.

6. (3 points) Let D be a digraph s,t € V and S, H C V are st sets with minimal outdegree. Show that
SUH and SN H are st sets with minimal outdegree as well.

Solution: Let k be the outdegree of a st set in D.

We can show that d*(S) +dt(H) > dt(SUH)+d" (SN H) by looking at all the possible edges that leave
S, H SNHor SUH.

k+k=d"(S)+d"(H)>d"(SUH)+d (SN H) > k+ k. There has to be equality thoughout, so S U H
and SN H also have outdegree k.

Menger’s theorem (undirected, vertex-version)

Let G be a finite undirected graph and s and ¢ two nonadjacent vertices. Then the size of the minimum
vertex cut for s and ¢ (the minimum number of vertices, distinct from s and ¢, whose removal disconnects s
and t) is equal to the maximum number of pairwise internally vertex-disjoint paths from s to ¢.

7. For handing in. (8 points) Prove Hall’'s theorem from the undirected vertex-version of Menger’s
theorem.

Solution: Let G be a bipartite graph G = (A, B; E). If there is a matching covering A then for every
X C A, [D(X)| > [X].

We will use Menger for the other direction of Hall’s theorem. Add two vertices to the graph: s and t. Connect
s to every vertex in A, and connect ¢ to every vertex in B. Denote the graph we get this way by G’. Let C
be a minimum vertex cut for s and ¢ in G'. Now I'(A\ C') € BNC because there cannot be an edge between
A\ C and B\ C.

Suppose that for every X C A, |I'(X)| > | X].

Then, |C| =|ANC|+|BNC| > |[ANC|+|I'(A\C)| > |ANC|+ |A\ C)| = |A| The size of the minimu
vertex cut is at least |A|. Using Menger’s theorem, there are |A| internally vertex-disjoint paths from s to ¢.
Removing s and ¢ from these paths, we get a matching of size |A| in the original graph, i.e. a matching that
covers side A.



