
Discrete Mathematics, exercise sheet 12
Solutions

Definitions:
Let D be a digraph and c : A→ R. A potential is a function π : V → R. We say that π is feasible (with re-
spect to c) if π(v)−π(u) ≤ c(e) for every e ∈ [u, v]D. (We can also write e = uv if there are no parallel edges.)

A cost function c : A→ R is called conservative is there is no negative cost directed cycle.

1. (1 point) Let π : V → R be everywhere 0, that is, π(v) = 0 for every v ∈ V . When is this a feasible
potential?
Solution: If the cost function is nonnegative: c(uv) ≥ 0 for every uv ∈ A.

2. (2 points) Show that if a feasible potential exist for a given c, then a nonnegative feasible potential also
exists.
Solution: Let k := maxv∈V |π(v)| and π′(v) = π(v) + k for every v ∈ V . This is still a feasible potential,
since (π(v)− k)− (π(u)− k) = π(v)− π(u) ≤ c(e).

3. (1+1+2+2 points) Let D be a digraph and c : A → R is a conservative cost function, π1 and π2 are
feasible potentials. Show that:

• π1 + 4 is also a feasible potential.

• π1+π2
2 and 3π1+4π2

7 are feasible potentials.

• min(π1, π2) is a feasible potential. What about max(π1, π2)?

• bπ1c is a feasible potential if c is integer valued. Is it true for dπ1e?

Solution:

• same as in Problem 2.

• 3π1(v)+4π2(v)
7 − 3π1(u)+4π2(u)

7 = 3
7(π1(v)− π1(u)) + 4

7(π2(v)− π2(u)) ≤ 3
7c(uv) + 4

7c(uv) = c(uv)

• Look at a fixed u and v. Suppose that π1(u) = min(π1(u), π2(u)).

Then min(π1(v), π2(v)) −min(π1(u), π2(u)) = min(π1(v), π2(v)) − π1(u) ≤ π1(v) − π1(u) ≤ c(uv). So
it is still a feasible potential.

A similar argument works for the maximum: Suppose that π1(v) = min(π1(v), π2(v)).
max(π1(v), π2(v))−max(π1(u), π2(u)) = π1(v)−max(π1(u), π2(u)) ≤ π1(v)− π1(u) ≤ c(uv).

• π1(v)− π1(u) ≤ c(uv), by reorganizing the sides π(v) ≤ c(uv) + π(u).
bπ1(v)c ≤ bc(uv)+π(u)c Since c is integer valued, bπ1(v)c ≤ c(uv)+bπ(u)c and this is what we wanted.
The same works for dπ1e.



4. (3 points) Let D be a digraph, s, t ∈ V and c : A → R is a conservative cost function. We will call an
arc a ∈ A beautiful if there is a minimum cost directed s → t path containing a. Show that if path P is an
s→ t path and all of its arcs are beautiful, then P is a cheapest path.
Solution: From Gallai’s theorem, there is a π feasible potential for c. From Duffin’s theorem,

min{c̃(P ) : P is an s→ t path} = max{π(t)− π(s) : π is a feasible potential}

Take the optimal feasible potential π from Duffin’s theorem, and work with that. We will call an edge uv an
”tight edge” if π(v)− π(u) = c(e).
For any path P ′ with vertices s = v0, v1, v2 . . . t = vk,
c(P ′) =

∑k−1
i=0 c(vivi+1) ≥

∑k−1
i=0 (π(vi+1)− π(vi)) = π(t)− π(s) If P ′ is a cheapest path, all of its edges are

tight edges. Therefore every beautiful edge is tight, and if we build a path from tight edges, it will be a
cheapest path.

5. (2 points) Let D be a digraph s, t ∈ V and c : A → R is a cost function, but it is not everywhere
nonnegative. We pick a constant k and make a new nonnegative cost function, c+(a) = c(a) + k for every
a ∈ A. Using Dijkstra’s algorithm with cost function c+ do we always get a cheapest s→ t path with respect
to the original cost?
Solution: No. For example, D has a path of length 2 with edge weights −10,−10 and a path of length 3
with edge weights −10,−10,−9, if we add k = 10 to them, we have weights 0, 0 versus 0, 0, 1. Dijkstra’s
algorithm picks 0 + 0 but in the original graph, −10,−10,−9 is the cheapest path.

6. (3 points) Let D be a digraph s, t ∈ V and S,H ⊆ V are st sets with minimal outdegree. Show that
S ∪H and S ∩H are st sets with minimal outdegree as well.
Solution: Let k be the outdegree of a st set in D.
We can show that d+(S) + d+(H) ≥ d+(S ∪H) + d+(S ∩H) by looking at all the possible edges that leave
S, H, S ∩H or S ∪H.
k + k = d+(S) + d+(H) ≥ d+(S ∪H) + d+(S ∩H) ≥ k + k. There has to be equality thoughout, so S ∪H
and S ∩H also have outdegree k.

Menger’s theorem (undirected, vertex-version)
Let G be a finite undirected graph and s and t two nonadjacent vertices. Then the size of the minimum
vertex cut for s and t (the minimum number of vertices, distinct from s and t, whose removal disconnects s
and t) is equal to the maximum number of pairwise internally vertex-disjoint paths from s to t.

7. For handing in. (8 points) Prove Hall’s theorem from the undirected vertex-version of Menger’s
theorem.
Solution: Let G be a bipartite graph G = (A,B;E). If there is a matching covering A then for every
X ⊆ A, |Γ(X)| ≥ |X|.
We will use Menger for the other direction of Hall’s theorem. Add two vertices to the graph: s and t. Connect
s to every vertex in A, and connect t to every vertex in B. Denote the graph we get this way by G′. Let C
be a minimum vertex cut for s and t in G′. Now Γ(A\C) ⊆ B∩C because there cannot be an edge between
A \ C and B \ C.
Suppose that for every X ⊆ A, |Γ(X)| ≥ |X|.
Then, |C| = |A ∩ C| + |B ∩ C| ≥ |A ∩ C| + |Γ(A \ C)| ≥ |A ∩ C| + |A \ C)| = |A| The size of the minimu
vertex cut is at least |A|. Using Menger’s theorem, there are |A| internally vertex-disjoint paths from s to t.
Removing s and t from these paths, we get a matching of size |A| in the original graph, i.e. a matching that
covers side A.


