
Discrete Mathematics, exercise sheet 11
Solutions

1. (3 points) For natural numbers m ≤ n, we define a Latin m×n rectangle as a rectangular table with m
rows and n columns with entries chosen from the set {1, 2, ..., n} and such that no row or column contains
the same number twice. Count the number of all possible Latin 2× n rectangles.
Solution: n! × (the number of permutations with no fixed point).
We learned earlier that the number of permutations with no fixed point is n!

(
1− 1

1! +
1
2! − · · ·+ (−1)n 1

n!

)
.

So, in total the number of all possible Latin 2× n rectangles is n! · n!
(
1− 1

1! +
1
2! − · · ·+ (−1)n 1

n!

)
.

2. Define a liberated square of order n as an n × n table with entries belonging to the set {1, 2, ..., n}.
Orthogonality of liberated squares is defined in the same way as for Latin squares. For a given number t,
consider the following two conditions:
(i) There exist t mutually orthogonal Latin squares of order n.
(ii) There exist t+ 2 mutually orthogonal liberated squares of order n.
(a) (2 points) Prove that (i) implies (ii).
(b) (4 points) Prove that (ii) implies (i).
Solution: (a) To given t orthogonal Latin squares, add one square with all the entries of the ith row equal
to i, i = 1, 2, ..., n, and one square having all the entries j in the jth column, j = 1, 2, ..., n.
(b) In order that a liberated square be orthogonal to another, it has to contain each i ∈ {1, 2, ..., n} exactly n
times. Permute entries of the given t+2 orthogonal liberated squares (the same permutation in each square)
in such a way that the first square has all numbers i in the ith row, i = 1, ..., n. Then permute entries inside
each row (again, in the same way for all squares) so that the second square has all the j in the jth column.
Check that the remaining t squares are Latin.

3. Let X be a finite set and letM be a system of subsets of X. Suppose that each set inM has exactly k
elements. A 2-coloring a set-system means we color the elements with 2 colors in a way that none of the sets
inM is monochromatic. Let m(k) be the smallest number of sets in a systemM that is not 2-colorable.

(3 points) Prove that m(4) ≥ 15, i.e. that any system of 14 4-tuples can be 2-colored
(distinguishing two cases according to the total number of points.)
Solution: Similar to the proof where we showed that m(3) ≥ 7.
Case 1: |X| ≤ 14. If needed, add some nodes, now we have exactly 14 nodes. Color 7 of them white, 7 of
them red. There are

(
14
7

)
= 3432 such colorings. For a given quadruple, there are 2

(
10
3

)
colorings that makes

them monochoromatic. (Color this 4 points white, and from the remaining 10, 3 points are white. Same for
red.)

For every quadruple, the probability that it is monochormatic is 2(103 )
(147 )

The probability that at least one of

the 14 quadruples is monochromatic is at most 14 · 2(
10
3 )

(147 )
= 14·120·2

3432 = 3360
3432 < 1. We use the probabilistic

method, there has to be a 2-coloring is the set system.
Case 2: |X| > 14.
We say that x and y are connected if there exists a set M ∈ M containing both x and y. If x and y are
points that are not connected, we define a new set system (X ′,M′) arising by "gluing" x and y together.
The points x and y are replaced by a single point z, and we put z into all sets that previously contained
either x or y. If a "glued" set system is 2-colorable, then the original is also 2-colorable.
We claim there are 2 points that are not connected. Every quadruple makes 6 point-pairs connected. There
are at most 14 · 6 connected pairs, and the total number of pairs is at least

(
15
2

)
. Since 14 · 6 <

(
15
2

)
, so there

are 2 points that are not connected. Do the gluing steps until we reach |X| = 14.

Note: this solution also works if the two cases are |X| ≤ 13 and |X| > 13.



4. (3 points) We have 27 fair coins and one counterfeit coin, which looks like a fair coin but is a bit heavier.
Show that one needs at least 4 weighings to determine the counterfeit coin. We have no calibrated weights,
and in one weighing we can only find out which of two groups of some k coins each is heavier, assuming that
if both groups consist of fair coins only the result is an equilibrium.
Solution: Each weighing has 3 possible outcomes, and hence 3 weighings can only distinguish one among
27 possibilities.

5. (5 points) We toss a fair coin n times. What is the expected number of runs? Runs are consecutive
tosses with the same result. For instance, the toss sequence HHHTTHTH has 5 runs. (HHH, TT, H, T, H).
(Tip: It is better to count boundaries between runs.)
Solution: It’s better to count boundaries among runs. The probability that a given position between two
tosses is a boundary is 1

2 . The first toss can be anything. For any of the next n−1 tosses, there is a 1
2 change

we start a next run.
Let X be the random variable that counts the number of changes, and let Ai be the event that there is a
change in the ith gap. IAi is an indicator random variable. IAi = 1 if there is a change, and 0 if not. By the
additivity of expected value,

E[X] =
n−1∑
i=1

E[IAi ] =
n−1∑
i=1

P (Ai) = (n− 1)
1

2
=

n− 1

2

There are one more runs than boundaries, therefore the expected number of the number of runs is 1+ n−1
2 =

n+1
2 .


