
Discrete Mathematics Comprehensive Exam

16.07.2019. (100 pts, 120 mins)

Using any written material, calculators or mobile phones is not allowed. Please turn off your phone. Use
only paper and pen.
You can use any theorems or statements from the lecture (without proof) if you state them properly. Except
if the exercise is to prove that theorem.
Grading: minimum points needed for each grade

1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 5.0

90 84 78 72 66 60 55 50 45 40 0

1. (5+5 points)
a) How many five digit numbers are there with 4 even and 1 odd digits?
b) How many six digit numbers are there such that all of its digits are different, and it has 4 even and 2 odd
digits?
Solution:
a) The number cannot start with zero. If it starts with an even digit:

(
4
1

)
· 4 · 54

If it starts with an odd digit: 1 · 55
In total: 4 · 4 · 54 + 55 = 54(16 + 5) = 10000 + 3125 = 13125

b) If it starts with an even digit:
(
5
2

)
· 4 · 4 · 3 · 2 · 5 · 4

We can place the 2 odd digits in two places out of the last 5 in
(
5
2

)
ways. For the first digit we can choose

from 4 possibilities (zero is not allowed) for the second even digit we can choose from 4 possibilites again (five
minus the digit that was used for the first digit) for the next even digit we can choose from 3 possibiliteis
and so on. For the odd digits: 5 · 4 possibilities.
If it starts with an odd digit:

(
5
1

)
· 5 · 4 · 3 · 2 · 5 · 4

In total:
(
5
2

)
· 4 · 4 · 3 · 2 · 5 · 4 +

(
5
1

)
· 5 · 4 · 3 · 2 · 5 · 4 = 5!(160 + 100) = 19200 + 12000 = 31200.

Second solution Calculate all numbers, then substract those that start with zero.
a)
(
5
1

)
· 55 −

(
4
1

)
· 54 = 56 − 4 · 54 = 54 · (25− 4) = 54 · 21

b) (
(
6
2

)
· 5 · 4 · 3 · 2 · 5 · 4)− (

(
5
2

)
· 4 · 3 · 2 · 5 · 4) = 5!(15 · 5 · 4− 10 · 4) = 5! · 260 = 31200

2. (3+8+3 points)
a) What is the definition of a tree?
b) Prove that if an undirected finite graph has n vertices and n − 1 edges and it is connected, then it is a
tree.
c) How many trees are there on n labelled vertices? (without proof)
Solution: a) A graph is a tree if it is connected and does not contain a cycle.
b) If the graph G contains a cycle, remove an edge of the cycle. Repeat this until we cannot remove edges
anymore. From a Theorem in the Lecture, "A graph is a tree if and only if it is connected, but deleting any
of its edges results in a disconnected graph." Therefore we reached a tree (which is a spanning tree T of G).
The spanning tree has n− 1 edges, thus T = G, G is a tree.
c) Cayley’s formula: For every positive integer n, the number of trees on n labelled vertices is nn−2.



3. (4+14 points)
a) Describe Kruskal’s algorithm.
b) Prove that Kruskal’s algorithm always gives a minimum cost spanning tree.
Solution:
a) List the edges in the increasing order of cost: c(e1) ≤ c(e2) ≤ . . . c(em).
At the start of the algorithm T = (V, ∅)
For i = 1...m
If T + ei does not contain a cycle, let T := T + ei. (Otherwise skip that edge, and T is unchanged)
b)
Suppose the Kruskal algorithm gives T , and there is a spanning tree H such that c(H) < c(T ).
Let us imagine the process of constructing T , and the step when we first pick an edge that is not an edge of
H. Let e be this edge. If we add e to H, we get a cycle C. This cycle is not fully contained in T , so it has
an edge f that is not an edge of T . If we add the edge e to H and then delete f , we get a (third) tree H ′.
(Why is H ′ a tree? We removed and edge of cycle C, so H ′ is still connected, and it has n − 1 edges.) We
want to show that H ′ is at most as expensive as H. This clearly means that e is at most as expensive as f .
Suppose (by indirect argument) that f is cheaper than e.
Now comes a crucial question: Why didn’t the optimistic government select f instead of e at this point in
time? The only reason could be that f was ruled out because it would have formed a cycle C ′ with the edges
of T already selected. But all these previously selected edges are edges of H, since we are inspecting the step
when the first edge not in H was added to T . Since f itself is an edge of H, it follows that all edges of C ′

are edges of H, which is impossible, since H is a tree. This contradiction proves that f cannot be cheaper
than e and hence H cannot be cheaper than H ′.

So we replace H by this tree H ′ that is not more expensive. In addition, the new tree H ′ has the advantage
that it coincides with T in more edges, since we deleted from H an edge not in T and added an edge in T .
This implies that if H ′ is different from T and we repeat the same argument again and again, we get trees
that are not more expensive than H, and coincide with T in more and more edges. Sooner of later we must
end up with T itself, proving that T was no more expensive than H.

4. (10 points)
State the Max flow - Min cut theorem. (without proof)
Solution:
We have a directed graph D = (V,E), s, t ∈ V are special vertices (source and target) and there is a
non-negative function c : E → R+, called the capacity. We call N := (D, s, t, c) a network.
A function f : E → R+ is a (feasible) flow, if it satisfies:

• 0 ≤ f(ij) ≤ c(ij) for every ij ∈ E

• Kirchhoff’s law:
∑

j:ji∈E f(ji) =
∑

j:ij∈E f(ij) for every vertex i ∈ V such that i 6= s and i 6= t.

The value of a flow is v(f) =
∑

j:sj∈E f(sj)−
∑

js:∈E f(js).
This is the amount of flow leaving s minus the amount of flow entering s.
The capacity of the cut defined by A,B, where A,B ⊆ V , A ∩B = ∅, A ∪B = V s ∈ A and t ∈ B is

c(A,B) =
∑

ij∈E,i∈A,j∈B
c(ij)

Theorem 1 (Max Flow Min Cut, Ford- Fulkerson). In every network, the maximum value of a flow equals
the minimum capacity of a cut.

max
f is a flow

v(f) = min
A,B is an st cut

c(A,B)



5. (14 points)
How many ways are there to seat n married couples at a round table with 2n chairs in such a way that no
husband and wife sit next to each other? (Solutions that can be transformed to each other via rotation or
reflection still count as different solutions.)
Solution: Define Ai as the set of all ways of seating in which the ith couple is adjacent. Use the inclusion-
exclusion principle∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
i=1

|Ai| −
∑

1≤i<j≤n
|Ai ∩Aj |+

∑
1≤i<j<k≤n

|Ai ∩Aj ∩Ak| − . . . (−1)n−1|A1 ∩A1 ∩ . . . An|

The total number of possible seatings, without the condition in the problem, is (2n)! .
|Ai| = 2 · (2n) · (2n−2)! The ith couple can sit on 2n "double seats", and the two of them can sit in 2 possible
orders, and the remaining 2n− 2 people can sit in (2n− 2)! ways.

|Ai ∩ Aj | = 22 · (2n) · (2n− 3) · (2n− 4)! = 22 · (2n) · (2n− 3)! The ith couple can sit on 2n "double seats"
then the ith couple can sit on 2n− 3 double seats, and the remaining 2n− 4 people can sit in (2n− 4)! ways.
Inside the couples they can switch places 22 ways.

For k couples: imagine if a couple sits next to each other, we merge them together into "one person". Then,
we need to sit down 2n−k people, that can be done in (2n−k)! ways. But, actually, the seats are numbered
1, 2, 3 . . . 2n, and if a couple sat on 2n and 1 then this does not show up in the previous counting. This way
we get additional k · (2n − k − 1)! possibilies: there are k possibilities which couple sits at seats 2n, 1 and
(2n− k − 1)! ways to put the other people/pairs.

Thus, |Ai1∩Ai2∩· · ·∩Aik | = 2k ·((2n−k)!+k·(2n−k−1)!) = 2k ·(2n−k−1)!((2n−k)+k) = 2k ·(2n−k−1)!·2n.
The number of good seatings is

(2n)!−

∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ = (2n)!−

(
n∑
k=1

(
n

k

)
(−1)k−1 · 2k · (2n− k − 1)! · 2n

)

6. (10 points)
At a dance party, 10 boys and 10 girls are present. We want to organize rounds, in each round 10 pairs
dance. Any boy and any girl dance with each other only once. Four rounds already happened. Show that
we can organize the participants into pairs for the remaining 6 rounds.
Solution:
We can create a bipartite graph, there is an edge between a boy and a girl if they have not danced yet. In
this graph every node has degree 6. Use a theorem from the lecture:

Theorem 2. If every node of a bipartite graph has the same degree d ≥ 1, then it contains a perfect matching.

We found a perfect matching, that is one round. Remove this matching, now every degree is 5, we find a
matching again. Repeat this step until the graph is empty.



7. (12 points)
There are 10 red balls, 10 blue balls, and 10 green balls.
In how many different ways can you pick 16 balls such that there is at least one ball for each color?
Solution: a(x) = (x+ x2 + x3 + · · ·+ x10)(x+ x2 + x3 + · · ·+ x10)(x+ x2 + x3 + · · ·+ x10). The answer is
the coefficient of x16 in this product.

a(x) = x3
(
1− x10

1− x

)3

= x3
1

(1− x)3
(1− 3x10 + 3x20 − x30)

From the generalized binomial theorem, 1
(1−x)3 =

(
2
2

)
+
(
3
2

)
x+

(
4
2

)
x2 . . .

Therefore, a(x) = (
(
2
2

)
+
(
3
2

)
x+

(
4
2

)
x2 . . . )x3(1− 3x10 + 3x20 − x30)

We are looking for x16, it appears in
(
15
2

)
x13 · x3 and in

(
5
2

)
x3 · x3 · (−3x10) thus the coefficient of x16 in a(x)

is
(
15
2

)
− 3
(
5
2

)
= 105− 3 · 10 = 75. We can select the balls in 75 ways.

8. (12 points)
The inhabitants of a town like to form clubs. Every club has the same size. Each citizen A must behave
“equally” toward citizens B and C, so A must meet B in the same number of clubs as she meets C.
Show that this implies that all the people are members of the same number of clubs.
Solution: The town has v inhabitants. Every club has k members, and any two people meet in λ clubs.
(We assume that k ≥ 2).
Citizen A is a member of rA clubs. She has (v − 1)λ "meetings", because she meets any of the other v − 1

citizens λ times. On the other hand, in a given club, she meets k − 1 people, therefore rA = (v−1)λ
k−1 . We get

the same result for any citizen, so everyone is the member of the same number of clubs.


