
Discrete Mathematics
Lecture notes

Zsuzsanna Jankó

Introduction: There will be 2 lectures and 2 exercise classes (for 2 groups) every week.
Exam: written exam, 2 possible dates. The questions will be a mixture of topics from

lectures, and problems that are similar to the problems discussed on the exercise class.

Homework:
All of the not yet discussed problems are homework.
One problem each week is for writing down and handing in. You can write the solution
in English or German, by hand or with computer (preferably LATEX).

All the other problems: you just have to mark if you solved it. The hand-in problem
is worth more points than the regular ones.
To participate in the final exam, you are expected to collect 50% of the points in total.

Books:

• L. Lovász – J. Pelikán – K. Vesztergombi: Discrete Mathematics. Elementary and
beyond.
A lecture note version of this book is available here:
https://cims.nyu.edu/~regev/teaching/discrete_math_fall_2005/dmbook.pdf

• J. Matoušek – J. Nešetřil: Invitation to Discrete Mathematics (Diskrete Mathe-
matik - Eine Entdeckungsreise)

Lecture 1

(Lecture 1 and 2 are taken from the Matoušek-Nešetřil book)

Warm-up problems:

Problem 1. There are 3 houses and 3 wells. Connect every house with every well, the
roads are not allowed to cross. Is it possible?

Problem 2. There are 8 vertices. What is the maximal number of edges we can add such
that there is no triangle?

Relations

Definition 1. A relation is a set of ordered pairs. If X and Y are sets, any subset of the
Cartesian product X×Y is called a relation between X and Y . The most important case
is X = Y ; then we speak of a relation on X, which is thus an arbitrary subset R ⊆ X×X.

1

https://cims.nyu.edu/~regev/teaching/discrete_math_fall_2005/dmbook.pdf


We use the notation xRy if (x, y) ∈ R

Example: relation R = {(1, 2), (2, 4), (3, 2), (4, 2), (4, 4)} on the set {1, 2, 3, 4}.
How can we draw a relation: with an adjacency matrix or a directed graph.

Definition 2. The inverse relation R−1 to a given relation R is given by R−1 = {(y, x) :
(x, y) ∈ R}. It arises by “reversing arrows” in R.
The symbol ∆X denotes the smallest reflexive relation on a set X: ∆X = {(x, x) : x ∈ X}.

Definition 3. We say that a relation R on a set X is

• reflexive if xRx for every x ∈ X;

• symmetric if xRy implies yRx, for all x, y ∈ X;

• antisymmetric if, for every x, y ∈ X, xRy and yRx never hold simultaneously
unless x = y;

• transitive if xRy and yRz imply xRz, for all x, y, z ∈ X.

Definition 4. • A relation R on a set X is called an equivalence on X (or sometimes
an equivalence relation) if it is reflexive, symmetric, and transitive. (Äquivalenzrelation)

• A relation R on a set X is called an ordering on X if it is reflexive, antisymmetric,
and transitive. (eine Ordnung)

• A relation R on a set X is called a linear ordering on X if it is an ordering and
moreover, for every two elements x, y ∈ X we have xRy or yRx. (eine lineare
Ordnung/ totale Ordnung)

Definition 5 (Composition of relations). Let X, Y, Z be sets, let R ⊆ X×Y be a relation
between X and Y , and let S ⊆ Y ×Z. be a relation between Y and Z. The composition
of the relations R and S is the relation T ⊆ X × Z. defined as follows: for given x ∈ X
and z ∈ Z, xTz holds if and only if there exists some y ∈ Y such that xRy and ySz. The
composition of relations R and S is usually denoted by R ◦ S.

Note: it is the other way around with functions. The composition of functions f and
g is usually denoted by g ◦ f .

An equivalence relation defines eqivalence classses. Let R be an equivalence on a set
X and let x be an element of X. By the symbol R[x], we denote the set of all elements
y ∈ X that are equivalent to x;
R[x] = {y ∈ X : xRy}. R[x] is called the equivalence class of R determined by x.

Proposition 1. For any equivalence R on X, we have
(i) R[x] is nonempty for every x ∈ X.
(ii) For any two elements x, y ∈ X, either R[x] = R[y] or R[x] ∩R[y] = ∅.
(iii) The equivalence classes determine the relation R uniquely.

Definition 6. P = (X,�) is called a partially ordered set (poset, for short) if � is an
ordering on X.

Definition 7. Let � be an ordering. We say a ≺ b if a � b and a 6= b.

2



Drawing a poset: immediate predecessor

Definition 8. Let (X,�) be an ordered set. We say that an element x ∈ X is an
immediate predecessor of an element y ∈ X if x ≺ y and there is no t ∈ X such that
x ≺ t ≺ y.

Let us denote the just-defined relation of immediate predecessor by /

Proposition 2. Let (X,�) be a finite ordered set, and let / be the corresponding imme-
diate predecessor relation. Then for any two elements x, y ∈ X, x ≺ y holds if and only
if there exist elements x1, x2, ..., xk ∈ X such that x / x1 / . . . xk / y (possibly with k = 0,
i.e. we may also have x / y ).

Definition 9. Let (X,�) be an ordered set. An element a ∈ X is called a minimal
element of (X,�) if there is no b ∈ X such that b ≺ a. A maximal element is defined
analogously.

Definition 10. Let (X,�) be an ordered set. An element a ∈ X is called a smallest
element of (X,�) if for every x ∈ X we have a � x (it is sometimes also called a
minimum element). A largest element (sometimes also called a maximum element) is
defined analogously.

Note: every smallest element is also a minimal element, but a minimal element does not
have to be smallest.

Lemma 3. Every finite partially ordered set (X,�) has at least one minimal element.

Every linear ordering is also a (partial) ordering. The converse statement (“each
partial ordering is linear”) is obviously false. On the other hand, the following important
theorem holds:

Theorem 4. Let (X,�) be a finite partially ordered set. Then there exists a linear
ordering ≤′ on X such that x � y implies x ≤′ y.

Each partial ordering can thus be extended to a linear ordering. The latter is called a
linear extension of the former.

Lecture 2

Definition 11. (Important special types of functions). A function f : X → Y is called

• an injective function (one-to-one function) if x 6= y implies f(x) 6= f(y),

• a surjective function (or onto) if for every y ∈ Y there exists x ∈ X satisfying
f(x) = y, and

• a bijective function, or bijection, if f is injective and surjective.

Example of a Poset: Let X be a set. The symbol 2X denotes the system of all
subsets of the set X. The relation “⊆” (to be a subset) defines a partial ordering on 2X .

Definition 12. Let (X,�) and (X ′,�′) be ordered sets. A mapping f : X → X ′ is called
an embedding of (X,�) into (X ′,�′) if the following conditions hold:
(i) f is an injective mapping;
(ii) f(x) � f(y) if and only if x � y.

3



If f is an embedding that is also surjective, then it is an isomorphism. Isomorphism
of ordered sets expresses the fact that they “look the same”.

Theorem 5. For every ordered set (X,�) there exists an embedding into the ordered set
(2X ,⊆).

Proof. Proof. We show that, moreover, the embedding as in the theorem is very easy to
find. We define a mapping f : X → 2X by f(x) = {y ∈ X : y � x}. We verify that this
is indeed an embedding.

1. We check that f is injective. Let us assume that f(x) = f(y). Since x ∈ f(x) and
y ∈ f(y), the definition of f yields x � y as well as y � x, and hence x = y (by the
antisymmetry of �).

2. We show that if x � y, then f(x) ⊆ f(y). If z ∈ f(x), then z � x, and transitivity
of � yields z � y. The last expression means that z ∈ f(y).

3. Finally, we show that if f(x) ⊆ f(y), then x � y. If f(x) ⊆ f(y), then x ∈ f(y),
and hence x � y.

Let P = (X,�) be a poset.

Definition 13. A set A ⊆ X is called independent in P if we never have x � y for two
distinct elements x, y ∈ A.
An independent set is also referred to as an antichain.

Let α(P ) denote the maximum size of an independent set in P. In symbols, this can
be written α(P ) = max{|A| : A is independent in P}.
This α(P ) can be thought of as a kind of abstract “width” of the ordered set P .

Observation 6. The set of all minimal elements in P is independent.

Proof. Suppose that x and y are minimal elements and x ≺ y. Then y is not a minimal
element. Contradiction.

Definition 14. A set C ⊆ X is called a chain in P if every two of its elements are
comparable (in P ).

Equivalently, the elements of C form a linearly ordered subset of P . Let ω(P ) denote
the maximum number of elements of a chain in P .
In other words, ω(P ) = max{|C| : C is a chain in P}.
ω(P ) can be thought of an the “height” of P .

Theorem 7 (Mirsky). For every finite partially ordered set, ω(P ) equals the minimum
number of antichains into which the set may be partitioned.

Proof. In such a partition, every two elements of the longest chain must go into two
different antichains, so the number of antichains is always greater than or equal to the
height.

We want to show that ω(P ) antichains are enough. For any x ∈ X, define l(x) as the
size of the longest chain whose greatest element is x. DefineAi asAi := {x ∈ X : l(x) = i}.

4



A1 ∪ · · · ∪ Aω(P ) is a partition of X into ω(P ) mutually disjoint sets.
We show that very Ai is an antichain. Suppose that Ai is not an antichain, exists two
points x, y ∈ Ai so that x < y. Take the longes chain to x, and add y. This is a chain of
lenght l(x) + 1 whose greatest element is y. This implies l(x) < l(y), contradiction.

Another formulation of Mirsky’s theorem is that there always exists a partition for
which the number of antichains equals the height.

Theorem 8. For every finite ordered set P = (X,�), we have α(P ) · ω(P ) ≥ |X|.

This is a corollary of Mirsky’s theorem.

Theorem 9. (Erdős–Szekeres lemma). An arbitrary sequence (x1, ..., xn2+1) of real num-
bers contains a monotone subsequence of length n+ 1.

For example, the sequence (3, 5, 6, 2, 8, 1, 4, 7) contains the monotone subsequence
(3, 5, 6, 8) or the monotone subsequence (6, 2, 1) as well as many other monotone sub-
sequences.

Proof. Let a sequence (x1, . . . , xn2+1) of n2 + 1 real numbers be given. Let us put X =
{1, 2, ..., n2 + 1}, and let us define a relation � on X by i � j if and only if both i ≤ j
and xi ≤ xj. It is not difficult to verify that the relation � is a (partial) ordering of the
set X. So we have α(X,�) · ω(X,�) ≥ n2 + 1, and hence α(X,�) > n or ω(X,�) > n.
Now it is easily checked that a chain i1 ≺ i2 ≺ · · · ≺ im in the ordering � corresponds to
a nondecreasing subsequence xi1 ≤ xi1 ≤ · · · ≤ xi1 (note that i1 < i2 < · · · < im), while
an independent set {i1, i2, . . . , im} corresponds to a decreasing subsequence.

Theorem 10 (Dilworth). In a partially ordered set P , the size of the maximum antichain
equals the minimum number k of chains such that P can be partitioned into k chains.

(I did not prove this in the lecture)

Proof. Let P be a finite partially ordered set. The theorem holds trivially if P is empty.
So, assume that P has at least one element, and let a be a maximal element of P .

By induction, we assume that for some integer k the partially ordered set P ′ := P \{a}
can be covered by k disjoint chains C1, . . . , Ck and has at least one antichain A0 of size
k. Clearly, A0 ∩ Ci 6= ∅ for i = 1, 2, . . . , k. For i = 1, 2, . . . , k, let xi be the maximal
element in Ci that belongs to an antichain of size k ∈ P ′, and set A := {x1, x2, . . . , xk}.
We claim that A is an antichain. Let Ai be an antichain of size k that contains xi. Fix
arbitrary distinct indices i and j. Then Ai ∩ Cj 6= ∅. Let y ∈ Ai ∩ Cj . Then y ≤ xj, by
the definition of xj. This implies that xi 6≥ xj, since xi 6≥ y. By interchanging the roles
of i and j in this argument we also have xj 6≥ xi. This verifies that A is an antichain.

We now return to P . Suppose first that a ≥ xi for some i ∈ {1, 2, . . . , k}. Let K be
the chain {a} ∪ {z ∈ Ci : z ≤ xi}. Then by the choice of xi, P \ K does not have an
antichain of size k. Induction then implies that P \K can be covered by k − 1 disjoint
chains since A \ {xi} is an antichain of size k − 1in P \K. Thus, P can be covered by k
disjoint chains, as required. Next, if a 6≥ xi for each i ∈ {1, 2, . . . , k}, then A ∪ {a} is an
antichain of size k+ 1 in P (since a is maximal in P ). Now P can be covered by the k+1
chains {a}, C1, C2, . . . , Ck completing the proof.

5



Lecture 3

Alice invites six guests to her birthday party: Bob, Carl, Diane, Eve, Frank and George.
When they arrive, they all shake hands with each other.

Problem 3. How many handshakes happened?

Answer: There are 7 people and everyone shook hand with 6 people. This means 7 · 6
handshakes. But we counted every handshake twice. So, there were 7·6

2
= 21 handshakes.

Problem 4. How many ways can 6 people be seated at the table?

The first person can choose from 6 places, the second from the remaining 5 places...
In total, 6 · 5 · 4 · 3 · 3 · 1 = 720.

Problem 5. At the party, Frank had an idea:
“Let’s pool our resources and win a lot on the lottery! All we have to do is to buy enough
tickets so that no matter what they draw, we should have a ticket with the right numbers.
How many tickets do we need for this?”
(In the lottery they are talking about, 5 numbers are selected from 90.)

Finally, the six guests decide to play chess. Alice, who just wants to watch them, sets
up 3 boards.

Problem 6. How many ways can the 6 guests be matched with each other? It does not
count it as a different matching if two people at the same board switch places, and it should
not matter which pair sits at which table.

Definition 15. Let n! = 1 · 2 · 3 · · ·n. This is called n factorial. (in German: n Fakultät)

Note: 0! is defined as 1.

Definition 16. Set S has n elements. We denote the number of subsets of S of size k
with

(
n
k

)
. This is called n choose k.

English German(
n
k

)
n choose k n über k

n
k

n over k n (geteilt) durch k

Proposition 11.
(
n
k

)
=
(

n
n−k

)
Proposition 12.

(
n
k

)
= n!

(n−k)!k!

Problem 7. There are 12 students in a class. We want to give them 17 chocolates. Every
student receives at least 1 chocolate. How many ways can we do it?

Take 17 chocolates and place 11 separators between them. The first student receives
the chocolates from the start to the first separator, the second student gets the ones from
the first separator to the second. There are 16 places to place these separators, so we have(
16
11

)
options. If there are n students and m chocolates, (m ≥ n), the solution is

(
m−1
n−1

)
.

Permutation Variation Combination

Without repetition n! n · (n− 1) · · · (n− k + 1) = n!
(n−k)!

(
n
k

)
With repetition n!

n1!n2!···nk!
nk

(
n+k−1

k

)
6



We illustrate these 6 problems with 6 questions.
Permutation Variation Combination

Without repetition Question 1 Question 2 Question 3
With repetition Question 4 Question 5 Question 6

1. (a) How many ways can 10 people stand in a line?

Answer: 10! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 = 3628800
The first person can stand in 10 places, the second one in the remaining 9
places, the third one in 8 possible places and so on.

(b) How many ways can n people stand in a line?

The first person can stand in n places, the second one in the remaining n− 1
places, and so on, in total there are n! possibilities.

2. (a) Bob wants to sent postcards to 3 of his friends. There are 6 kinds of postcards
available, one from each type. How many ways can he do it?

Answer: 6 · 5 · 4 = 120
We choose from 6 possibilities for first postcard, 5 possibilities for the second
postcard and 4 for the third postcard.

(b) Bob wants to sent postcards to k of his friends. There are n kinds of postcards
available, one from each type. How many ways can he do it?

Answer: n · (n− 1) · (n− 2) · · · (n− k + 1)

3. (a) I have 10 marbles. How many ways can I pick 4 of them?
Answer:

(
10
4

)
= 10!

6!4!
= 10·9·8·7

4!
= 210

(b) I have n marbles. How many ways can I pick k of them?
Answer:

(
n
k

)
= n!

k!(n−k)!

4. (a) How many 6 digit number can be formed using the digits 1, 1, 2, 3, 3, 3?
Answer: If we had 6 different digits, the answer would be 6! = 1·2·3·4·5·6 = 720
But we do not differentiate between the two 1s, their order does not matter.
Divide by 2. We also not differentiate between the three 3s, (and they can be
placed in 3! = 6 different orders) divide by 6.

In total, we have 6!
2!3!

= 720
12

= 60 such numbers.

(b) How many n-character word can be formed it we have k different characters
and we can use the first character n1 times, the second n2 times, . . . the kth

character nk times. We know that n1 + n2 + n3 + . . . nk = n
Answer: n!

n1!n2!···nk!

5. (a) Using the letters a, b, c, how many 4 letter words can be formed ? We are free
to use any letter multiple times. (The word does not have to actually make
sense.)
Answer: For each letter, we can choose any of the 3. So we have 34 options in
total.

7



(b) We have n different symbols. How many words of lenght k can be formed from
them?

Answer: For each of the k letters, we can choose any of the n symbols. So we
have nk options in total.

(c) Bob wants to sent postcards to k of his friends. There are n kinds of postcards
available, several (more than needed) from each type. How many ways can he
do it?

Answer: nk

6. (a) There are 12 students in a class. We want to give out 5 chocolates. One
student may receive more than 1 chocolate. How many ways can we do it?
Answer: Take 12 extra chocolates and rephase the problem: now we are giving
them 17 chocolates, and at least one to everyone. This was solved in Problem
7, so the answer is

(
16
11

)
=
(
16
5

)
.

Second solution: Take the 5 chocolates and place 11 separators.

(b) There are n students in a class. We want to give them k chocolates. One
student may receive more than 1 chocolate. How many ways can we do it?
Take the k chocolates and place n−1 separators. Now we do not need everyone
to receive at least one chocolate, therefore we can put the n − 1 separators
anywhere. If two separators are right next to each other, the corresponding
student receives nothing. So we have k + n − 1 objects in total in a row (k
chocolates and n − 1 separators). Therefore we can place the separators in(
n+k−1
n−1

)
=
(
n+k−1

k

)
ways.

Problem 8. x1 + x2 + · · ·+ xn = k
xi ∈ Z and xi ≥ 0 ∀i ∈ {1, 2, . . . n}
How many solutions does this equation have?

Answer:
(
n+k−1

k

)
We can see that this is the same as the chocolate problem. We have k chocolates, and

xi denotes how many chocolates does the ith student get.

Problem 9. x1 + x2 + x3 = 3
x1, x2, x3 ∈ Z
x1, x2, x3 ≥ 0
How many solutions does this equation have?

Answer:
(
n+k−1

k

)
=
(
3+3−1

3

)
=
(
5
3

)
= 10

Problem 10. x1 + x2 + x3 = 8
x1, x2, x3 ∈ Z
x1, x2, x3 ≥ 0
How many solutions does this equation have?

Answer:
(
n+k−1

k

)
=
(
3+8−1

8

)
=
(
10
8

)
=
(
10
2

)
= 45

8



Lecture 4

Postcard problem again: Bob wants to sent postcards to k of his friends. There are n
kinds of postcards available, several (more than needed) from each type. How many ways
can he do it?

Proposition 13. Let N be an n-element set (it may also be empty, i.e. we admit n =
0, 1, 2, ...) and let M be an m-element set, m ≥ 1. Then the number of all possible
mappings f : N →M is mn.

Proposition 14. A set with n elements has 2n subsets.

Proposition 15. Set S has n elements. Then the number of subsets with even number
of elements is 2n−1.

Binomial coefficients (
n

0

)
+

(
n

1

)
+

(
n

3

)
+ · · ·+

(
n

n

)
= 2n(

n

0

)
−
(
n

1

)
+

(
n

3

)
−
(
n

4

)
· · · ±

(
n

n

)
= 0

Theorem 16 (Binomial theorem).

(x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk

For example, let us substitute x = y = 1. What do we get?
x = 1, y = −1. What do we get?

Pascal triangle

Create the following picture. Every number is the sum of the two numbers above it.
n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1
n = 5 1 5 10 10 5 1
n = 6 1 6 15 20 15 6 1

Proposition 17. (
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
Proof. We can prove this in an algebraic and also in a combinatoric way.(
n−1
k−1

)
+
(
n−1
k

)
= (n−1)!

(k−1)!(n−k)! + (n−1)!
(k)!(n−k−1)! = (n−1)!k+(n−1)!(n−k)

(k)!(n−k)! = (n−1)!n
(k)!(n−k)!

= n!
(k)!(n−k)! =

(
n
k

)
Second proof. Let N be an n-element set, and a ∈ N is an element of it. Select k
elements, we can do this

(
n
k

)
ways. We either select a or not. If we selected a, we can

choose the other elements
(
n−1
k−1

)
ways, if not, we can do select the other elements

(
n−1
k−1

)
ways. Therefore,

(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
.

9



Proposition 18. The kth element of nth row in the Pascal triangle is
(
n
k−1

)
.

In other words, the numbers in the Pascal triangle are the same as the binomial
coefficients. This is a corollary of Proposition 17.

Proposition 19. A “sock” in the Pascal triangle:(
r

r

)
+

(
r + 1

r

)
+

(
r + 2

r

)
+ . . .

(
n

r

)
=

(
n+ 1

r + 1

)
Proofs: Induction alone, or using the Pascal triangle.

Fibonacci numbers

A story about rabbits.
We can define the Fibonacci sequence with the following recursion: F0 = 0, F1 = 1, and
Fn+1 = Fn + Fn−1 for every n ≥ 1.

The first few values are F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5 . . .

Problem 11. A staircase has n steps. You walk up taking one or two steps at a time.
How many ways can you go up?

n = 1 : 1 way
n = 2 : 2 ways
n = 3 : 3 ways

If the number of steps needed is Gn, then Gn = Fn+1.

Lecture 5

On the exersice class, we showed that for Fibonacci numbers: F0 + F1 + F2 + · · ·+ Fn =
Fn+2 − 1.

Proof by induction.

The Fibonacci numbers are given by the formula

Fn =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

.

Where can we find the Fibonacci numbers in the Pascal triangle?
Look at the diagonal

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1
n = 5 1 5 10 10 5 1
n = 6 1 6 15 20 15 6 1

10



Looking at the bold numbers, the sum is 1 + 6 + 5 + 1 = 13, which is a Fiboncci
number. Now add the numbers on all the diagonals that are parallel to this one. Notice
that they are all Fibonacci numbers.

Counting regions

Problem 12. Let us draw n lines in the plane. These lines divide the plane into some
number of regions. How many regions do we get?

A set of lines in the plane such that no two are parallel and no three go through the
same point is said to be in general position. We assume that the lines are in general
position.

For a small number of lines, the answer is 1, 2, 4, 7, 11 . . .

Lemma 20. Rule: if we have a set of n − 1 lines in the plane in general position, and
add a new line (preserving general position), then the number of regions increases by n.

This way we get 1 + (1 + 2 + 3 . . . n) = 1 + n(n+1)
2

Theorem 21. A set of n lines in general position in the plane divides the plane into
1 + n(n+1)

2
regions.

Second proof: look at the ”lowest” point of each region. n + 1 at the bottom of the
blackboard, and

(
n
2

)
intersections.

This way we get 1 + n+
(
n
2

)
= 1 + n+ n(n−1)

2
= 1 + n(n+1)

2
regions.

Inclusion–exclusion principle (Siebformel)

In a class of 40, many students are collecting the pictures of their favorite bands. Eighteen
students have a picture of Rammstein, 16 students have a picture of the Die Prinzen and
12 students have a picture of Die Toten Hosen. There are 7 students who have pictures
of both Rammstein and Prinzen, 5 students who have pictures of both Rammstein and
Toten Hosen, and 3 students who have pictures of both Prinzen and Toten Hosen. Finally,
there are 2 students who possess pictures of all three groups.
Question: How many students in the class have no picture of any of the bands?

Our result is: 40− (18 + 16 + 12) + (7 + 5 + 3)− 2 = 7.
|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

Theorem 22. A1, A2 . . . An are finite sets. Then∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
i=1

|Ai|−
∑

1≤i<j≤n

|Ai∩Aj|+
∑

1≤i<j<k≤n

|Ai∩Aj∩Ak|−. . . (−1)n−1|A1∩A1∩. . . An|

Lecture 6 (April 23)

Proof for the Inclusion–exclusion principle: An element x is exacly in j subsets. How
many times did we count it?

The story of swapped hats

11



Problem 13. There were n people at a party. They all have their own hats. The light
went out, and everyone just picked a random hat when going home. What is the probality
that no one has their own hat?

In other words: What is the number of fixed point free permutations?
A permutation π of the set {1, 2, . . . , n} is a function π : {1, 2, . . . , n} → {1, 2, . . . , n},

where π(i) is the number of the hat returned to the ith gentleman. The question is, what
is the probability of π(i) 6= i holding for all i ∈ {1, 2, . . . , n}? Call an index i with π(i) = i
a fixed point of the permutation π. So we ask: what is the probability that a randomly
chosen permutation has no fixed point?

Each of the n! possible permutations is equally probable, and so if we denote by
D(n) the number of permutations with no fixed point on an n-element set, the required
probability equals D(n)/n!.

Using the inclusion–exclusion principle, we derive a formula for D(n). We will actually
count the “bad” permutations, i.e. those with at least one fixed point. Let Sn denote the
set of all permutations of {1, 2, ..., n}, and for i = 1, 2, ..., n, we define Ai = {π ∈ Sn :
π(i) = i}. The bad permutations are exactly those in the union of all the Ai.

It is easy to see that |Ai| = (n − 1)!, because if π(i) = i is fixed, we can choose an
arbitrary permutation of the remaining n−1 numbers. Which permutations lie in A1∩A2?
Just those with both 1 and 2 as fixed points (and the remaining numbers can be permuted
arbitrarily), and so |A1 ∩ A2| = (n− 2)!. More generally, for arbitrary i1 < i2 < · · · < ik
we have |Ai1 ∩Ai2 · · · ∩Aik | = (n− k)!, and substituting this into the inclusion–exclusion
formula yields

|A1 ∪ · · · ∪ An| =
n∑
k=1

(−1)k−1
(
n

k

)
(n− k)! =

n∑
k=1

(−1)k−1
n!

k!

We counted the bad permutations, so

D(n) = n!− |A1 ∪ · · · ∪ An| = n!− n!

1!
+
n!

2!
− · · ·+ (−1)n

n!

n!

D(n) = n!

(
1− 1

1!
+

1

2!
− · · ·+ (−1)n

1

n!

)
The series in parentheses converges to 1/e. Therefore the probability hat noone has

his own hat converges to 1/e.

Definition 17. The greatest common divisor (gcd) of two or more integers, which are
not all zero, is the largest positive integer that divides each of the integers. For example,
the gcd of 8 and 12 is 4.
Integers a and b are relative primes, if gcd(a, b) = 1.

Definition 18. Let n be a positive integer. Euler’s function counts the positive integers
up to a given integer n that are relatively prime to n.

ϕ(n) = |{1 ≤ i ≤ n : gcd(i, n) = 1}|.
Let n be a positive integer. How many numbers of {1, 2, 3 . . . n} are relative prime to n?

Theorem 23. The prime factorisation of n is n = pα1
1 · pα2

2 · · · p
αk
k . Then

ϕ(n) = n ·
(

1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pk

)
Proof: Using the inclusion-exclusion principle.

12



Catalan numbers

On a grid we walk from (0, 0) to (n, n) and we have to stay under the diagonal. How
many ways can we do it? The number of possbilities is Cn.

The first few values: C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42 . . .

Statement 24. Cn =
(
2n
n

)
−
(

2n
n+1

)
= 1

n+1

(
2n
n

)
for every n ≥ 0

Idea of proof: The number of all walks from (0, 0) to (n, n) is
(
2n
n

)
, beacuse we take

2n steps in total, n steps going right, n steps going up.
The walks that are “bad” (do not stay under the diagonal) touch a second diagonal line
going from (0, 1) to (n − 1, n). The “good” walks do not touch this second diagonal.
For bad walks, find the first point where it touches the second diagonal, and mirror the
remaining part of the walk. This way we get a walk from (0, 0) to (n − 1, n + 1). The
number of such walks are

(
2n
n+1

)
. We can show that there is a one-to-one correspondence

between bad walks and walks from (0, 0) to (n− 1, n+ 1). Therefore the number of good
walks is

(
2n
n

)
−
(

2n
n+1

)
.

Other use of the Catalan numbers: Cn counts the number of expressions containing n
pairs of parentheses which are correctly matched. For example:

((())) ()(()) ()()() (())() (()())

Lecture 7 (April 26)

The Catalan numbers can be calculated with the following recursion.
C0 = 1 and Cn+1 =

∑n
i=0CiCn−i for n ≥ 0

Pigeonhole principle (Schubfachprinzip)

The birthday problem
The birthday problem asks, for a set of n randomly chosen people, what is the probability
that some pair of them will have the same birthday? By the pigeonhole principle, if there
are 367 people in the room, we know that there is at least one pair who share the same
birthday, as there are only 366 possible birthdays to choose from (including February 29,
if present).
The birthday ”paradox” refers to the result that even if the group is as small as 23 indi-
viduals, the probability that there is a pair of people with the same birthday is still above
50%.

People in London
We can demonstrate there must be at least two people in London with the same number
of hairs on their heads. It is reasonable to assume (as an upper bound) that no one has
more than 1,000,000 hairs on their head (m = 1 million holes). The population of London
is more than 8,000,000.

Sock-picking
Assume a drawer contains a mixture of black socks and blue socks, each of which can be
worn on either foot, and that you are pulling a number of socks from the drawer without
looking. What is the minimum number of pulled socks required to guarantee a pair of the

13



same color? Using the pigeonhole principle, to have at least one pair of the same color
(m = 2 holes, one per color) using one pigeonhole per color, you need to pull only three
socks from the drawer (n = 3 items). Either you have three of one color, or you have two
of one color and one of the other.

Proposition 25. There are m holes and at least m + 1 pigeons sit in them. Then there
exists a hole with at least 2 pigeons.
There are m holes and at least km+1 pigeons. Then there exists a hole with at least k+1
pigeons.

Graphs

Prove that at a party with 51 people, there is always a person who knows an even number
of others. (We assume that acquaintance is mutual. There may be people who don’t know
each other. There may even be people who don’t know anybody else — of course, such
people know an even number of others, so the assertion is true if there is such a person.)

A graph consists of a set of nodes (or points, or vertices, all these names are in use),
and some pairs of these (not necessarily all pairs) are connected by edges. It does not
matter whether these edges are straight of curvy; all that is important is which pair of
nodes they connect. The set of nodes of a graph G is usually denoted by V ; the set of
edges, by E. Thus we write G = (V,E) to indicate that the graph G has node set V and
edge set E.

The only thing that matters about an edge is the pair of nodes it connects; hence the
edges can be considered as 2-element subsets of V . This means that the edge connecting
nodes u and v is just the set {u, v}. We’ll further simplify notation and denote this edge
by uv.

Coming back to our problem, we see that we can represent the party by a graph very
conveniently. Our concern is the number of people known by a given person. We can read
this off the graph by counting the number of edges leaving a given node. This number is
called the degree of the node. The degree of node v is denoted by d(v).

In the language of graph theory, we want to prove: if a graph has an odd number of
nodes, then it has a node with even degree.

Theorem 26. The sum of degrees of all nodes in a graph is twice the number of edges.∑
v∈V d(v) = 2|E|, therefore the sum of degrees is an even number. This implies the

previous statement.

The following statements are all corollaries of the fact that the sum of the degrees is
an even number:

Statement 27. • A finite graph has even number of nodes with odd degree.

• If a graph has an odd number of nodes, then it has an odd number of nodes with
even degree.

• If a graph has an even number of nodes, then it has an even number of nodes with
even degree.

14



Let us get acquainted with some special kinds of graphs. The simplest graphs are the
empty graphs, having any number of nodes but no edges. We get another very simple
kind of graphs if we take n nodes and connect any two of them by an edge. Such a graph
is called a complete graph (or a clique). A complete graph with n nodes has

(
n
2

)
edges.

Let us draw n nodes in a row and connect the consecutive ones by an edge. This way
we obtain a graph with n − 1 edges, which is called a path. The first and last nodes in
the row are called the endpoints of the path. If we also connect the last node to the first,
we obtain a cycle (or circuit).

Take a sequence of nodes and edges v1, e1, v2, e2, v3, . . . vk such that ei = vivi+1 for
every 1 ≤ i ≤ k − 1.

v1, e1, v2, e2, v3, . . . vk is a

• path, if nodes and edges are never repeated

• trail, if nodes can be repeated but the edges are all different.

• walk, if nodes and edges can be repeated

• cycle, if v1 = vk, but other than that none of the nodes or edges are repeated. (A
cycle is closed path.)

• circuit, if v1 = vk, and the nodes and edges can be repeated. (A circuit is closed
walk.)

Definition 19. A graph H is called a subgraph of a graph G if it can be obtained from G
by deleting some of its edges and nodes (of course, if we delete a node we automatically
delete all the edges that connect it to other nodes).

In other words: H = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V , E ′ ⊆ E and V ′

contains all the endpoints of the edges in E ′.

A key notion in graph theory is that of a connected graph. It is heuristically clear what
this should mean, but it is also easy to formulate the property as follows: a graph G is
connected if every two nodes of the graph can be connected by a path in G. To be more
precise: a graph G is connected if for every two nodes u and v, there exists a path with
endpoints u and v that is a subgraph of G. 4 Let G be a graph that is not necessarily
connected. G will have connected subgraphs; for example, the subgraph consisting of a
single node (and no edge) is connected. A connected component H is a maximal subgraph
that is connected; in other words, H is a connected component if it is connected but every
other subgraph of G that contains H is disconnected.

Definition 20. A graph G = (V,E) is called a tree if it is connected and contains no
cycle as a subgraph.

The simplest tree has one node and no edges. The second simplest tree consists of two
nodes connected by an edge.

Theorem 28. (a) A graph G is a tree if and only if it is connected, but deleting any of
its edges results in a disconnected graph.
(b) A graph G is a tree if and only if it contains no cycles, but adding any new edge creates
a cycle.

15



Lecture 8 (April 30)

Theorem 29. Every tree with at least two nodes has at least two nodes of degree 1.

How to build a tree:
A real tree grows by developing a new twig again and again. We show that graph-trees
can be grown in the same way. To be more precise, consider the following procedure,
which we call the Tree-growing Procedure:
- Start with a single node.
- Repeat the following any number of times: if you have any graph G, create a new node
and connect it by a new edge to any node of G.

Theorem 30. Every graph obtained by the Tree-growing Procedure is a tree, and every
tree can be obtained this way.

Theorem 31. Every tree on n nodes has n− 1 edges.

Definition 21. An Eulerian walk (or Eulerian trail) is a trail in a finite graph which
visits every edge exactly once.

Definition 22. An Eulerian circuit is an Eulerian walk which starts and ends on the
same vertex.

They were first discussed by Leonhard Euler while solving the famous Seven Bridges
of Königsberg problem in 1736.

Theorem 32. (a) If a connected graph has more than two nodes with odd degree, then it
has no Eulerian walk.
(b) If a connected graph has exactly two nodes with odd degree, then it has an Eulerian
walk. Every Eulerian walk must start at one of these and end at the other one.
(c) If a connected graph has no nodes with odd degree, then it has an Eulerian circuit.
(Every Eulerian walk is closed.)

We should pay attention: If a graph has isolated vertices (vertices of degree 0) it can
still contain an Eulerian walk or circuit.

Theorem 33. If a graph G does not have isolated vertices, the following two statements
are equivalent.
(i) G is connected graph, and has no nodes with odd degree
(ii) G has an Eulerian circuit.

Lecture 9 (May 3)

We can take any tree, select any of its nodes, and call it a root. A tree with a specified
root is called a rooted tree.

Let G be a rooted tree with root r. Given any node v different from r, we know that
the tree contains a unique path connecting v to r. The node on this path next to v is
called the ”parent” of v. The other neighbors of v are called the ”children” of v. The
root r does not have a parent, but all its neighbors are called its children.

Now a basic geneological assertion: every node is the parent of its children.

16



Proof. Indeed, let v be any node and let u be one of its children. Consider the unique
path P connecting v to r. The node cannot lie on P : it cannot be the first node after v,
since then it wold be the parent of v, and not its child; and it cannot be a later node,
since then going from v to u on the path P and then back to v on the edge uv we would
traverse a cycle. But this implies that adding the node u and the edge uv to P we get a
path connecting u to r. Since v is the first node on this path after u, it follows that v is
the parent of u. (Is this argument valid when v = r? Check!)

We have seen that every node different from the root has exactly one parent. A node
can have any number of children, including zero.

A node with degree 1 is called a leaf.

How many trees are there on n nodes?

Before attempting to answer this question, we have to clarify an important issue: when
do we consider two trees different?

• We fix the set of nodes, and consider two trees the same if the same pairs of nodes
are connected in each. (This is the position the twon people would take when they
consider road construction plans.) In this case, it is advisable to give names to
the nodes, so that we can distinguish them. It is convenient to use the numbers
0, 1, 2, ..., n − 1 as names (if the tree has n nodes). We express this by saying that
the vertices of the tree are labeled by 0, 1, 2, ...n− 1. Interchanging the labels 2 and
4 (say) would yield a different labelled tree.

• We don’t give names to the nodes, and consider two trees the same if we can
rearrange the nodes of one so that we get the other tree. More exactly, we consider
two trees the same (the mathematical term for this is isomorphic) if there exists
a one-to-one correpondence between the nodes of the first tree and the nodes of
the second tree so that two nodes in the first tree that are connected by an edge
correspond to nodes in the second tree that are connected by an edge, and vice versa.
If we speak about unlabelled trees, we mean that we don’t distinguish isomorphic
trees from each other. For example, all paths on n nodes are the same as unlabelled
trees.

How many simple graphs are there on n nodes? If the nodes are labeled, 2(n
2).

(If the nodes are unlabeled: we don’t know the exact formula, but definitely less than

2(n
2). )

Theorem 34 (Cayley’s formula). For every positive integer n, the number of trees on n
labeled vertices is nn−2.

Proof. We prove this with the help of the Prüfer code.
long Prüfer code: Two lines, both lines contain n− 1 numbers. The nodes of a tree

on n nodes are labelled 0, . . . , n − 1. We consider it as a rooted graph with node 0 as
a root. To get the Prüfer code, in every step, we take the leaf with the smallest non-0
label. Delete it from the tree, and write down the label of the leaf in the upper row, and
the label of its parent (its only neighbor) in the lower row. In the end, only the node 0
remains.

17



Prüfer code: Take the lower line of the long Prüfer code. The last number has to be
zero. Remove this zero.

Properties: 1) The length of the code is n− 2, since in every step, we removed one edge,
(a tree has n− 1 edges) and we did not include the last 0.
2) If a node v has degree d(v), then v appears in the code exactly d(v)− 1 times.
3) The Prüfer code gives a bijection between labelled trees on n nodes, and sequences of
lenght n− 2, containing the numbers 0, . . . , n− 1.

Decoding: 1) Write a 0 to the end.
2) From left to right, recreate the top row: always choose the smallest number that does
not appear later in the bottow row, and does not appear earlier in the top row.
3) When we have both rows, the edges of the tree are given by the pair of numbers in
each coloumn.

Since the Prüfer code gives a bijection between labelled trees on n nodes, and sequences
of lenght n − 2, containing the numbers 0, . . . , n − 1, the number of trees on n labeled
vertices is nn−2.

The number of unlabelled trees: Let Tn be the number of unlabelled trees on n vertices.

nn−2

n!
< Tn < 4n−1

Lecture 10-11 (May 7 and 10)

Minimum cost spanning tree

Definition 23. A subgraph of a graph G = (V,E) is another graph H = (V ′, E ′) formed
from a subset of the vertices and edges of G. So V ′ ⊆ V , E ′ ⊆ E. The vertex subset
must include all endpoints of the edge subset, but may also include additional vertices.

A spanning subgraph is one that includes all vertices of the graph; an induced subgraph
is one that includes all the edges whose endpoints belong to the vertex subset.

Definition 24. A spanning tree T of an undirected graph G is a subgraph that is a tree
which includes all of the vertices of G.

In general, a graph may have several spanning trees.
A graph that is not connected does not contain a spanning tree.
Every connected graph has a spanning tree: start removing edges as long as we keep

the connectedness, if we cannot remove any more edges, the remaining graph is a tree,
using Theorem 28.

Theorem 35. Graph G has n nodes. Any two of the following three statements imply the
third one:
(i) G is connected
(ii) G does not contain a cycle
(iii) G has n− 1 edges.

18



Proof. We saw earlier that (i) and (ii) implies (iii), every tree has n− 1 edges.
If G satisfies (i) and (iii), take a spanning tree T of G. The spanning tree has n − 1

edges, thus T = G, G is a treee.
If G satisfies (i) and (iii), but it is not connected, add edges to the graph. The edges

we add always connect two different connected components of G, in this way, we cannot
create a cycle in the graph. We stop adding edges when the graph is connected, at this
time it is a tree. A tree has n− 1 edges, so we actually added zero edges.

Definition 25. Let V1 ⊆ V . A cut in the graph a set of edges such that exactly one
endpoint of the edge is in V1. Cut(V1) = {uv ∈ E|u ∈ V1, v /∈ V1}

Let G = (V,E) be an undirected graph with a cost function over the edges, c : E → R.
If H = (V ′, E ′) is a subgraph of G, we use the following notation for the cost of the sub-
graph: c(H) =

∑
e∈E′ c(e).

Finding the minimum cost spanning tree:
A country with a n towns wants to construct a new telephone network to connect all
towns. Of course, they don’t have to build a separate line between every pair of towns;
but they do need to build a connected network; in our terms, this means that the graph
of direct connections must form a connected graph.

We will use the following shorthand notations. If G = (V,E) is a graph, e is an edge,
G+ e = (V,E ∪ {e})
G− e = (V,E \ {e})
V (G) and E(G) denotes the vertex set and edge set of graph G.

Kruskal’s algorithm
List the edges in the increasing order of cost: c(e1) ≤ c(e2) ≤ . . . c(em).
At the start of the algorithm T = (V, ∅)
For i = 1...m

If T + ei does not contain a cycle, let T := T + ei.
(Otherwise skip that edge, and T is unchanged)

”Pessimist” algorithm
At the start of the algorithm T = G = (V,E)
For i = m...1 (decreasing order or cost)

If T − ei is connected let T := T − ei.
(Otherwise skip that edge, and T is unchanged)

Prim’s algorithm (Jarńık’s algorithm)
Let v0 be an arbitrary vertex of graph G.
At the start of the algorithm T = (v0, ∅)
Take an edge uv that is a minimum cost edge in Cut(V (T )), (u ∈ V (T ), v /∈ V (T )) and
add it to the tree.

T := (V (T ) ∪ {v}, E(T ) ∪ {uv})
Repeat this step until all vertices are in the tree.

Theorem 36. Kruskal’s algorithm gives a minimum cost spanning tree.

19



Suppose the Kruskal algorithm gives T , and there is a spanning tree H such that
c(H) < c(T ).

Let us imagine the process of constructing T , and the step when we first pick an edge
that is not an edge of H. Let e be this edge. If we add e to H, we get a cycle C. This
cycle is not fully contained in T , so it has an edge f that is not an edge of T . If we add
the edge e to H and then delete f , we get a (third) tree H ′. (Why is H ′ a tree? We
removed and edge of cycle C, so H ′ is still connected, and it has n− 1 edges.) We want
to show that H ′ is at most as expensive as H. This clearly means that e is at most as
expensive as f . Suppose (by indirect argument) that f is cheaper than e.

Now comes a crucial question: Why didn’t the optimistic government select f instead
of e at this point in time? The only reason could be that f was ruled out because it would
have formed a cycle C ′ with the edges of T already selected. But all these previously se-
lected edges are edges of H, since we are inspecting the step when the first edge not in
H was added to T . Since f itself is an edge of H, it follows that all edges of C ′ are edges
of H, which is impossible, since H is a tree. This contradiction proves that f cannot be
cheaper than e and hence H cannot be cheaper than H ′.

So we replace H by this tree H ′ that is not more expensive. In addition, the new tree
H ′ has the advantage that it coincides with T in more edges, since we deleted from H an
edge not in T and added an edge in T . This implies that if H ′ is different from T and
we repeat the same argument again and again, we get trees that are not more expensive
than H, and coincide with T in more and more edges. Sooner of later we must end up
with T itself, proving that T was no more expensive than H.

Lemma 37. For some V1 ⊆ V , e is a minimum cost edge in Cut(V1). T is a spanning
tree and e /∈ T . Then there exist another spanning tree H such that c(H) ≤ c(T ) and
e ∈ H.

Proof. Add edge e to the spanning tree T , T + e contains a cycle, let us call this cycle
C. This cycle must contain an edge of Cut(V1) other than e, this edge is f . Since e is a
minimum cost edge in the cut, c(e) ≤ c(f).

Let H := T + e − f . Why is it a tree? Every vertex is connected to at one of the
endpoints of e via the edges of T − e, and C − e connects the two endpoint of e with each
other. Thus T + e − f is connected and has the same number of edges as T . So H is a
tree, e ∈ H and c(H) ≤ c(T ).

Corollary 38. For some V1 ⊆ V , e is a minimum cost edge in Cut(V1). Then there exist
a minimum cost spanning tree T such that e ∈ T .

Lemma 39. For some cycle C in graph G, e is a maximum cost edge in C. T is a
spanning tree, e ∈ T . Then there exist another spanning tree H such that c(H) ≤ c(T ))
and e /∈ H.

Remove edge e from the tree, T−e is not connected. Let V1 be a connected component
of T − e. Since T connected, e is an edge in Cut(V1). Cycle C has at least two edges in
common with Cut(V1), take an edge f ∈ C ∩ Cut(V1), f 6= e. Let H := T − e+ f . Since
e was a maximum cost edge in the cut, c(f) ≤ c(e). H is a tree, e /∈ H and c(H) ≤ c(T ).

Corollary 40. For some cycle C in graph G, e is a maximum cost edge in C. Then there
exist a minimum cost spanning tree T such that e /∈ T .

20



Theorem 41. Prim’s algorithm gives a minimum cost spanning tree.

Mixed algorithm
A government wants to connect cities with roads, (i. e. they want to build a spanning tree).
Optimists and pessimists win in unpredictable order. This means that sometimes they
build the cheapest line that does not create a cycle with those lines already constructed;
sometimes they mark the most expensive lines “impossible” until they get to a line that
cannot be marked impossible without disconnecting the network, and then they build it.

Here, we keep track of T and set N (N meaning ”not in the tree”) At the start of the
algorithm T = (V, ∅), N = (V, ∅)
We set all the edges as ”not examined”.

At any step, choose one of the following steps.

• Let ei one of the cheapest not examined edges. If T + ei does not contain a cycle,
let T := T + ei. N := N . If T + ei contains a cycle, T is unchanged, N := N + ei .
Label ei as examined.

• Let ei one of the most expensive not examined edges. If G−N−ei is not connected,
let T := T + ei, N := N . If G−N − ei is connected let N := N + ei, T := T . Label
ei as examined.

The algorithm ends when every edge is examined.

Theorem 42. The mixed algorithm gives a minimum cost spanning tree.

Suppose the ”mixed” algorithm gives T , and there is a spanning tree H such that
c(H) < c(T ).

Let us imagine the process of constructing T , and look at the first time where an edge
is examined and T and H chooses differently. Call this edge is ei.

There are two possibilities:

• Case 1: ei was one of the cheapest not examined edges at that time. Let T0 denote
what T was in the algorithm at that time when we examined ei. If T0 + ei contains
a cycle, then H + ei also contains a cycle, since until that point in the algorithm T
and H were the same. This is not possible, since H is a tree, thus ei was selected
by the algorithm, ei ∈ T , but ei /∈ H.

If we add ei to H, we get a cycle C. This cycle is not fully contained in T , so it has
an edge f that is not an edge of T . If we add the edge e to H and then delete f ,
we get a tree H ′ = H + ei − f . (Why is H ′ a tree? We removed and edge of cycle
C, so H ′ is still connected, and it has n− 1 edges.)

All the edges e1, e2 . . . ei were the same in H and T , and f ∈ H \ T therefore
c(ei) ≤ c(f).

We can improve H to H ′ = H + ei − f , and c(H ′) ≤ c(H).

• Case 2: ei was one of the most expensive not examined edges at that time. Until
that point in the algorithm T and H are the same, so if by excluding ei T could
not be connected any more, the same is true for H. Thus ei was refused by the
algorithm, ei /∈ T , but ei ∈ H.

21



H− ei is not connected. There is an edge in T connecting two different components
of H − ei, let this be f . H ′ = H − ei + f is a tree (cycle free and has n− 1 edges).
All the edges ei+1, ei+2 . . . em were the same in H and T , and f ∈ T \ H therefore
c(f) ≤ c(ei). Thus c(H ′) ≤ c(H).

In both cases, we improved H. The total cost did not increase and H ′ has one more
edge in common with T than H has. Repeating this, we will reach a tree having the
exactly the same edges as T , therefore T is optimal.

Theorem 43. The ”pessimist” algorithm gives a minimum cost spanning tree.

The pessimist algorithm is a special case of the mixed algorithm, so it gives a minimum
cost spanning tree.

Lecture 12 (May 14)

Travelling salesman problem

Definition 26. A Hamiltonian cycle is a cycle that contains all nodes of a graph.

The Hamilton cycle problem is the problem of deciding whether or not a given graph
has a Hamiltonian cycle. Hamiltonian cycles sound quite similar to Eulerian walks: In-
stead of requiring that every edge be used exactly once, we require that every node be
used exactly once. But much less is known about them than about Eulerian walks. Euler
told us how to decide whether a given graph has an Eulerian walk; but no efficient way is
known to check whether a given graph has a Hamiltonian cycle, and no useful necessary
and sufficient condition for the existence of a Hamiltonian cycle is known.

The travelling salesman problem (TSP) asks the following question: ”Given a list of
cities and the distances between each pair of cities, what is the shortest possible route
that visits each city and returns to the origin city?”

But we want to show at least one simple algorithm that, even though it does not give
the best solution, never looses more than a factor of 2. We describe this algorithm in the
case when the cost of an edge is just its length, but it would not make any difference to
consider any other measure (like time, or the price of a ticket), at least as long as the
costs c(ij) satisfy the triangle inequality : c(ij) + c(jk) ≥ c(ik)

Let G = (V, c) be an instance of the travelling salesman problem. That is, G is a
complete graph on the set V of vertices, and the function c assigns a nonnegative real
weight to every edge of G. According to the triangle inequality, for every three vertices u,
v, and w, it should be the case that c(uv) + c(vw) ≥ c(uw)

Lemma 44. Let G = (V, c) be an instance of the travelling salesman problem. If T is a
minimum cost spanning tree, and H is a Hamiltonian cycle then c(T ) ≤ c(H).

Proof. Omit an edge e of H. H − e is a spanning tree, and a min cost spanning tree
is cheaper that just any arbitrary spanning tree. The cost of any edge is nonnegative,
therefore c(T ) ≤ c(H − e) ≤ c(H).

Definition 27. There is a problem where we want to minimize the cost, let us denote
the minimum cost with OPT. An algorithm for this problem gives a solution with cost C.
This algorithm is called an α-approximation, if C ≤ α ·OPT .

22



Tree Shortcut Algorithm
Find a cheapest tree connecting the nodes. We can use any of the algorithms discussed in
the previous section for this. So we find the cheapest tree T , with total cost c(T ). Now,
how does this tree help in finding a tour? One thing we can do is to walk around the
tree just as we did when constructing the “planar code” of a tree (when calculating the
number of unlabeled trees). This certainly gives a walk that goes through each node at
least once, and returns to the starting point.

Of course, this walk may pass through some of the towns more than once. But this is
good for us: We can make shortcuts. If the walk takes us from i to j to k, and we have
seen j already, we can proceed directly from i to k. Doing such shortcuts as long as we
can, we end up with a tour that goes through every town exactly once.

Statement 45. The Tree Shortcut Algorithm gives a 2-approximation to the travelling
salesman problem.

Proof. Denote the Hamiltonian cycle we get by the shortcut algorithm H, and the mini-
mum cost Hamiltonian cycle by HOPT .

The circuit we created by walking around the tree contains every edge of tree T
exactly twice, thus it has a total cost 2c(T ). Since the costs satisfy the triangle inequality
c(ij) + c(jk) ≥ c(ik), in each shortcut step, the total cost never incresased. Therefore
c(H) ≤ 2c(T )

By Lemma 44, c(T ) ≤ c(HOPT ), thus c(H) ≤ 2c(T ) ≤ 2c(HOPT ), the algorithm is a
2-approximation indeed.

Cristofides algorithm:
The algorithm can be described in pseudocode as follows.

1. Create a minimum spanning tree T of G.

2. Let O be the set of vertices with odd degree in T . By the handshaking lemma, O
has an even number of vertices.

3. Find a minimum-weight perfect matching M in the induced subgraph given by the
vertices from O.

4. Combine the edges of M and T to form a connected graph H in which each vertex
has even degree. (H may contain parallel edges.)

5. Form an Eulerian circuit in H.

6. Make the circuit found in previous step into a Hamiltonian circuit by skipping
repeated vertices (shortcutting).

Statement 46. The Cristofides algorithm gives a 1.5-approximation to the travelling
salesman problem.

Proof. Denote the Hamiltonian cycle we get with the Cristofides algorithm by HCR, and
the minimum cost Hamiltonian cycle by HOPT .

A minimum cost spanning tree is T , by Lemma 44, c(T ) ≤ c(HOPT ). Let G[O] be the
induced subgraph of G, induced by the vertices in O. Let HO be the Hamilton-path in
G[O] we get by visiting the vertices in O in the same order as the cycle HOPT does. HO can
be created from HOPT using shortcuts, so from the triangle inequality, c(HO) ≤ c(HOPT ).

23



The set O has an even number of vertices. Choosing every second edge in HO, we see that
HO is the union of two perfect machings in G[O]. M is minimum-weight perfect matching,
therefore 2c(M) ≤ c(HOPT ). Thus c(T )+c(M) ≤ 3

2
c(HOPT ). Using the triangle inequality

again, c(HCR) ≤ c(T ) + c(M) ≤ 3
2
c(HOPT ).

Lecture 13 (May 17)

Matchings

At the prom, 300 students took part. They did not all know each other; in fact, every
girl new exactly 50 boys and every boy new exactly 50 girls (we assume, as before, that
acquaintance is mutual). We claim that they can all dance simultaneously (so that only
pairs who know each other dance with each other).

Definition 28. A graph is bipartite if its nodes can be partitioned into two classes, say
A and B so that every edge connects a node in A to a node in B. A perfect matching is
a set of edges such that every node of the graph is incident with exactly one of them.

V = A ∪B. We will use the notation G = (A,B;E) for bipartite graphs.

Definition 29. Two edges are independent if they do not have a common endpoint.
A matching is a set of independent edges.
A perfect maching is a matching that covers all the vertices of a graph. In other words,
a perfect matching is a set of edges such that every node is incident with exactly one of
them.

After this, we can formulate our problem in the language of graph theory as follows:
we have a bipartite graph with 300 nodes, in which every node has degree 50. We want
to prove that it contains a perfect matching. As before, it is good idea to generalize the
assertion to any number of nodes. Let’s be daring and guess that the numbers 300 and
50 play no role whatsoever. The only condition that matters is that all nodes have the
same degree (and this is not 0). Thus we set out to prove the following theorem:

Theorem 47. If every node of a bipartite graph has the same degree d ≥ 1, then it
contains a perfect matching.

Theorem 48 (The Marriage Theorem). A bipartite graph has a perfect matching if and
only if |A| = |B| and and any for subset of (say) k nodes of A there are at least k nodes
in B that are connected to one of them.

Definition 30. For any X ⊆ V , Γ(X) denotes the set of neighbors of X.
Γ(X) = {v ∈ V |∃u ∈ X such that ∃uv ∈ E}

In the following, we say a matching M covers set A, if every node of A is an endpoint
of some edge in matching M . (We cound also say that the matching saturates A.)

Theorem 49 (Hall). In a bipartite graph G = (A,B;E) there is a matching covering A
if and only if for every X ⊆ A, |Γ(X)| ≥ |X|.

24



Idea of proof It is easy to see that if there is a matching covering A then for every
X ⊆ A, |Γ(X)| ≥ |X|. Just consider the pairs given by the matching for every x ∈ X,
this gives at least |X| neighbors.

For the other direction, use an algorithm. We start with the empty matching. ......

Let ν(G) denote size of the maximum matching in graph G. (In other words, the
maximum number of independent edges in G.)

A vertex cover in a graph is a set of vertices that includes at least one endpoint of
every edge, and a vertex cover is minimum if no other vertex cover has fewer vertices.

Let τ(G) be the size of the minimum vertex cover.

Theorem 50 (Kőnig). In a bipartite graph G, ν(G) = τ(G)

Definition 31. We color the edges of the graph in a way that edges having a common
endpoint should have different colors. χ′(G) denotes the mininum number of colors needed
for a edge-coloring of graph G. (This is called the chromatic index of the graph.)

Theorem 51. In a bipartite graph G, if every degree is d, we can color the edges with d
colors. In other words, χ′(G) = d.

Lecture 14 (May 21)

Let ∆(G) denote the maximum degree in graph G. ∆(G) = maxv∈V d(v)

Theorem 52 (Kőnig). In a bipartite graph G, χ′(G) = ∆(G).

Note that in this theorem, the graph does not have to be simple.

Planar graphs

We will use the following notations:
Kn denotes the complete graph on n vertices.
Ka,b denotes the complete bipartite graph with a and b vertices in each color class.

That is, take a bipartite graph G = (A,B;E) where |A| = a, |B| = b, and every node
in A is connected by an edge to every node in B.

So far we have been studying properties of graphs not related to their drawings, and
the role of drawings was purely auxiliary. In this chapter the subject of analysis will be
the drawing of graphs itself and we will mainly investigate graphs that can be drawn in
the plane without edge crossings. Such graphs are called planar.

In order to introduce the notion of a drawing formally, we define an arc first: this is
a subset α of the plane of the form α = γ([0, 1]) = γ(x) : x ∈ [0, 1], where γ : [0, 1]→ R2

is an injective continuous map of the closed interval [0, 1] into the plane. The points γ(0)
and γ(1) are called the endpoints of the arc α.

Definition 32. By a drawing of a graph G = (V,E) we mean an assignment as follows:
to every vertex v of the graph G, assign a point b(v) of the plane, and to every edge
e = {v, v′} ∈ E, assign an arc α(e) in the plane with endpoints b(v) and b(v′). We assume
that the mapping b is injective (different vertices are assigned distinct points in the plane),
and no point of the form b(v) lies on any of the arcs α(e) unless it is an endpoint of that

25



arc. A graph together with some drawing is called a topological graph. A drawing of a
graph G in which any two arcs corresponding to distinct edges either have no intersection
or only share an endpoint is called a planar drawing. A graph G is planar if it has at
least one planar drawing

Faces of a graph drawing. Let G = (V,E) be a topological planar graph, i.e. a planar
graph together with a given planar drawing. Consider the set of all points in the plane
that lie on none of the arcs of the drawing. This set consists of finitely many connected
regions (imagine that we cut the plane along the edges of the drawing)

Let us stress that faces are defined for a given planar drawing. Faces are usually not
defined for a nonplanar drawing, and also we should not speak about faces for a planar
graph without having a specific drawing in mind.

(A topological planar graph, i.e. a planar graph together with a given planar drawing
can be also called a plane graph.)

Theorem 53 (Euler’s formula). Let G = (V,E) be a connected planar graph, and let f
be the number of faces of some planar drawing of G. We use the notations v = |V | and
e = |E|. Then we have f + v = e+ 2

In the following theorems, n denotes the number of the vertices is the graph, and e
denotes the number fo the edges.

Theorem 54. If G is planar, connected, simple, every country is triangle (even the
infinite country) then e = 3n− 6

Theorem 55. A simple planar graph on n nodes has at most 3n− 6 edges.

Theorem 56. K5 is not planar.

Lecture 15 (May 24)

Theorem 57. If G is a planar, simple, bipartite graph, then e ≤ 2n− 4.

Theorem 58. K3,3 is not planar.

A subdivision of a graph G is a graph resulting from the subdivision of edges in G.
The subdivision of some edge e with endpoints {u, v} yields a graph containing one new
vertex w, and with an edge set replacing e by two new edges, {u,w} and {w, v}.

Let us remark that a graph G is planar if and only if each subdivision of G is planar.
This property can be used for a combinatorial characterization of planar graphs – a
characterization purely in graph-theoretic notions, using no geometric notions at all.

Theorem 59 (Kuratowski). A graph G is planar if and only if it has no subgraph iso-
morphic to a subdivision of K3,3 or to a subdivision of K5.

Dual of a planar graph

26



Definition 33. (Dual graph). Let G be a topological planar graph, i.e. a planar graph
(V,E) with a fixed planar drawing. Let F denote the set of faces of G. We define a
graph, possibly with loops and multiple edges, of the form (F , E, ε), where ε is defined
by ε(e) = {Fi, Fj} whenever the edge e is a common boundary of the faces Fi and Fj (we
also permit Fi = Fj, in the case when the same face lies on both sides of a given edge).
This graph (F , E, ε) is called the (geometric) dual of G, and it is denoted by G∗.

Example: If G is a cycle of lenght 3, the dual graph has 2 nodes and 3 parallel edges.

Definition 34. (Chromatic number of a graph). Let G = (V,E) be a graph, and let k
be a natural number. A mapping c : V → {1, 2, . . . , k} is called a coloring of the graph
G if c(x) 6= c(y) holds for every edge {x, y} ∈ E. The chromatic number of G, denoted
by χ(G), is the minimum k such that there exists a coloring c : V (G)→ {1, 2, . . . , k}.

Theorem 60 (6 color theorem ). Any planar graph G satisfies χ(G) ≤ 6.

The proof is easy.

Theorem 61 (5 color theorem ). Any planar graph G satisfies χ(G) ≤ 5.

The proof needs a trick: 1-3 recoloring, 2-4 recoloring.

Theorem 62 (4 color theorem ). Any planar graph G satisfies χ(G) ≤ 4.

This is a famous theorem, but we did not prove this, the proof requires checking several
cases by computer.

Theorem 63. If every node in a graph has degree at most d, then the graph can be colored
with d+ 1 colors. χ(G) ≤ d+ 1.

Note that a graph is 2-colorable if and only if it is bipartite.

Theorem 64. A graph is 2-colorable if and only if it contains no odd cycle.

Proof. We already know the “only if” part of this theorem. A bipartite graph does not
contain odd cycles.

To prove the “if” part, suppose that our graph has no odd cycle. Pick any vertex
a and color it black. Color all its neighbors white. Notice that there cannot be an
edge connecting two neighbors of a, because this would give a triangle. Now color every
uncolored neighbor of these white vertices black. We have to show that there is no edge

27



between the black vertices: no edge goes between u and the new black vertices, since the
new black vertices didn’t belong to the neighbors of a; no edge can go between the new
black vertices, because it would give a cycle of length 3 or 5. Continuing this procedure
the same way, if our graph is connected, we’ll end up with 2-coloring all vertices. It is
easy to argue that there is no edge between two vertices of the same color: Suppose that
this is not the case, so we have two adjacent vertices u and v colored black (say). The
node u is adjacent to a node u1 colored earlier (which is white); this in turn is adjacent
to a node u2 colored even earlier (which is black); etc. This way we can pick a path P
from u that goes back all the way to the starting node. Similarly, we can pick a path
Q from v to the starting node. Starting from v, let’s follow Q back until it first hits P ,
and then follow P forward to u. This path forms a cycle with the edge uv. Since the
nodes along the path alternate in color, but start and end with black, this cycle is odd, a
contradiction.

If the graph is connected, we are done: We have colored all vertices. If our graph is
not connected, we perform the same procedure in every component, and obviously, this
will give a good 2-coloring of the whole graph.

Lecture 16 (May 28)

Finite projective planes
Let P be a finite set and let L be a system of subsets of P The elements of P are

called points, the elements of L are called lines.

(P,L) is a finite projective plane if it satisfies the following 3 axioms:
(i) Any two distinct sets L1, L2 ∈ L intersect in exactly one element, i.e. |L1 ∩ L2| = 1.
(ii) For any two distinct elements p1, p2 ∈ P , there exists exactly one set L ∈ L such that
p1 ∈ L and p2 ∈ L.
(iii) There four points such that every line contains at most 2 of them. (Four points in
general position.)

If we omit (iii) the so-called degenerate projective plane is also possible. Every point
except one is on the same line. Here (i) and (ii) are satisfied, but we cannot find 4 points
in general position.

Statement 65. If (P,L) is a finite projective plane, then every line contains at least 3
points.

28



Let d(p) denote the number of lines going thout point p, and d(L) the number of points
on line L.

Lemma 66. If point p is not on line L, then d(p) = d(L).

Statement 67. In a finite projective plane, there is an integer n > 1 such that any line
contains n+ 1 points, and any point lies on n+ 1 lines.

This n called the order of the projective plane.

Statement 68. In a projective plane with order n, there are n2+n+1 points and n2+n+1
lines.

An affine plane is a system of points and lines that satisfy the following axioms:
(i) Any two distinct points lie on a unique line.
(ii) Each line has at least two points.
(iii) Given any line and any point not on that line there is a unique line which contains
the point and does not meet the given line.
(iv) There exist three non-collinear points (points not on a single line).

Lecture 17 (May 31)

The incidence graph of a finite projective plane is a bipartite graph G = (A,B;E). A =
the nodes of the projective plane, B = the lines of the projective plane. Point p and L
are connected by an edge in the incidence graph if and only if p is on line L. (p ∈ L.)

If the order of the projective plane is n, the incidence graph has 2(n2 +n+ 1) vertices
and it is n+ 1-regular.

Given a finite projective plane (P,L), the dual of (P,L) is obtained by taking the
incidence graph of (P,L) and interpreting as lines the vertices that were understood
as points, and conversely, vertices that used to be sets start playing the role of points.
Hence L is now thought of as a point set, and for each point p ∈ P , the set of lines
{L ∈ L : p ∈ L} is interpreted as a line.

The dual of (P,L) is a pair (L,Λ), where Λ is a system of subsets of L, each of these
subsets corresponding to some point of P . (Note that distinct points always yield distinct
subsets of L, since two points share only one line.)

Proposition 69. The dual of a finite projective plane is also a finite projective plane.

For which n does a projective plane with oder n exist?

Theorem 70 (Bruck–Ryser). If a finite projective plane of order n exists and n is con-
gruent to 1 or 2 (mod 4), then n must be the sum of two squares.

This implies that there is no projective plane with order 6 or 14.

Exist: n = 2, 3, 4, 5, 7, 8, 9, 11, 13 ...
Does not exist: n = 6, 10, 24 ...
Still an open question: n = 12...

Construction, if the order is prime number.

29



Lecture 18 (June 4)

Proposition 71 (Cauchy–Schwarz inequality). . For arbitrary real numbers x1, x2, . . . , xn
and y1, y2, ..., yn we have

n∑
i=1

xiyi ≤

√√√√ n∑
i=1

x2i

√√√√ n∑
i=1

y2i

Theorem 72. If a graph G on n vertices contains no subgraph isomorphic to K2,2 then
it has at most 1

2
(n3/2 + n) edges.

Idea of proof: counting cherries.

Proof. Let us write V = V (G). We will double-count the size of the set M of all edge-
pairs (so-called “cherries”) ({u, u′}, v), where v, u, u′ ∈ V and v is connected by an edge
to both u and u′.

For a fixed pair {u, u′}, only one vertex v ∈ V may exist joined to both u and u′. If
there were two such vertices, v and v′, they would together with u and u′ form a subgraph
isomorphic to K2,2. Hence |M | ≤

(
n
2

)
. Now let us see how many elements of the form

({u, u′}, v) are contributed to these M by a fixed vertex v ∈ V . For each pair {u, u′}
of its neighbors, v contributes one element of M , so if v has degree d it contributes

(
d
2

)
elements Therefore, if we denote by d1, d2, . . . , dn the degrees of the vertices of V , we
obtain |M | =

∑n
i=1

(
di
2

)
Combining this with the previous estimate, we get

n∑
i=1

(
di
2

)
≤
(
n

2

)
We know that the number of edges of the graph is 1

2

∑n
i=1 di. We can assume that our

graph has no isolated vertices, and hence di ≥ 1 for all i. Then we have
(
di
2

)
≥ 1

2
(di − 1)2∑n

i=1(di − 1)2 ≤
∑n

i=1

(
di
2

)
≤
(
n
2

)
≤ n2

Now we apply the Cauchy–Schwarz inequality with xi = di − 1, yi = 1.
We get

n∑
i=1

(di − 1) ≤

√√√√ n∑
i=1

(di − 1)2
√
n ≤
√
n2
√
n ≤ n3/2

Therefore for the number of the edges |E| = 1
2

∑n
i=1 di ≤

1
2
(n3/2 + n)

Using finite projective planes, we show that this bound is nearly the best possible in
general:

Theorem 73. For infinitely many values of n, there exists a K2,2-free graph on n vertices
with at least 0.35 n3/2 edges.

Block designs
The inhabitants of a town like to form clubs. They are socially very sensitive, and don’t

tolerate any inequalities. Therefore, they don’t allow larger and smaller clubs (because
they are afraid that larger clubs might suppress smaller ones). Furthermore, they don’t
allow some people to be members of more clubs than others, since those who are members
of more clubs would have larger influence than the others. Finally, there is one further

30



condition: Each citizen A must behave “equally” toward citizens B and C, A can not be
in a tighter relationship with B than C. So A must meet B in the same number of clubs
as he/she meets C.

We can formulate these strongly democratic conditions mathematically as follows.
The town has v inhabitants; they organize b clubs; every club has the same number of
members, say k; everybody belongs to exactly r clubs, and for any pair of citizens, there
are exactly λ clubs where both of them are members.

The structure of clubs discussed in the previous paragraphs is called a block design.
Such a structure consists of a set of v elements, together with a family of k-element subsets
of this set (called blocks) in such a way that every element occurs in exactly r blocks, and
every pair of elements occurs in λ blocks jointly. We denote the number of blocks by b.
A degenerate case is when everyone is the member of the same club, that is b = 1, k = v.
We will not consider this as a block design.

Examples:

• Every finite projective plane is a block design with v = b = n2 +n+ 1, k+ r+n+ 1
and λ = 1.

• Take a 3× 3 grid where the block are the rows, coloums, the triples where the three
points are in different rows and different coloums. This is a block design with v = 9,
b = 12, λ = 1, k = 3, r = 4.

• Take all the size k subsets of a set V , |V | = v. Then b =
(
v
k

)
, λ =

(
v−2
k−2

)
r =

(
v−1
k−1

)
Statement 74. For a block design, bk = vr.

Statement 75. For a block design, λ(v − 1) = r(k − 1).

Since we excluded the degenerate case, k < v, so r > λ.

Theorem 76 (Fisher inequality). For a block design, b ≥ v.

Proof. Let the incidence matrix M be a v × b matrix defined so that Mi,j is 1 if element
i is in block j and 0 otherwise. Then B = MMT is a v× v matrix such that Bi,i = r and
Bi,j = λ for i 6= j.
Add each other row to row 1 of MMT . Subtract column 1 in the resulting matrix from
each other column. The result is the matrix shown here whose determinant is the product
of its diagonal elements, which is (r + (v − 1)λ)(r − λ)v−1

det(B) =

∣∣∣∣∣∣∣∣∣
r λ λ . . . λ
λ r λ . . . λ
...

...
...

. . .
...

λ λ λ . . . r

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
r + (v − 1)λ 0 0 . . . 0

λ r − λ 0 . . . 0
...

...
...

. . .
...

λ 0 0 . . . r − λ

∣∣∣∣∣∣∣∣∣
Since r 6= λ, det(B) 6= 0, so rank(B) = v; on the other hand, rank(B) ≤ rank(M) ≤

b, so v ≤ b.

31



Lecture 19-20

Probability and probabilistic proofs
Let X be a finite set and letM be a system of subsets of X. Suppose that each set in

M has exactly k elements. A 2-coloring a set-system means we color the elements with 2
colors in a way that none of the sets in M is monochromatic. Let m(k) be the smallest
number of sets in a system M that is not 2-colorable.

It is easy to find out that m(2) = 3, since we need 3 edges to make a graph that is not
bipartite.

On the exercise class, we met a system of 7 triples that is not 2-colorable, namely the
Fano plane, and so m(3) ≤ 7.

Theorem 77. We have m(k) ≥ 2k−1, i.e. any system consisting of fewer than 2k−1 sets
of size k admits a 2-coloring.

Theorem 78. m(3) ≥ 7

Lemma 79. Let X be a set with at most 6 elements, and let M be a system of at most
6 triples on X. Then M is 2-colorable.

Problem 14. Prove that m(4) ≥ 15, i.e. that any system of 14 4-tuples can be 2-colored

Lecture 21 (June 21)

A directed graph (shortly digraph) D is intuitively a graph together with an orientation of
the edges, i.e. if e is an edge between vertices u and v then the orientation says that either
e goes from u to v or e goes from v to u. More precisely D consists of a vertex set V (D)
and edge set (also called arc set) A(D) and two functions tailD, headD : A(D) → V (D).
We write simply V and A if D is clear from the context. We say that e ∈ A(D) goes
from u to v in D if tailD(e) = u and headD(e) = v and we write e ∈ [u, v]D. An
e ∈ A(D) is a loop in D if headD(e) = headD(e). The edges e, f ∈ A(D) are parallel
if tailD(e) = tailD(f) and headD(e) = headD(f). A (directed) walk from u to v in D is
a sequence v0, e0, v1, e1, v1, . . . , vn−1, en−1, vn such that v0 = u, vn = v, and ei ∈ A(D)
goes from vi to vi+1 (0 ≤ i ≤ n). If in addition the ei are pairwise distinct then it is
a (directed) tour, furthermore, if the vertices vi are pairwise distinct then we call it a
(directed) path.

Problem 15. Suppose that there is a given finite digraph D together with s, t ∈ V and a
cost function c : A → R+. For a walk W , let us define the cost c(W ) of W as the sum
of the costs of the edges of W . We want to calculate the cost of a cheapest s→ t path (if
there is any) in an “efficient” way.

Algorithm 80 (Dijkstra). The algorithm calculates the minimal cost m(v) of the s→ v
paths in D for every v ∈ V for which such a path exists. At the beginning let m(s) = 0
and let m(v) be undefined for v ∈ V \ {s}. In a general step, consider the set S of those
vertices v for which m(v) has been already defined. If outD(S) = ∅ (where outD(S) is the
set of edges f with tail(f) ∈ S and head(f) /∈ S) then we stop. Otherwise we calculate
α := min{m(u) + c(e) : u ∈ S, e ∈ outD(S), tail(e) = u} and take an edge e where the
minimum is taken. For v = head(e), we define m(v) to be α.

32



Question 81. How to modify the algorithm above to get also an s → v path Pv with
c(Pv) = m(v) for every v which is reachable from s?

Problem 16. Show by an example that Dijkstra’s algorithm does not work if we allow
negative edge costs.

Let D be a digraph and c : A→ R. A potential is a function π : V → R. We say that
π is feasible (with respect to c) if π(v) − π(u) ≤ c(e) for every e ∈ [u, v]D. A directed
cycle is a cycle where the edges are oriented in such a way that every vertex is reachable
by a directed path from any other vertex. For a directed cycle C, we define c(C) to be
the sum of the costs of its edges and we say that C is negative if c(C) < 0.

Definition 35. A cost function c : A→ R is called conservative if there is no negative
cost directed cycle.

Let π be a feasible potential for cost funtion c. We will call an edge uv an tight edge
if π(v)− π(u) = c(e).

For any path P ′ with vertices s = v0, v1, v2 . . . t = vk,
c(P ′) =

∑k−1
i=0 c(vivi+1) ≥

∑k−1
i=0 (π(vi+1) − π(vi)) = π(t) − π(s) If P ′ is a cheapest path,

all of its edges are tight edges. Therefore every beautiful edge is tight, and if we build a
path from tight edges, it will be a cheapest path.

Lemma 82. Let π be a feasible potential for cost function c. For every st-path P , c(P ) ≥
π(t)− π(s) . If every edge of the path is tight, then c(P ) = π(t)− π(s).

For every directed cycle K, c(K) ≥ 0. If every edge of the cycle is tight, then c(K) = 0.

Proof. For any path P with vertices s = v0, v1, v2 . . . t = vk,
c(P ) =

∑k−1
i=0 c(vivi+1) ≥

∑k−1
i=0 (π(vi+1)− π(vi)) = π(t)− π(s). If the edges of P are tight

edges, we have equality everywhere.

Theorem 83 (Gallai). In a finite digraph, there is a feasible potential if and only if there
is no negative directed cycle.

Proof. If there is a feasible potential, then for every cycle C with vertices v1 . . . vk, the
total weight of the cycle is c(C) =

∑k−1
i=i c(vivi+1) + c(vkv1) ≥

∑k−1
i=1 (π(vi+1) − π(vi)) +

π(v1)− π(vk) = 0. therefore there is no directed negative cycle.
Now, suppose that there is no negative directed cycle. Let πc be a potential on the

vertices: πc(v) := the weight of the cheapest path ending in v. Since every path has at
most n− 1 edges, there are finitely many paths ending in v, we can select the minimum
cost path.

Note that since the cost of the path {v}, consisting of only one vertex, is 0, the function
πc is nonpositive.

We want to show that πc is a feasible potential for c. Let uv be an edge of the digraph,
and Pu is a cheapest path ending in u. If v is not on path Pu, then Pv : +Pu+uv is a path
ending in v, therefore c(Pv) ≥ πc(v). Thus, πc(v) ≤ c(Pv) = c(Pv) + c(uv) = πc(v) + c(uv)
so πc(v)− πc(u) ≤ c(uv).

If v is on path Pu, let P1 denote the subpath of Pu from the beginning to v, and P2 is
the part of the path from v to u. Then c(Pv) = c(P1)+c(P2). Let K be the P2+uv directed
cycle. Since c is conservative, c(K) ≥ 0, thus c(uv) ≥ −c(P2). Since P1 is a path ending
in v, πc(v) ≤ c(P1). Combining these, πc(v) − πc(u) ≤ c(P1) − c(Pu) = −c(P2) ≤ c(uv).
So πc is indeed a feasible potential.

33



Note: if c is integer valued, then πc is also integer valued.

Let µc(v) be defined as µc(v) = min{c(P ) : P is an s → v path}. We want to show
that this is a feasible potential. We show it similarly to the proof of Gallai’s theorem.

Let uv be an edge of the digraph, and Pu is a cheapest path from s to u. If v is
not on path Pu, then Pv := Pu + uv is an sv path , therefore c(Pv) ≥ πc(v). Thus,
πc(v) ≤ c(Pv) = c(Pv) + c(uv) = πc(v) + c(uv) so πc(v)− πc(u) ≤ c(uv).

If v is on path Pu, let P1 denote the subpath of Pu from the beginning to v, and P2

is the part of the path from v to u. Then c(Pv) = c(P1) + c(P2). Let K be the P2 + uv
directed cycle. Since c is conservative, c(K) ≥ 0, thus c(uv) ≥ −c(P2). Since P1 is a sv
path, πc(v) ≤ c(P1). Combining these, µc(v)− µc(u) ≤ c(P1)− c(Pu) = −c(P2) ≤ c(uv).
So µc is indeed a feasible potential.

Note: if c is integer valued, then µc is also integer valued. µc(s) = 0.

Theorem 84 (Duffin). Let D be a finite digraph and c : A → R such that there is no
negative cycle. Then

min{c(P ) : P is an s→ t path} = max{π(t)− π(s) : π is a feasible potential}

(where we consider min∅ = +∞).

Proof. From Lemma 82, c(P ) ≥ π(t)− π(s) for any path any feasible potential, therefore

min{c(P ) : P is an s→ t path} ≥ max{π(t)− π(s) : π is a feasible potential}

We defined µc earlier, which is a feasible potential, and for µc

min{c(P ) : P is an s→ t path} = µc(t)− µc(s)

Therefore we have equality is hte statement of the Duffin theorem.

Note: Moreover, µc is the biggest feasible potential among the feasible potentials where
µ(s) = 0

Problem 17. Let D = (V,A) and c : A→ R and assume that there is no negative directed
cycle. Give an algorithm that finds a a cheapest s→ t path for some given s, t ∈ V . (Hint:
if π is a feasible potential then the cost function d defined as d(uv) := c(uv)−(π(v)−π(u))
is non-negative and d̃(P ) − c̃(P ) = π(s) − π(t) holds for every s → t path P . Combine
Theorem 83 with Algorithm 80.)

The Bellman-Ford algorithm is used to fint the cheapest path ending in v for any
vertex v. The main difference between this algorithm and Dijkstra’s the algorithm is that
in Dijkstra’s algorithm we cannot handle the negative weight, but here we can handle it.

D = (V,A) and c : A → R. Now, we do not need to assume that c is conservative.

For every i = 0, 1, . . . n let W
(i)
c (v) be a cheapest walk with at most i edges ending in v.

And π
(i)
c (v) is the cost of the cheapest walk with at most i edges ending in v.

π
(0)
c (v) = 0 for every v ∈ V

After we calculated these up to i for every vertex,

π(i+1)
c (v) = min{π(i)

c (v),min{π(i)
c (u) + c(uv) : uv ∈ A}}

34



If c is conservative, the cheapest walk with at most n edges is also the cheapest path
ending in that given vertex.

If c is not conservative, the algorithm will find a negative cost cycle.
......

Lecture 22 (June 25)

Definition 36. Let V be the set of vertices of a graph/digraph, s, t ∈ V . An st set is
subset S of the V such that s ∈ S but t /∈ S.

In a directed graph, the indegree d−(v) of vertex v is the number of edges with head v.
The outdegree d+(v) of vertex v is the number of edges with tail v.

For a vertex-set S ⊂ V , the indegree d−(S) of vertex S is the number of edges with
entering S, i.e. the number of uv edges such that u /∈ S, v ∈ S.
The outdegree d+(S) of vertex S is the number of edges with leaving S, i.e. the number
of uv edges such that u ∈ S, v /∈ S.

The directed paths P and Q are edge-disjoint if they have no common edges (but they
might have common vertices).

Theorem 85 (Menger (directed, edge-version)). Let D be a finite digraph and s 6= t ∈ V .
There are k (k ≥ 1) pairwise edge-disjoint directed s→ t paths in the graph if and only if
every st set has an outdegree at least k.

Proof. One direction:
If there are k pairwise edge-disjoint directed s→ t paths in the graph, for any st set S, all
of these k paths have to use an arc leaving S, and they are using different arcs, therefore
d+(S) ≥ k.

The other direction:
Suppose every st set has an outdegree at least k. We use induction on the number of
arcs. |A| = 0 is trivial. If there is a s → t path of lenght 1 or 2, remove this path. In
the remaining graph, the outdegree of every s → t set decreased by exactly 1, therefore
d+(S) ≥ k − 1 for every s → t set now. Using the induction hypothesis, there are k − 1
paths. Readd the path that we removed.

If every a st path has lenght at least 3, we can select an uv arc in a path such that
s 6= u and v 6= t. (Here we use there exist at least one s → t path. If there were none,
we would wind a st set with outdegree 0.) If we can remove arc uv and still every st set
has an outdegree at least k, remove the arc and use the induction hypothesis. We get k
edge-disjoint paths.

If we cannot remove arc uv without ruining the condition, there is a st set S such
that d+(S) = k, u ∈ S, v /∈ S. Contract the set S to one point s. In the graph we
get this way, we can check that still st set has an outdegree at least k. The number of
edges decreased, since the path containing uv had some edges between s and u. Using
the induction hypothesis for the contracted graph, we find k edge-disjoint paths.

Do the same for V \S as well. Contract the set V \S to one point t. In the contracted
graph, we can find k edge-disjoint paths. Since S had exactly k outgoing edges, both path
sytems have to use these k edges. Glue the two path systems together at these k edges,
this way we get k edge-disjoint paths for the original graph.

35



An alternative statement of the same theorem:

Theorem 86 (Menger (directed, edge-version)). Let D be a finite digraph and s 6= t ∈ V .
The maximal number of pairwise edge-disjoint directed s→ t paths is equal to the minimal
number of edges that we need to delete to destroy every directed s→ t path of D.

Other versions:

Theorem 87 (Menger (undirected, edge-version)). Let G be a finite undirected graph and
s 6= t ∈ V . There are k pairwise edge-disjoint st paths in the graph if and only if for every
st set S, d(S) ≥ k.

The vertex-connectivity statement of Menger’s theorem is as follows:

Theorem 88 (Menger (directed, vertex-version)). Let D be a finite directed graph and
s and t two vertices such that there is no st arc. Then the size of the minimum vertex
cut for s and t (the minimum number of vertices, distinct from s and t, whose removal
destroys all directed s→ t paths) is equal to the maximum number of pairwise internally
vertex-disjoint directed paths from s to t.

Proof. If there are k pairwise internally vertex-disjoint directed paths from s to t, it is
easy to see that we need to remove at least k vertices to destroy them.

Now suppose that the size of the minimum vertex cut is k. Create a new digraph
D′ = (V ′, A′). For every u vertex in D, let u′ and u′′ be vertices of D′. Remove s′ and t′′.
For every u 6= s, t, let u′u′′ ∈ A′ and for every uv ∈ A, include k+1 parallel edges of u′′v′

in D′.
If there are k edge disjoint s′ → t′′ paths in D′ then they correspont to k internally

vertex-disjoint directed paths in D. If there are less than k edge disjoint s′ → t′′ paths
in D′, then from directed edge verson of the Menger theorem, there are k − 1 edges that
cover all the s′ → t′′ paths. Because of the costruction, all this edges are of the type u′u′′,
thus they correspont to k − 1 vertices in V − {s, t} that cover all the s → t paths in D.
This contradicts our assumtion.

Theorem 89 (Menger (undirected, vertex-version)). Let G be a finite undirected graph
and s and t two nonadjacent vertices. Then the size of the minimum vertex cut for s and
t (the minimum number of vertices, distinct from s and t, whose removal disconnects s
and t) is equal to the maximum number of pairwise internally vertex-disjoint paths from
s to t.

Lecture 23 (June 28) Flows

We have a direcred graph D = (V,E), s, t ∈ V are special vertices (source and target) and
there is a non-negative function c : E → R+, called the capacity. We call N := (D, s, t, c)
a network.

A function f : E → R+ is a (feasible) flow, if it satisfies:

• 0 ≤ f(ij) ≤ c(ij) for every ij ∈ E

• Kirchhoff’s law:
∑

j:ji∈E f(ji) =
∑

j:ij∈E f(ij) for every vertex i ∈ V sucht that
i 6= s and i 6= t.

36



Kirchhoff’s law means flow preservation: in the intermediate vertices, what flows in ,
also flows out.

Definition 37. The value of a flow is v(f) =
∑

j:sj∈E f(sj)−
∑

js:∈E f(sj).

This is the amount of flow leaving s minus the amount of flow entering s (Sometimes
we assume that there is no edge entering s, then we can omit the second part. If we want
to be more general, keep it.)

Lemma 90. v(f) =
∑

j:jt∈E f(jt)−
∑

tj:∈E f(tj)

This Lemma claims that the amount of flow leaving s will enter t in the end.
The capacity of the cut defined by A,B, where A,B ⊆ V , A ∩ B = ∅, A ∪ B = V

s ∈ A and t ∈ B is
c(A,B) =

∑
ij∈E,i∈A,j∈B

c(ij)

Theorem 91 (Max Flow Min Cut, Ford- Fulkerson). In every network, the maximum
total value of a flow equals the minimum min-cut capacity of a cut.

Idea of proof: First, we can see that for every flow and any cut v(f) ≤ c(A,B)

v(f) =
∑
j:sj∈E

f(sj)−
∑
js:∈E

f(sj) =
∑
j:sj∈E

f(sj)−
∑
js:∈E

f(sj)+
∑

i∈A,i 6=s

( ∑
j:ij∈E

f(ij)−
∑
ji:∈E

f(ji)

)

=
∑

ij∈E,i∈A,j∈B

f(ij)−
∑

ji∈E,i∈A,j∈B

f(ij) ≤
∑

ij∈E,i∈A,j∈B

c(ij)

We use that f(ij) ≤ c(ij) for every edge leaving A, and that f(ji) ≥ 0 for every edge
entering A.
We have equality if and only if f(ij) = c(ij) for every edge leaving A, and that f(ji) = 0
for every edge entering A.

We start from f ≡ 0 and use the Ford- Fulkerson algorithm to find augmenting paths,
and in the end reach an optimal flow.

Theorem 92 (Edmonds- Karp). Fi in the Ford Fulkerson algorihms, we always pick the
shortest augmenitng path, then the alg. terminiates after O(|V ||E|) augmenting steps.

One increasing step among a path takes O(|E|) time, so the total running time of the
algorithm is O(|V ||E|2)

Lecture 24-25 (July 2,5)

Proving Menger’s theorem (directed edge version) form the Max flow Min cut theorem.
Flows with vertex capacities.
Generating functions

Definition 38. Let (a0, a1, a2, . . . ) be a sequence of real numbers. By the generating
function of this sequence we understand the power series a(x) = a0 + a1x+ a2x

2 + . . .

37



Theorem 93. (Generalized binomial theorem). For an arbitrary real number r and for
any nonnegative integer k, we define the binomial coefficient

(
r
k

)
by the formula k(

r

k

)
=
r(r − 1)(r − 2)...(r − k + 1)

k!

(in particular, we set
(
r
0

)
= 1). Then the function (1 + x)r is the generating function of

the sequence (
(
r
0

)
,
(
r
1

)
,
(
r
2

)(
r
3

)
. . . ) The power series

(
r
0

)
+
(
r
1

)
x+

(
r
2

)
x2 . . . always converges

for all |x| < 1.

A proof belongs to the realm of calculus, and it is can be done via the Taylor series. For
combinatorial applications, it is important to note that for r being a negative integer, the
binomial coefficient

(
r
k

)
can be expressed using the ”usual” binomial coefficient (involving

nonnegative integers only):(
r
k

)
= (−1)k

(−r+k−1
k

)
= (−1)k

(−r+k−1
−r−1

)
Hence for negative integer powers of 1 − x we

obtain

1

(1− x)n
=

(
n− 1

n− 1

)
+

(
n

n− 1

)
x+

(
n+ 1

n− 1

)
x2 + · · ·

(
n+ k − 1

n− 1

)
xk + · · ·

Note that the equality 1
1−x = 1 + x+ x2 + x3 + · · · is a particular case for n = 1.

Problem 18. A box contains 30 red, 40 blue, and 50 white balls; balls of the same color
are indistinguishable. How many ways are there of selecting a collection of 70 balls from
the box?

Problem 19. A coffee shop sells three kinds of cakes - Danish cheese cakes, German
chocolate cakes, and brownies. How many ways are there to buy 12 cakes in such a way
that at least 2 cakes of each kind are included, but no more than 3 German chocolate
cakes? Express the required number as a coefficient of a suitable power of x in a suitable
product of polynomials. Solve the problem with the help of generating functions.

Problem 20. a) Show that the set {1, 2, . . . n} can be partitioned into two non-empty sets
in precisely 2n−1 − 1 ways.
b) Let sn denote the number of ways the set {1, 2, . . . n} can be partitioned into three non-
empty sets. for example s4 = 6.
Show that sn is determined by the recurrence relation s0 = 0, s1 = 0 and sn = 3sn−1 +
2n−2 − 1 if n > 1.
Use a generating function to find an explicit formula for sn.

Solution:
a) Take all the non-empty subsets of the set {1, 2, . . . n}, then divide it by two.
b) If the set {n} is one of the three sets, see part a) to to find the other two sets. If

the set {n} is not one of the three sets, there are sn−1 ways to partition {1, 2, . . . n − 1}
to three sets, and then we can add n to any of them. Thus sn = 3sn−1 + 2n−2− 1 if n > 1

Let s(x) = s0 + s1x+ s2x
2 + · · ·

Let 3s(x) = 3s0 + 3s1x+ 3s2x
2 + · · ·

From the above recurrence relation

(1− 3x)s(x) = (20 − 1)x2 + (21 − 1)x3 + (22 − 1)x4 + · · · = x2
(

1

1− 2x
− 1

1− x

)
38



s(x) = x2
(

1

(1− 2x)(1− 3x)
− 1

(1− x)(1− 3x)

)

s(x) = x2
(

3

2(1− 3x)
+

1

2(1− x)
− 2

1− 2x

)
We can deduce that

sn =
3

2
3n−2 +

1

2
− 2 · 2n−2 =

1

2
(3n−1 +

1

2
− 2n)

Binary trees
We are going to consider the so-called binary trees, which are often used in data structures.
For our purposes, a binary tree can concisely be defined as follows: a binary tree either is
empty (it has no vertex), or consists of one distinguished vertex called the root, plus an
ordered pair of binary trees called the left subtree and right subtree.

Let bn denote the number of binary trees with n vertices. Our goal is to find a formula
for bn. By listing all small binary trees, we findthat b0 = 1, b1 = 1, b2 = 2 ,and b3 = 5.
This can serve for checking the result obtained below.

As usual, we let b(x) = b0 + b1x+ b2x
2 + · · · be the corresponding generating function.

bn = b0bn−1 + +b1bn−2 + · · ·+ bn−1b0.
b(x) = 1 + xb(x)2.

b(x) =
1 +
√

1− 4x

2x
or

1−
√

1− 4x

2x

This seems as if there are two possible solutions. But we know that the sequence
(b0, b1, b2, . . . ), and thus also its generating function, are determined uniquely. Since b(x)
is continuous as a function of x (whenever it converges), we must take either the first
solution (the one with ”+”) for all x, or the second solution (the one with ”−”) for all
x. If we look at the first solution, we find that for x tending to 0 it goes to ∞, while
the generating function b(x) must approach b0 = 1. So whenever b(x) converges, it must

converge to the second solution b(x) = 1−
√
1−4x
2x

.
It remains to calculate the coefficients of this generating function. To this end, we

make use of the generalized binomial theorem.

√
1− 4x =

∞∑
k=0

(−4)k
(

1/2

k

)
xk

bn = −1

2
(−4)n+1

(
1/2

n+ 1

)
By further manipulations, one can obtain a nicer form:

bn =
1

n+ 1

(
2n

n

)
So the number of binary trees is a Catalan number.

39



Lecture 27 (July 12)

Prove Dilworth’s theorem from Kőnig’s theorem
Reminder:

Theorem 94 (Kőnig). In a bipartite graph G, ν(G) = τ(G), where ν(G) is the size of
the maximum matching and τ(G) is the size of the minimum vertex cover.

Theorem 95 (Dilworth). In a partially ordered set P , the size of the maximum antichain
equals the minimum number k of chains such that P can be partitioned into k chains.

The elements of poset P are {p1, p2 . . . pn}. Create a bitarite graph G = (X, Y ;E)
X = {x1, x2 . . . xn}, Y = {y1, y2 . . . yn}. Connect xi and yj with an edge it and only if
pi > pj. (Do not connect xi and yi.)

Lemma 96. If M is a matching in G, we can find a partition of poset P to n − |M |
chains.

Proof. Let xi be a node that is not covered my M . For every such xi node, we construct
a Ci chain. If yi is not covered by M , the chain is simply {pi}.

If yi is covered by M , suppose its pair in M is xi2 , then look at yi2 , its pair in M is
xi3 ... continue until we reach an yik that is not covered by M .
This way pi < pi2 < pi3 < · · · < pik , so it is a chain. The chains we construct this way are
disjoint and cover P , so we have partition of poset P to n− |M | chains.

Lemma 97. Let L ⊆ X ∪ Y a minimum vertex cover in G. Then P has an antichain of
size n− |L|.

Proof. If M is a maximum matching and L is a minimum vertex cover, L contains exactly
one endpoint of each edge in M .

First, we show that xi and yi cannot both be in L. Suppose for contradiction that
xi ∈ L, yi ∈ L. Let the partner of xi in M be yj, and the partner of yi in M be xk. Then
pk > pi > pj so pkpj. Therefore xkyj is an edge of the graph, but it is not covered by L.

Now, let A = {pi : xi /∈ L, yi /∈ L}. This is an antichain in P .

If poset P has a antichain A, we need at least |A| chains to cover the poset. From
Kőnig’s theorem, there is a matching M and vertex cover L such that |M | = |L| = ν.
Using the previous two lemmata, we can find partition of poset P to n− ν chains and an
antichain of size n− ν. This proves Dilworth’s theorem.

40


