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Chapter 1

Introduction

The history of stable marriages started in 1962 with the paper of Gale and Shapley.

There they described a scenario, where n men and n women are given, and each of

them has a preference order on the members of the other gender. We want to arrange

marriages between them, in such a way that there is no blocking pair. A blocking pair

means a couple of a man and woman who are not married to each other, but they

would both leave their current spouses to be with each other. Gale and Shapley proved

[24] that there always exists a stable marriage scheme, and it can be found with the

so-called deferred acceptance algorithm.

Since then, many papers were published on stable matching, and some books to

summarize the results: Knuth [36], Gusfield and Irving [26], Roth Sotomayer [44] and

the most recent by Manlove [37].

The output of the Gale-Shapley algorithm is a man-optimal solution, that is, each

man receives the best possible partner he could find in any of the stable marriage

schemes. If we change the role of the genders in the algorithm, we get a woman-

optimal stable matching. In these stable marriage schemes, one side of the marriage

market receives the best and the other side the worst possible partners. An observation

attributed to Conway generalizes man and woman optimality. It states that stable

marriages form a complete lattice for the partial order defined by the men. That is, if

S1 and S2 are two stable marriage schemes and each man picks the better out of his

partners in S1 and S2, then these choices determine another stable marriage scheme.

Similarly, if men choose their less preferred partners, we also get a stable marriage

scheme.

The second well-known model is for college admissions, where we seek a stable ar-

rangement of applicants to universities. Every student can go to only one college, but

colleges can accommodate multiple students. These types of models are often referred

as many-to-one matchings. Another application is allocating medical residents to hos-

pitals. The National Resident Matching Program (NRMP), also called the Match,

which largely follows the Gale-Shapley algorithm has been in use in the USA since

1952, ten years prior to the Gale-Shapley paper.

1



2 CHAPTER 1. INTRODUCTION

The observation of the lattice property of stable solutions also applies to colleges

and students. It is important for both the marriage and the college models that each

agent on the market has strict preference orders. If we allow ties in the preference

orders, then there are three well-known extensions of stability: we can talk about

weakly stable, strongly stable and superstable solutions.

In Hungary, the college admission system is a little different from the above model.

Each student submits a set of applications to different colleges and declares a linear

preference order over these applications. Each college has a strict quota on the number

of admissible students. A score is assigned to each application based on entrance exams.

After all this information is known, each college declares a score limit, and each student

is accepted at the first college on her preference list, where her score is not below the

appropriate limit. These score limits have to be stable; that is, no college receives more

students than its quota. Moreover, each college would receive more students than its

quota if it lowers its score limit, while the other ones keep theirs. An admission scheme

that fulfills the properties above is called a “score-stable” solution. In this model, many

of students may have the exact same score at a given college, so the preference lists

of colleges contain ties. In the traditional many-to-one model, the colleges had strict

preference orders.

Our models can also be described with choice functions, as in the paper of Kelso-

Crawford [34]. For an agent in the matching market, if we offer her any given set of

possible partners, she will pick her most preferred subset. In this way her preferences

define a set-function, the so-called choice function. Choice functions can have useful

properties such as substitutability and path independence.

A result of Blair in [11] generalizes Conway’s observation, by proving that if both

sides of the matching market have so-called substitutable and IRC choice functions,

then stable solutions form a lattice under a natural partial order. Here IRC is an

abbreviation for “irrelevance of rejected contracts”. It seems that in the literature,

most of the practical, interesting stability notions involve the irrelevance of rejected

contracts. Sometimes authors define a choice function with a preference order over all

possible subsets, and this implies IRC.

However, the Hungarian college entrance mechanism is an important example of

this, which outputs a stable solution even though the choice functions are certainly not

IRC. We shall generalize Blair’s theorem for models involving non-IRC choice functions.

It turns out that if we drop the IRC property, then it is not clear what is exactly a

stable solution. For this reason, we study four kinds of stabilities: dominating stability,

three-stability (which is defined by a three-partition of the contract set), four-stability

(which comes from a four-partition of the contract set) and score-stability. This last

notion is also generalized to so-called “loser-free” choice functions, allowing us to work

with more flexible models describing diverse market situations, like company-worker

admissions, with no strict preference ordering on the company’s side.
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We compare the above four different stability notions. We shall examine the con-

nections between the definitions in regard to the path-independent property. Aygün

and Sönmez [6] showed that if F , G are substitutable and IRC choice functions, then

three-stable and dominating stable sets are equivalent, but if F and G are not IRC,

then none of them implies the other. We extend this by considering the other two

stabilities (four-stability and score-stability), as well.

It is possible to generalize choice functions in an even more abstract way. All the

subsets of a given set form a (distributive) lattice for the partial order defined by one

set containing another. For a choice function F , F(X) ⊆ X for every X. We can

define a function over any lattice, and call it a choice function if F(x) ≤ x for every

x. Important notions on choice functions can be generalized to this setting, and we

obtain some interesting results in this way.

A theorem by Sands, Sauer and Woodrow [45] says that two partially ordered sets

P1 and P2 on the same ground set admit a common antichain K dominating every

element not in K. By domination, we mean that for every e /∈ K, there is an x ∈ K
such that x is greater than e in least one of the two partial orders. Aharoni, Berger

and Gorelik [2] generalized this to a weighted setting. In a given poset, every element

has a demand and a weight, (both are integers or real numbers) and an element is

dominated if there is a chain above it such that the sum of weights on the chain is at

least the demand of this element. With the help of choice functions over lattices, we

can generalize the Aharoni-Berger-Gorelik theorem even more.

In the second half of the thesis, we study supply chain structures, which can be used

to model contract relationships between firms. In our model, firms have heterogeneous

preferences over bilateral contracts with other firms. Contracts may encode many

dimensions of a relationship including the quantity of a good being traded, time of

delivery, quality, and price. The universe of possible relationships between firms is

described by a contract network – a multi-sided matching market in which firms form

downstream contracts to sell outputs and upstream contracts to buy inputs.

We focus on the existence and structure of stable outcomes in decentralized, real-

world matching markets. In the production networks that we consider, stable outcomes

play the role of an equilibrium concept and may serve as a reasonable prediction of the

outcome of market interactions [23]. We find a general result: any contract network has

an outcome that satisfies a natural extension of pairwise stability in the marriage market

[24]. Our model of matching markets includes many previous models of matching with

contracts, including many-to-one and many-to-many matching markets.

We build on the seminal contribution by Ostrovsky [38], who introduced a matching

model of supply chains. In a supply chain, there are agents who only supply inputs

(e.g. farmers); agents who only buy final outputs (e.g. consumers); while the rest of

the agents are intermediaries who buy inputs and sell outputs (e.g. supermarkets).

All agents are partially ordered along the supply chain: downstream (upstream) firms
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cannot sell to (buy from) firms upstream (downstream) i.e. the contract network is

acyclic. His key assumption about the market, which we retain in this thesis, was

that firms’ choice functions over contracts satisfy same-side substitutability and cross-

side complementarity (Hatfield and Kominers [31] later called these conditions full

substitutability). This assumption requires that firms view any downstream or any

upstream contracts as substitutes, but any downstream and any upstream contract as

complements.

While a supply chain may be a useful model of production in certain industries,

in general, firms simultaneously supply inputs to and buy outputs from other firms

(possibly through intermediaries). So, a contract network may contain a contract

cycle. For example, the sectoral input-output network of the U.S. economy, illustrated

by [1, Figure 3], shows that American firms are very interdependent and the contract

network contains many cycles. Consider a coal mine that supplies coal to a steel factory.

The factory uses coal to produce steel, which is an input for a manufacturing firm that

sells mining equipment back to the mine. This creates a contract cycle. However,

Hatfield and Kominers [31] showed that if a contract network has a contract cycle then

set-stable outcomes may fail to exist. Our first result shows that checking whether

an outcome is in fact set-stable is computationally hard. We then show that, even

in the presence of contract cycles, outcomes that satisfy a weaker notion of stability,

namely trail stability can still be found. A trail of contracts is a sequence of distinct

contracts in which a seller (buyer) in one contract is a buyer (seller) in the subsequent

one. We argue that trail stability is a useful and intuitive equilibrium concept for the

analysis of matching markets in networks. Along a blocking trail, firms make unilateral

offers to their neighbors while conditionally accepting a sequence of previous pairwise

blocks. Firms can receive several offers along the trail. Trail-stable outcomes rule

out any sequence of such consecutive pairwise blocks. Trail stability is equivalent to

chain stability (and therefore to set stability under our assumptions) in acyclic contract

networks and to pairwise stability in two-sided many-to-many matching markets with

contracts.

In order to analyze properties of trail-stable outcomes, we introduce another stabil-

ity notion, called full trail stability, which does not force intermediary firms to accept

all the contracts along a trail, but rather only sign upstream/downstream pairs. We

argue that this could also be seen as a useful stability notion for short-run contract rela-

tionships. But studying full trail stability also allows us to use familiar fixed-point the-

orems and other techniques from the matching literature. Fully trail-stable outcomes

correspond to the fixed-points of an operator and form a particular lattice structure for

terminal agents, who can sign only upstream or only downstream contracts. The lattice

reflects the classic opposition-of-interests property of two-sided markets, but between

terminal buyers and terminal sellers. In addition to this strong lattice property, we

extend previous results on the existence of buyer- and seller-optimal stable outcomes,
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the rural hospitals theorem [43, 31], strategy-proofness [29, 31] as well as comparative

statics on firm entry and exit [38, 30] that have only been studied in a supply-chain

or two-sided setting under general choice functions. Fully trail-stable and trail-stable

outcomes coincide under separability, a condition that ensures that decisions over cer-

tain pairs of upstream and downstream contracts are taken independently from others.

We provide a complete description of the relationships between all stability notions we

use here : set stability, chain stability, trail stability, full trail stability.

The majority of the results of this Thesis have been published (or submitted) in

three papers. All papers are joint work with my supervisor, Tamás Fleiner, [19] [20] and

the Trading Network paper is joint work with Tamás Fleiner, Alexander Teytelboym

and Akihisa Tamura [22].

1.1 Preliminaries

In the stable marriage model, there is a set M = {m1, . . . ,mn} of n men and a set

W = {w1, . . . , wm} of m women, each of them having a strict preference order on the

members of the other gender. In the very first model, there were an equal number

of men and women and all of them ranked all members of the opposite gender. Here

we consider a (less strict) model where the number of men ans women do not need

to be equal and every agent finds a subset of the opposite sex acceptable, and they

state a preference order on the set of acceptable people. We can represent this with

an arbitrary bipartite graph G = (M,W ;E) where the nodes represent the men and

women, they are partitioned into two color classes M and W , and E—the set of edges

in G—denotes the set of acceptable marriages. (A (m,w) pair is an edge of the graph

above if their marriage is a acceptable for both m and w.

In other works in this area, the notion of contract is often used as a possible link

between two given agents. We remark that in this thesis, contract and edge are syn-

onyms, as they both describe a possible marriage or admission. Our model initially

does not include money transfer or wages. However, we may allow multiple edges be-

tween two vertices of G and thus we can model discrete prices on the contracts, since

discrete monetary transfers are equivalent to the possibility of multiple contracts.

A given man m has a preference order over all the women he finds acceptable. We

will use the notation w <m w′ if man m prefers woman w′ to w. A subset of contracts is

a marriage scheme if every person is married to at most one person. This corresponds

to a matching in the graph G, (a subset S of edges is a matching if no vertex of G

is adjacent to more than one edge in S). A matching S ⊆ E can also be described

as an involution µ : M ∪W → M ∪W such that if m and w are married (that is,

(m,w) ∈ S), then µ(m) = w and µ(w) = m, and for an unmatched agent a, we define

µ(a) = a. We change the base set the preference order, and put the agent herself or

himself into this set. For an agent a ∈M ∪W , if b is an acceptable spouse for a, then
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b >a a, if b is unacceptable then a >a b, which shows that a prefers to stay single to

marrying b.

For given marriage scheme a blocking pair is a man and a woman who are both

either single or prefers the other one to their current spouse.A marriage scheme S is

called stable if there is no blocking pair.

With the notation above, a blocking pair is (m,w) /∈ S, such that m >w µ(w)

and w >m µ(m). Note that since we use the extended preference order, this condition

includes one or both of them being single. In other words, a marriage scheme is stable

if for every pair (m,w) /∈ S, µ(m) >m w or µ(w) >w m holds.

We can define a partially ordered set (S,≥M), where S is the set of all possible

stable matchings, and ≥M is a common partial order defined by the preferences of men.

If S and S ′ are two different stable matchings, and µ and µ′ are their corresponding

involutions, S ≥M S ′ if µ(mi) ≥mi
µ′(mi) for all mi ∈ M , and S >M S ′, if S ≥M S ′

and there exists a man mi such that µ(mi) >mi
µ′(mi). Similarly, there is another

partial ordered set (S,≥W ) where the ordering is defined by the women’s preferences:

for two stable matchings S and S ′ S ≥W S ′ if µ(wi) ≥wi
µ′(wi) for all wi ∈ W . A

well-known result is that a marriage scheme is unanimously better for men if and only

if it is unanimously worse for women. (Here, unanimously better for men means that

it is better or at least equally good for all men) This was first shown in the book of

Knuth [36]:

Theorem 1.1.1 (Knuth). [36] If a stable matching is at least as good for as another

from the point of view of each of the men, the second is at least as good as the first

from the point of view of the women.

With our notations, we can rephrase Theorem 1.1.1 as for two stable matchings S

and S ′, S ≥M S ′ if and only if S ≤W S ′.

We call a stable matching S male-optimal (female-optimal) if it is better for the

men (women) than any other stable matching: S ≥M S ′ (S ≥W S ′) for every stable

matching S ′.

A stable matching S is male-pessimal (female-pessimal) if S ≤M S ′ (S ≤W S ′) for

every stable matching S ′.

In [24], Gale and Shapley gave an algorithmic proof on the existence of a stable

marriages. (In their algorithm they supposed that every marriage is acceptable, that

is, this yields a complete bipartite graph.) This is the Gale–Shapley (or deferred

acceptance) algorithm. The algorithm consists of rounds. In the first round, every

man propose to the woman who is the first on his preference list. Each woman then

considers all her suitors and keeps her most preferred one (but her acceptance is not

final) and she refuses the others. In the next round, every man who does not currently

have a partner proposes to the most-preferred woman to whom they have not yet

proposed. Then the women choose again from the current suitors. The algorithm
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terminates if no new proposal occurs. This happens after at most const ·n2 steps, since

every man proposes to every women at most once.

Theorem 1.1.2 (Gale, Shapley). [24] The outcome of the deferred acceptance algo-

rithm is always a stable marriage scheme, moreover it is male-optimal and female-

pessimal.

Example 1.1.3. Consider a marriage market with two men m1,m2, and two women

w1, w2. The preferences are the following: w1 >m1 w2, w2 >m2 w1, m1 >w2 m2, and

m2 >w1 m1, in other words, men m1 and m2 prefer women w1 and w2 respectively,

and each women prefers the man who put her on the second place. Here, there are two

possible stable marriage schemes: S = {m1w1,m2w2} is male-optimal, female-pessimal,

and S ′ = {m1w2,m2w1} is is male-pessimal, female-optimal.

Generally, there can be more than two stable matchings of course, and they show

a more interesting structure than this little example. The following theorem appeared

in the book of Knuth[36], where he attributes it to John Conway.

Theorem 1.1.4 (Conway). Assume that S1 and S2 are two stable matchings. Let

every man choose the better of his partners in S1 and S2. In this way, we also get a

stable matching.

Denote the matching we obtain in this theorem by S1 ∨ S2. Similarly, when the

women choose their better partner, we get another stable matching which we denote

by S1 ∧ S2. The consequence of this theorem is that the set of all stable marriages

form a distributive lattice with respect to the partial order ≥M [36]. (We will give the

detailed treatment of lattices later.)

In the following, we will look at models that are described not by strict preference

orders but by choice functions. We shall see that “traditional” models nicely fit to this

framework. Let us note that in a general scenario with some agents and preferences,

we usually call arbitrary agent “she” (except when we talk about the marriage model).

A choice function is a set function which corresponds to an agent’s preference profile.

If E is the set of all possible marriages or contracts available for this agent, for every

subset of E offered to her, she picks her favorite subset. More formally, a set function

F : 2E → 2E is called a choice function if F(A) ⊆ A holds for any subset A of the

ground set E.

We can define the direct sum of two choice functions: if X ∩ Y = ∅ and F1 and

F2 are two choice functions defined on the base sets X and Y , i.e., F1 : 2X → 2X

and F2 : 2Y → 2Y then we can define F as the direct sum of these two choice

functions, F = F1 + F2, such that F : 2X∪Y → 2X∪Y and for every A ⊆ X ∪ Y ,

F(A) = F1(A ∩X) ∪ F2(A ∩ Y ).

For example, on the graph of possible marriages, woman w1 chooses from the possi-

ble marriages w1mi, and woman w2 chooses from the marriages w2mi so these two
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marriage-sets are disjoint. The choice function we get as the direct sum of all women’s

choice functions chooses from all of the possible marriages.

For convenience, for a choice function F , let F(A) = A \ F(A) denote the set

of unselected elements. In the following, we list some important properties of set

functions.

A set function, F : 2E → 2E, is monotone if F(A) ⊆ F(B) whenever A ⊆ B ⊆ E

holds.

A set function, F : 2E → 2E, is antitone if F(A) ⊇ F(B) whenever A ⊆ B ⊆ E holds.

A choice function, F : 2E → 2E, is substitutable (sometimes called comonotone) if

F(A) ⊆ F(B) for any A ⊆ B (that is, if F is a monotone function).

Substitutability was originally defined by Kelso and Crawford [34] with prices, dif-

ferently from our definition. It was shown in e.g., [28], that substitutability is equivalent

to the property that if an agent chooses from an extended set of contracts, the set of

rejected contracts expands.

There is an equivalent way to define substitutability. Suppose A and B are two

subsets of E.

If A ⊆ B then F(B) ∩ A ⊆ F(A). (1.1)

In other words, if from a larger set B, the agent accepted all contracts in F(B)∩A,

she will continue to accept it from the smaller set of options, A.

Statement 1.1.5. [17] For choice function F , substitutability is equivalent to (1.1).

Proof. If F is substitutable and A ⊆ B then F(A) ⊆ F(B) so F (A) = A \ F(A) ⊇
A \ F(B) = A ∩ F(B).

If F(B) ∩A ⊆ F(A) for every A ⊆ B then x ∈ F(B) ∩A implies x ∈ F(A) so if a

contract is rejected from A, it has to be rejected from B.

A set function F : 2E → 2E satisfies the Law of Aggregate Demand if |F(A)| ≤
|F(B)| for every A ⊆ B subsets of contracts.

This property also shows monotonicity in the preferences but in a different way

than substitutability, here we only need that if a larger set of contracts are offered

for an agent, she chooses a bigger cardinality set. Law of Aggregate Demand is often

shortened to LAD in the Economics literature. This property was also called increasing

in [17].

A two-sided market is a bipartite graph, where one of the sides (the men or the

applicants) has a choice function F over the edges of the graph (i.e., over the contracts)

and the other side (the women or the colleges) has a choice function G over the edges

of the graph.

For agent v ( i.e., a vertex of G = (M,W ;E)) let Ev be the set of contracts involving

v ( i.e., the edges from v).
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Example 1.1.6. Consider a marriage market, a bipartite graph G = (M,W ;E) where

the edges represent the marriages acceptable for both parties, and men and women have

a strict preference order over the edges incident to these agents. (This ordering is easily

deduced from the original Gale–Shapley model, where agents have a strict preference

order over the people they find acceptable.) For an arbitrary subset of the edges, A ⊆ E,

every man m covered by edge-set A picks his favorite contract from E(m). The set of

these favorite edges make up F(A). Similarly, every man w covered by edge-set A picks

her favorite contract from E(w). The set of these favorite edges make up G(A). Thus

this is a two-sided market.

In a two-sided market, where the sides have the choice functions F and G, a

contract-set A ⊆ E is individually rational (or acceptable ) if F(A) = A = G(A).

If we want to increase or decrease a set with one element only, we will use the

shorthand A+ x for A ∪ {x} and A− x for A \ {x}.
Let us call a subset A of all contracts an outcome. so, an outcome is a synonym to

contract-set.

Outcome A is F-independent (or F -rational), if F(A) = A. This basically means

that this set of contracts is acceptable for the side with choice function F .

Let W and A be sets of contracts, we say that A is (W,F)-rational if A ⊆ F(W∪A) i.e.,

if choice function F chooses all contracts from set A whenever the contract-set A∪W
is offered. Particularly, for a single contract, we say that e ∈ E is (W,F)-rational if

e ∈ F(W + e). Note that A is (∅,F)-rational if and only if A is F -independent. Of-

ten when we talk about a given choice function F , we simply call these sets W -rational.

Another well-known property in the literature is Irrelevance of Rejected Contracts ,

abbreviated to IRC. There are several ways to define this concept, so temporally we

will use IRC1 and IRC2 to differentiate the two different definitions when necessary.

Choice function F : 2E → 2E is IRC1 if F(A) ⊆ B ⊆ A implies F(A) = F(B) for

any subsets A and B of E.

Irrelevance of Rejected Contracts appeared recently in the paper of Aygün and

Sönmez [6] in the following form:

Contracts satisfy the Irrelevance of Rejected Contracts (IRC2) for choice function

F if for every Y ⊂ X, ∀z ∈ X \ Y z /∈ F(Y + z)⇒ F(Y ) = F(Y + z)

We will show that if the contract-set is finite, these two definitions are the same,

but if the contract set can be infinite, then IRC1 is a stronger concept.

Statement 1.1.7. If F is IRC1 then it is IRC2, even if the contract set is infinite.

Proof. If we know that F is IRC1, then z /∈ F(Y + z) implies F(Y + z) ⊆ Y ⊆ (Y + z)

therefore F(Y ) = F(Y + z) .

Statement 1.1.8. If the set of contracts is finite, then IRC1 and IRC2 are equivalent.
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Proof. As we have seen in Statement 1.1.9, IRC1 implies IRC2, even if the contract set

is not finite.

If F satisfies IRC2 and there is a given A, B such that F(A) ⊆ B ⊆ A, then

let A \ B = {z1, z2, . . . , zk}. F(A) ⊆ (A − z1) ⊆ A, so for Y = A − z1 we get that

z1 /∈ F(Y + z1) = F(A), therefore F(A − z1) = F(A). Doing this step by step

F(A) = F(A− z1) = F(A \ {z1, z2}) = · · · = F(B).

Example 1.1.9. For infinite contract sets, there exists a choice function which satisfies

IRC2 but not IRC1. Let E be the set of all positive integers. If X ⊆ E is finite, let

F(X) = X, but if X is an infinite set, let F(X) be the smallest element in X. It is easy

to check that this is IRC2. Let A = Z+ and B = {1, 2, 3}, so F(A) = {1} ⊆ B ⊆ A

but F(A) 6= F(B) thus F is not IRC1.

In the further sections, we will mainly deal with finite sets, but if a set is infinite,

then IRC means IRC1.

A choice function F : 2E → 2E is path-independent if F(A ∪ B) = F(F(A) ∪ B)

holds for all subsets A and B of E.

Lemma 1.1.10. [16] A choice function F is path-independent if and only if F is IRC1

and substitutable.

Proof. Suppose that F is path-independent, so F(A∪B) = F(F(A)∪B) for all subsets

A and B of E. If F(A) ⊆ B ⊆ A then F(B) = F(F(A) ∪ B) = F(A ∪ B) = F(A).

Therefore, F is IRC1.

If F is path-independent, let A ⊆ B be two contract-sets. If a contract x ∈ A

is refused by F , that is, x ∈ A \ F(A), note that B = A ∪ (B \ A), so F(B) =

F(A ∪ (B \ A)) = F(F(A) ∪ (B \ A)) and therefore x /∈ F(B). So F is substitutable.

For the opposite direction, if F is substitutable and IRC1 and A,B are arbitrary

subsets of E, then using property 1.1 for A and A ∪B, we see that

F(A ∪B) = F(A ∪B) ∩ (A ∪B) ⊆ (F(A ∪B) ∩ A) ∪B ⊆ F(A) ∪B ⊆ A ∪B
Therefore, from IRC1, F(F(A) ∪B) = F(A ∪B)

Example 1.1.11. If F is not substitutable, then path-independence and IRC1 are not

necessarily equivalent. Let E = {a, b} and F({a}) = F({b}) = ∅, F({a, b}) = {a, b}.
This can be written as a preference ordering over sets: ∅ ≺ {a, b} therefore it is IRC1.

But it is not path-independent, F({a, b}) = {a, b} 6= ∅ = F(F({a}) ∪ {b}).

In many papers, the choice function is defined by a strict preference order over all

subsets of E, such that F(A) is the subset of A first in this order.

Let us call a choice function F linear order based (LOB) if there exists an ordering

≺ of all subsets of E, such that there exists a best subset among all subsets of A. And

this best subset is F(A), i.e., F(A) = max≺{X : X ⊆ A}.
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In the following we will explore the connection between this definition and IRC.

Note that the set of all contracts may be infinite, so it is not trivial that there exists a

best one among all subsets of A .

Statement 1.1.12. If choice function F linear order based, then F is IRC1 (and IRC2

of course).

Proof. If there is an ordering above all subsets, and every set has a most preferred

subset, then F(A) ⊆ B ⊆ A means that the best of all X ⊆ A is also in B. Since B

is a subset of A, the powerset of B is a subset of the powerset of A, so F(A) is also

the best choice in B, therefore F(A) = F(B). So the choice function is IRC1, and also

IRC2.

Example 1.1.13. [6] Statement 1.1.12 is not true in the opposite direction: there

exists a choice function which is IRC1, but there is no corresponding ordering on the

subsets. For example, let F be the following choice function defined on three elements

{a, b, c}:
F(∅) = ∅
F({a}) = {a}
F({b}) = {b}
F({c}) = {c}
F({a, b}) = {a}
F({a, c}) = {c}
F({b, c}) = {b}
F({a, b, c}) = {a, b, c}

This function satisfies F(A) ⊆ B ⊆ A ⇒ F(A) = F(B). Suppose that there is

a good ordering. Since F({a, b}) = a, F({a, c}) = c and F({b, c}) = b, the ordering

should contain a > b > c > a, but this is not transitive.

Note that this counterexample is not substitutable. Now, instead of IRC1, we

compare path-independence and subset-ordering.

Theorem 1.1.14. If F is path-independent over a contract-set E, then F is linear

order based.

Proof. Suppose we have a path-independent choice function F . We will define an

appropriate preference ordering for it. By Lemma 1.1.10, F is also IRC1. If for F(A) =

B for some sets A and B, then F(A) = B ⊆ A, so from IRC1, F(B) = B, which means

F -independent sets can be chosen only. If F(A) 6= A, then in our ordering A is less

preferred than the empty set, A ≺ ∅. We do not bother defining the ordering between

non-independent sets, as they are never chosen.

If A is F -independent, we define the closure of A as the inclusion-wise biggest set
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X such that F(X) = A. We denote it by Cl(A) = X. To show that the closure

exists for an F -independent set A, consider Y =
⋃
{X : F(X) = A}. From Lemma

1.1.10, F is substitutable, thus F(Y ) ⊆ A. Since A was one of the sets used in the

union, F(Y ) ⊆ A ⊆ Y and from the IRC1 property this implies F(Y ) = A. Therefore

Y = Cl(A).

The ⊆ relation defines a partial order over 2E. Every partial order can be extended

to a linear ordering, let us call it ⊆′. Let A � B if Cl(A) ⊆′ Cl(B). This way we

defined a linear order over all F -independent sets.

We need to show that F(A) = max≺{X : X ⊆ A}. Suppose B = max≺{X : X ⊆
A} and D = F(A), B 6= D. Since F(A) ⊆ B∪D ⊆ A, from IRC1, F(B∪D) = F(A) =

D. Since F is path-independent, F(Cl(D) ∪ Cl(B)) = F(F(Cl(D)) ∪ F(Cl(B))) =

F(D ∪ B) = D from the definition of Cl(D), Cl(D) ∪ Cl(B) ⊆ Cl(D), so Cl(B) ⊆
Cl(D) therefore in our ordering B ≺ D, which contradicts the maximality of B.

Note that this proof works for infinite sets as well. However, there can be a linear

order based choice function which is not path-independent.

Example 1.1.15. Let E={x,y,z} and the preference order over the subsets is {x, y, z} >
{x, z} > {x} > ∅. (All other subsets are worse than the empty set.) Then, for

A = {x, y} and B = {z} we see that {x, y, z} = F({x, y, z}) 6= F(F{x, y} + z) =

F({xz}) = {xz} So F is not path-independent. In this example, F is not substitutable

either.

Theorem 1.1.14 and Lemma 1.1.10 together imply the following:

Corollary 1.1.16. If F is substitutable and IRC1 over a contract-set E, then F is

linear order based.

If F is a path-independent choice function, it would be very nice to find an opposite

well-ordering ≺ of the sets (i.e., every set of the sets has a ≺-maximal element) which

would define the choice function F . However, this does not always exists.

Example 1.1.17. Let E be the [0, 1] closed interval, and for every A ⊆ E, let F(A) =

A ∩
[

sup(A)
2

, 1
]
. This choice function is substitutable because if A ⊆ B then sup(A) ≤

sup(B). We can easily check that F is IRC1. If x > y then F(
[
x
2
, x
]
∪
[
y
2
, y
]
) =

[
x
2
, x
]

therefore in the corresponding ordering
[
y
2
, y
]
≺
[
x
2
, x
]
. Let xi = 1 − 1

i
. There is an

infinite chain
[
x1
2
, x1

]
≺
[
x2
2
, x2

]
≺ . . . so there is no maximal choice among these sets.

Therefore we cannot create a well-ordering.

So we can summarize the connections between IRC1, path-independence and the

existence of an ordering as follows:

� A choice function F is path-independent if and only if F is IRC1 and substi-

tutable.
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� If a choice function is path-independent, then F is linear order based. If F is

linear order based, then it is IRC1.

� If a choice function is substitutable, then IRC1, path-independence and linear

order basedness are all equivalent to each other.

�
�
�
�
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Figure 1.1: Connections.

On Figure 1.1, the dashed lines denote the implications where substitutability is

needed.

On the other hand, if we consider the IRC2 property, it also does not match with

a preference order over all subsets.

Example 1.1.18. If F is substitutable and IRC2 over an infinite contract-set E, then

there may not exist an ordering ≺ over all subsets of E for which F(A) = max≺{X :

X ⊆ A}. Consider the same choice function as in Example 1.1.9. This choice function

is substitutable. Let A = Z+ and B = {1, 2, 3}, F(A) = {1} so if there were a good

preference ordering over all subsets of Z+, then {1} > {1, 2, 3} so we not should have

chosen {1, 2, 3} from B.

We will see, however, that typical scoring choice functions are not IRC1. Therefore,

we shall study functions that are not necessarily IRC1 more generally.

1.1.1 Examples of Choice Functions

We list some typical choice functions, some of them come from practical applications,

while some others are mostly theoretical, illustrating the flexibility of substitutable

choice functions. Let v be an agent (i.e., a vertex of G = (V,E)), and let Ev be the

set of possible contracts involving v ( i.e., the edges from v).
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1. The agent has a strict preference order, and always chooses exactly one contract,

the best one available. (Except from the empty set.)

2. The agent’s preferences are strict, and we allow polygamy ( i.e., a college can

have more than one student). The choice function picks the best k contracts for

some fixed k: F(X) = the best k members of X. If |X| ≤ k, then F(X) = X.

3. We allow ties in the preference list. Here, v chooses the best partner if it is unique

and chooses the empty set if there is more than one best partner.

4. We allow ties in the preference list. Agent v chooses the best partner if it is

unique, and it chooses the set of best partners if there are two or more.

5. Hungarian (H-scoring) choice function: Every contract has a certain integral

score: in the college admissions model, this is the number of points reached

by the corresponding student at the particular college’s entrance exam and the

college has a quota q. If X ⊆ Ev is a given set of contracts, then v picks the

score t, such that there are exactly k contracts in X having a score of at least t

and k ≤ q, and there are more than q contracts receiving a score of at least t− 1.

If no such t exists, then v picks t = 0. The choice function selects the contracts

from X having a score of at least t. For example, if v is offered four contracts

with scores of 3, 2, 2, and 1 and the quota of v is q = 2, then v chooses only the

best contract with a score of 3 (i.e., the score limit t = 3).

6. Let Hq be the following choice function on the set of contracts available for agent

v: for any A ⊆ Ev, if |A| ≤ q, then Hq(A) = A, and if |A| > q, then Hq(A) = ∅.
Then Hq is a special case of H-scoring choice function, we can interpret it as

there are more than q students interested in the same college, with equal scores

and the quota is q. If at most q students apply, they are all accepted, but if more

apply, the college rejects all of them.

Later on H1 will mean that there are two students interested in the same college,

with equal scores, and the quota is 1.

7. Permissive (L-scoring) choice function: Agent v has a quota q but she may

choose more than q contracts. Namely, v chooses the best k2 ≥ q contracts in a

way that she chooses the best k ≤ q using the previous H-scoring method (with

score limit t), and if k < q, then v adds the next group of applicants with score

t − 1. If the H-scoring function chooses exactly k = q applicants, then v keeps

them and does not add new students. In the previous example, where there are

four contracts with scores of 3, 2, 2, and 1 and the quota is q = 2, agent v would

set the score limit at 2 and pick three applicants with scores of 3, 2, and 2. (Here,

H-scoring stands for high (or Hungarian) score limits, and L-scoring stands for

low score limits.)
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8. The weighted scoring choice function is similar to the H-scoring choice function,

except that every contract also has a cost. Agent v has a budget m as a general-

ization of a quota. For a given set X of contracts, v determines t in such a way

that the total cost of contracts having a score of at least t is not more than m,

but the total cost of contracts having a score of at least t− 1 is more than m. If

no such t exists, then t = 0. Now, v chooses those contracts from X that have

a score of at least t. For example, if v has four applicants according to the table

below:

a1 a2 a3 a4

scores 4 3 2 1

cost 9 5 5 1

and the budget is 10, then v chooses a1 only. (Agent v cannot skip any applicants

and cannot choose a cost of 9 + 1.)

9. Strict hierarchical choice function: Agent v has a linear preference list over the

contracts, and there is a downward closed set system I of subsets of Ev (that is,

if A ∈ I, B ⊆ A, then B ∈ I). Let k be the greatest number, such that the set

of k best contracts of set X belongs to I. Let F(X) be the set of these k best

applicants.

10. Weak hierarchical choice function: Agent v has a weak preference order (ties

are allowed) over the contracts, and there is a downward closed set system I of

subsets of Ev. Let k be the greatest number such that the set of k best contracts

of set A is in I, and among equally good contracts, we choose all or none. Let

F(A) be the set of these k best applicants.

Assume that each contract c has some score s(c). A choice function F is simple-

loser-free if any rejected contract has a lower score than any accepted contract. That

is, s(c′) < s(c) holds whenever c ∈ F(X) and c′ ∈ X \ F(X). A choice function is

loser-free, if it is the direct sum of simple-loser-free choice functions.

Note that the Examples 1, 2, 4 and 7 above are IRC and all of the examples above

are substitutable and loser-free.

Remark 1.1.19. Any weighted scoring choice function is weak hierarchical, and any

weak hierarchical choice function is loser-free. However, not every loser-free choice

function is weak hierarchical:

Example 1.1.20. If a > b > c, F(A) = A if |A| ≤ 2 and F({a, b, c}) = {a}, then F
is loser-free and substitutable. However, F ({a, b}) = {a, b}, so {a, b} is supposed to be

a set in I but F({a, b, c}) 6= {a, b}, so this function is not hierarchical.

Not every weak hierarchical function is a weighted scoring choice function:



16 CHAPTER 1. INTRODUCTION

Example 1.1.21. The set of contracts is E = {a, b, c, d}, the preference order is

a > b > c > d, and I = {∅, {a}, {b}, {c}, {d}, {a, b}, {c, d}}. Therefore, for example,

F({a, b, c}) = {a, b}. However, if we want to describe it with weights: the weight limit

is Q. The sets {a, b} and {c, d} have weight less than Q, but {a, c} and {b, d} have

more weight than Q. Therefore, the weight of {a, b, c, d} is simultaneously both less

than and more than 2Q. This is a contradiction.

1.2 On lattices

Let L = (X,�) be a partially ordered set , where X is a set, and � is a partial order

over X, i.e., � is reflexive, antisymmetric, and transitive, but not all x and y has to be

comparable. Partially ordered sets are often called poset for short. This L = (X,�)

is a lattice if any two elements x and y of X have a least common upper bound x ∨ y
(the join of x and y) and a greatest common lower bound x ∧ y (the meet of x and

y). A lattice L is complete if every subset Y of X has a least common upper bound∨
Y and a greatest common lower bound

∧
Y . Clearly, every complete lattice L has a

unique maximal element 1 :=
∨
X and a unique minimal element 0 :=

∧
X. A lattice

L = (X,�) is distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (1.2)

holds for all elements x, y, z of X. Note that Condition (1.2) is equivalent to its dual,

that is, for all x, y, z ∈ X

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

holds. If a lattice L = (X,�) is complete then L is called infinitely distributive if

x ∧
∨

Y =
∨
{x ∧ y : y ∈ Y }

holds for every element x and every subset Y of X. Note that, unlike distributivity,

infinite distributivity does not imply its dual.

A most common example of a distributive complete lattice is the lattice L = (2E,⊆)

of subsets of a ground set E, and here the lattice operations ∨ and ∧ are simply ∩ and

∪. This way we get back the model we discussed in the previous sections.

We can define properties of functions on a lattice similarly to the way we did with

traditional choice functions.

If L = (X,�) is a lattice, then a function F : X → X is a choice function if

F(x) � x holds for every element x of X. (This corresponds to choosing a subset of

the offers in the original model.)

For choice function F , an element x ∈ X is F-independent if F(x) = x.

A mapping F : X → X is monotone if x � y implies F(x) � F(y) and F is

antitone if x � y implies F(y) � F(x).
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A choice function F : X → X is path-independent if F(x∨ y) = F(x∨F(y)) holds

for all elements x, y of X.

We say that F is IRC if F(x) � y � x implies F(x) = F(y). (It would make no

sense to define a condition similar to IRC2 here.)

Observe that in the case of subset lattices, the defined notions above of a choice

function correspond to the well-known notions of set-mappings under the same name.

Similarly to set-mapping, there is a connection between path-independence and

IRC. The generalization of Lemma 1.1.10 is that every path-independent choice func-

tion has the IRC property and if F is substitutable and IRC then it is also path-

independent. We will show this in Section 1.3.

For a function f : L → L, an element x of L is called a fixed point if f(x) = x.

Theorem 1.2.1 (Tarski’s fixed point theorem). [47] Let L be a complete lattice and

f : L → L be a monotone function on L. Then the set Lf = {x ∈ L : f(x) = x} of

fixed points of f is a nonempty, complete lattice on the restricted partial order.

If a lattice L is finite in Theorem 1.2.1, there is a straightforward algorithm to

find the least and greatest fixed points. Let 0 be the smallest element in lattice L.

Therefore, 0 ≤ f(0) and from monotonicity 0 ≤ f(0) ≤ f(f(0)) ≤ f(f(f(0))) ≤ · · · .
Since the lattice is finite, there exists an i, where f i(0) = f i+1(0). Therefore, f i(0) is

a fixed point.

Statement 1.2.2. The fixed point a = f i(0) above is the least of all fixed points of f .

Proof. Let x be an arbitrary fixed point of f . Since f is monotone, 0 ≤ x ⇒ f(0) ≤
f(x) = x and f j(0) ≤ f j(x) = x for every j ≥ 1. We get that a = f i(0) ≤ x.

Similarly, we can start with the greatest element 1. From 1 ≥ f(1) ≥ f(f(1)) ≥
f(f(f(1))) ≥ · · · , we see that there is a j, such that f j(1) = f j+1(1). This f j(1) is the

greatest of all fixed points of f .

1.3 Determinants

It this section we give a definition of substitutability for lattices with the help of

determinants. For choice functions over subsets of a ground set E, this sophisticated

definition was not necessary, but when we switch to defining choice functions over

lattices, there is no good equivalent to F(A) = A \ F(A), so instead we use antitone

functions to capture substitutability.

If F : 2E → 2E is a choice function, then its determinant D : 2E → 2E is also a set

function on the same ground set. We say D is a determinant of the choice function F
if F(Y ) = Y ∩ D(Y ) for every Y ⊆ E.
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If F is a choice function over a lattice L = (X,�), then D : X → X is defined on

the same lattice, and D is a determinant of the choice function F if F(x) = x ∧ D(x)

for every x ∈ X.

Note that this determinant is not related at all to the determinant of a matrix.

As every choice function is a determinant of itself, we see that a mapping is a

choice function if and only if it has a determinant. Note that the determinant of a

choice function might not be unique.

The following lemma eliminates the difference (or complementation) operation from

the definition of substitutability, hence it allows us to extend the notion to lattices that

have no such operation in general. That is, we can regard the following lemma as an

equivalent definition of a substitutable choice function.

Lemma 1.3.1. [20] A choice function F : 2E → 2E is substitutable if and only if there

exists an antitone determinant D of F .

Proof. Suppose that F is substitutable. Then Y 7→ Y \F(Y ) is monotone by definition,

hence D(Y ) := E \ (Y \F(Y )) is an antitone determinant of F . Now assume that D is

an antitone determinant of F . Then Y ⊆ Z implies that Y \F(Y ) = Y \ (Y ∩D(Y )) =

Y \ D(Y ) ⊆ Z \ D(Y ) ⊆ Z \ D(Z) = Z \ (Z ∩ D(Z)) = Z \ F(Z) and this is exactly

what we had to prove.

Note that a substitutable choice function F might have several antitone determi-

nants D. The next lemma states that there is a special one that has some useful extra

property. First we state it for set-functions, then for any substitutable choice function

over a lattice.

Lemma 1.3.2. Suppose that F : 2E → 2E is a substitutable choice function and define

DF(A) := {e : e ∈ F(A+ e)} (1.3)

as the set of all A-rational contracts. Then DF is an antitone determinant of F .

Moreover, if D is an antitone determinant of F then DF(A) ⊆ D(A) holds for every

A ⊆ E.

Proof of Lemma 1.3.2. Let A ⊆ B. If e ∈ DF(B) then e ∈ F(B + e) Since F is

substitutable, e ∈ F (A + e) so e ∈ DF(A). Therefore DF(B) ⊆ DF(A) i.e., DF is

antitone.

To prove the minimality property of determinant DF , assume that D is an antitone

determinant of F . Now if y ∈ F(A+ y) then

y ∈ F(A+ y) = (A+ y) ∩ D(A+ y) ⊆ D(A+ y) ⊆ D(A)

hence DF(A) =
⋃
{y ∈ A : y ∈ F(A+ y)} ⊆ D(A).
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We call this DF the canonical determinant of F .

Another extremal determinant for choice function F is D′F(A) := E \ F(A) for

every A ⊆ E.

Lemma 1.3.3. D′F is an antitone determinant of F and it is the maximal among all

antitone determinants i.e., if D is another antitone determinant of F then D′F(A) ⊇
D(A).

Proof. Since F is monotone, clearly E\F is antitone, and A∩D′F(A) = A∩(E\F(A)) =

F(A) so it is a determinant.

For every other determinant, D(A)∩A = F(A) = D′F(A)∩A and D(A)∩ (E \A) ⊆
E \ A = D′F(A) ∩ (E \ A) so we can see that D(A) ⊆ D′F(A).

These determinants have some other useful properties.

Lemma 1.3.4. Suppose that choice function F : 2E → 2E has an antitone determinant

D with the property that D(A) = D(F(A)) holds for every A ⊆ E. Then F is path-

independent.

For the other way around, if F is substitutable and path-independent, then for the

canonical determinant DF the equality DF(F(A)) = DF(A) holds for every A ⊆ E.

Proof. F(A∪B) = (A∪B)∩D(A∪B) ⊆ (A∪B)∩D(B) = (A∩D(B))∪(B∩D(B)) ⊆
A ∪ F(B) ⊆ A ∪B. Consequently, F(A ∪B) ⊆ A ∪ F(B) ⊆ A ∪B. Therefore

D(A ∪B) ⊆ D(A ∪ F(B)) ⊆ D(F(A ∪B)) = D(A ∪B) (1.4)

by the property that D(A) = D(F(A)) and the antitonicity of D. Thus we have

equality throughout (1.4), in particular D(A ∪B) = D(A ∪ F(B)) holds. Now

F(A ∪ F(B)) = (A ∪ F(B)) ∩ D(A ∪ F(B)) ⊆ (A ∪B) ∩ D(A ∪B) = F(A ∪B)

and

F(A ∪B) = (A ∪B) ∩ D(A ∪B) = (A ∪B) ∩ D(A ∪B) ∩ D(A ∪B) =

F(A ∪B) ∩ D(A ∪ F(B)) ⊆ A ∪ F(B) ∩ D(A ∪ F(B)) = F(A ∪ F(B)),

so F(A ∪B) = F(A ∪ F(B)), that is, F is indeed path-independent.

Finally, path-independence of F directly implies that

DF(A) =
⋃
{y : y ∈ F(A+ y)} =

⋃
{y : y ∈ F(F(A) + y)} = DF(F(A)).

When F is a choice function over a lattice, we can generalize the above results.

We observe some useful properties of substitutable and path-independent substi-

tutable choice functions. Recall that in Lemma 1.1.10 we have shown the connection

between path-independence and the property IRC. Now we present the same, but with

choice functions over lattices.
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Lemma 1.3.5. Suppose that L = (X,�) is a lattice. If a choice function F : X → X

is path-independent then F is IRC. On the other hand, if L is distributive and a choice

function F : X → X is substitutable and IRC then F is path-independent.

Proof. If F(x) � y � x and F is path-independent, then F(y) = F(y ∨ F(x)) =

F(y ∨ x) = F(x) and the first part follows. To see the second part, let D be an

antitone determinant of F . Then

F(x ∨ y) = (x ∨ y) ∧ D(x ∨ y) � (x ∨ y) ∧ D(y) =

(x ∧ D(y)) ∨ (y ∧ D(y)) � x ∨ F(y) � x ∨ y (1.5)

Consequently, F(x ∨ y) � x ∨ F(y) � x ∨ y and F(x ∨ F(y)) = F(x ∨ y) by IRC. So

F is indeed path-independent.

The next lemma provides a sufficient condition on the determinant for path-independence

of the corresponding choice function, and generalizes the first part of Lemma 1.3.4.

Lemma 1.3.6 (Fleiner, Jankó). [20] Suppose that L = (X,�) is a distributive complete

lattice and a choice function F : X → X has an antitone determinant D with the

property that

D(x) = D(F(x)) holds for each element x of X. (1.6)

Then F is path-independent.

Proof. As the calculation in (1.5) is valid in this case, we have F(x∨ y) � x∨F(y) �
x ∨ y, hence

D(x ∨ y) � D(x ∨ F(y)) � D(F(x ∨ y)) = D(x ∨ y) (1.7)

by Property (1.6) and the antitonicity of D. Thus we have equality throughout (1.7),

in particular D(x ∨ y) = D(x ∨ F(y)) holds. Now

F(x ∨ F(y)) = (x ∨ F(y)) ∧ D(x ∨ F(y)) � (x ∨ y) ∧ D(x ∨ y) = F(x ∨ y)

and

F(x ∨ y) = (x ∨ y) ∧ D(x ∨ y) = (x ∨ y) ∧ D(x ∨ y) ∧ D(x ∨ y) =

F(x ∨ y) ∧ D(x ∨ F(y)) � x ∨ F(y) ∧ D(x ∨ F(y)) = F(x ∨ F(y)),

so F(x ∨ y) = F(x ∨ F(y)), that is, F is indeed path-independent.

As we have seen, if a choice function F : X → X is substitutable then there

might be several antitone determinants of F . The following lemma states that, also for

lattices, there is a determinant that is the minimal one. This is the lattice analogue of

Lemma 1.3.2.
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Lemma 1.3.7 (Fleiner, Jankó). [20] Suppose that L = (X,�) is a complete lattice

and F : X → X is a substitutable choice function of it. Then for every x, y ∈ L

F(x ∨ y) ∧ x � F(x) . (1.8)

Furthermore, if L is infinitely distributive then

DF(x) :=
∨
{y ∈ X : y � F(x ∨ y)} is an antitone determinant of F . (1.9)

If D is an antitone determinant of F then DF(x) � D(x) holds for every element x of

X. Finally, if F is path-independent then DF(x) = DF(F(x)) holds for each element

x of X.

Proof. Let D be an antitone determinant of a substitutable choice function F . Then

F(x ∨ y) ∧ x = (x ∨ y) ∧ D(x ∨ y) ∧ x = x ∧ D(x ∨ y) � x ∧ D(x) = F(x)

proving (1.8). From (1.8) and the infinite distributivity of F , we get

x ∧ DF(x) = x ∧
∨
{y ∈ X : y � F(x ∨ y)} =

∨
{x ∧ y : y � F(x ∨ y)} �∨

{x ∧ F(x ∨ y) : y ∈ X} �
∨
{F(x) : y ∈ X} = F(x) . (1.10)

Moreover, F(x) = F(x ∨ F(x)) as F(x) � x, so F(x) � DF(x), hence F(x) �
x ∧ DF(x). Together with (1.10), this proves that DF is indeed a determinant of F .

To show the antitone property of DF , let x1 � x2. Our goal is to prove that

DF(x2) � DF (x1), so assume that y � F(x2 ∨ y). Again, (1.8) shows that

y � F(x2 ∨ y) ∧ (x1 ∨ y) = F(x1 ∨ y ∨ x2) ∧ (x1 ∨ y) � F(x1 ∨ y),

and due to (1.9), this is exactly what we need.

To prove the minimal property of determinant DF , assume that D is an antitone

determinant of F . Now if y � F(x ∨ y) then

y � F(x ∨ y) = (x ∨ y) ∧ D(x ∨ y) � D(x ∨ y) � D(x)

hence DF(x) =
∨
{y ∈ X : y � F(x ∨ y)} �

∨
{D(x) : y � F(x ∨ y)} = D(x).

Finally, path-independence of F directly implies (1.6):

DF(x) =
∨
{y : y � F(x ∨ y)} =

∨
{y : y � F(F(x) ∨ y)} = DF(F(x)),

and this finishes the proof.
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Chapter 2

Two-Sided Markets

2.1 Stability Concepts

In this section, we formulate different stability concepts, which we shall study later.

Dominating stability is the most straightforward generalization of the nonexistence of

blocking edges in the marriage model. Three-stability is also of similar kind, here we

partition the set of all contracts into three parts: chosen, dominated by men, and

dominated by women. If we continue this line of thought, to get four-stability, we

define four contract sets: chosen, dominated only by men, dominated only by women,

and dominated by both.

2.1.1 Dominating Stability

In the original stable marriage model, a matching is stable if it dominates every other

contract, so for every e = (m,w) /∈ S, either µ(m) >m e or µ(w) >w e. A natural

generalization of this notion is dominating stability.

Consider a two-sided market with choice functions F and G on the two sides, as we

have seen in the Preliminaries. We say that a contract set X is F-dominated by the

contract set S if (F(S ∪X)) ∩X = ∅. This means that if the agent can choose from

the union of sets S and X, she is not going to choose anything from X.

Recall that for a substitutable choice function F , DF is the canonical antitone

determinant and DF(S) consists of all the edges that are not F -dominated by S. A

subset S of E is called dominating stable, if DF(S) ∩ DG(S) = S. Therefore, every

contract which is not part of the scheme S is either F -dominated or G-dominated by

S.

Equivalently, we can say that S ⊆ E is dominating stable, if F(S) = G(S) = S and

for every e /∈ S, e /∈ F(S + e) or e /∈ G(S + e), so S is acceptable but for any e /∈ S
one side of the market would not like to add contract e.

Remark 2.1.1. If S is dominating stable, then F(S) = S = G(S), so the set S is

acceptable.

23
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Proof. Since DF(S)∩DG(S) = S, the determinant DF(S) ⊇ S, so F(S) = S∩DF(S) =

S. A similar proof applies for G.

Example 2.1.2. Think of the marriage model again, where men and women have

strict preferences. The common choice function of men is F , an the choice function

of women is G. These functions choose the single best option for every player. If S

is dominating stable, then since F(S) = S = G(S), the set S is a matching, and for

every e = mw /∈ S, the contract e /∈ F(S + e) or e /∈ G(S + e), so that one of m or w

does not want to choose mw instead of their current marriage. Therefore, in this case

dominating stability is equivalent to the original stable marriage definition of Gale and

Shapley.

Unfortunately, it turns out that for non-IRC choice functions, even for substitutable

F and G, a dominating stable solution might not exist. Although this is a direct

generalization of the original stability notion of Gale and Shapley, it seems that in

practical applications, this notion is not very helpful.

Example 2.1.3. Let F and G be the following functions, defined on a set of three

contracts: {a, b, c}: F accepts everything, and G prefers a to b, b to c and c to a.

Now, F is substitutable and IRC, and G is substitutable, but not IRC.

∅ {a} {b} {c} {a, b} {b, c} {a, c} {a, b, c}
F ∅ {a} {b} {c} {a, b} {b, c} {a, c} {a, b, c}
G ∅ {a} {b} {c} {a} {b} {c} ∅
DF {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c}
DG {a, b, c} {a, c} {a, b} {b, c} {a} {b} {c} ∅

Suppose that S is dominating stable. Since G(S) = S, the cardinality of S is at

most 1. However, then, DF(S) ∩ DG(S) = DG(S) 6= S, because every contract has a

determinant with cardinality at least 2.

A similar example appeared in the paper of Aygün and Sönmez [6], they also showed

that a dominating stable set does not need to exist.

Consider a classical example: the job market between doctors and hospitals. This is

a many-to-one matching market, which means the hospitals are allowed to hire multiple

doctors up to a given quota, but doctors can work at only one hospital at a time. Both

sides have a strict preference ordering over an acceptable subset of members of the

other side. An allocation is a set of doctor-hospital agreements. Here, a blocking pair

means a doctor d and a hospital h such that the d is unemployed (analogous to single

in the marriage model) or d prefers hospital h to the institution to which he is assigned.

The hospital h either has not filled its quota or prefers d to some doctor who is assigned

it. An assignment is stable if there is no blocking pair.

It is easy to see that the stability criterion here is exactly dominating stability.
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We also mention the Rural Hospital Theorem, since it will be needed at the end

of this Thesis. In an allocation, a hospital is undersubscribed if it has more places

available than realized applications.

Theorem 2.1.4 (Rural Hospitals). [Roth] [43] For a given doctor-hospital instance,

the following properties hold:

1. the same doctors are assigned in all stable matchings;

2. each hospital is assigned the same number of doctors in all stable matchings;

3. any hospital that is undersubscribed in one stable matching is assigned exactly

the same set of doctors in all stable matchings.

In [28], Hatfield and Milgrom defined stable allocations similar to our dominating

stability definition, namely a doctor-hospital allocation is stable if there is no blocking

contract set. Hatfield and Milgrom [28] introduced stability in the following way: Given

a two-sided many-to-one market, namely doctors and hospitals. Let F be the choice

function of doctors, and G the choice function of hospitals. For an individual hospital

h, the choice function is Gh.
A set of contracts S ⊆ E is a stable allocation (in the following we are going to call

it group-stable) if

1. F(S) = G(S) = S and

2. there exists no hospital h and set of contracts X ′ 6= Gh(S) such that X ′ =

Gh(S ∪X ′) ⊆ F(S ∪X ′).

If the first condition fails, S is not individually rational, if the second fails, there is a

blocking set for the outcome S.

Statement 2.1.5. If F and G are substitutable, and there are no parallel contracts,

group-stability and dominating stability are equivalent.

By parallel contracts, we mean there is more than one possible contract between

a given hospital and a given doctor. Let us denote the contracts out of S incident by

hospital h with Sh.

Proof. It is easy to see that F(S) = G(S) = S is fundamentally part of both definitions,

so we only have to pay attention to (2).

Suppose there is a blocking set X ′ for outcome S, so X ′ = Gh(S∪X ′) ⊆ F(S∪X ′).
Notice that X ′ ⊂ S is impossible, since in this case X ′ = Gh(S ∪ X ′) = Gh(S) = Sh.

Pick a contract e ∈ X ′ \ Gh(S). From substitutability, e ∈ Gh(S+ e) and e ∈ F(S+ e),

therefore S is not dominating stable.

On the other hand, suppose there exists a contract e = hd such that e ∈ G(S+e) and

e ∈ F(S+e). The hospital corresponding to this contract is h, and let X ′ = Gh(S+e).
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Obviously e ∈ X ′ and for doctor d, e ∈ Fd(S ∪X ′). Other doctors do not receive any

new contract, therefore from individual rationality X ′ ⊆ F(S ∪X ′).

Example 2.1.6. If there are parallel contracts in the system, every dominating stable

outcome is group-stable but there might be a group-stable outcome which is not domi-

nating stable. Consider one hospital h, two doctors d1, d2 and three contracts: a = d1h,

b = d1h, c = d2h. Hospital h has the preference order a > b > c and its quota is 2,

so it always chooses the best two out of the offered contracts. Doctor d1 has preference

a > b and can choose only one, doctor d2 accepts c if offered.

Let S = {b, c}. It is easy to see that a ∈ G(S + a) and a ∈ F(S + a), so S is not

dominating stable. To find a blocking set X ′ 6= Gh(S), contract a must be in X ′, and

Gh(S + a) = {a, b} therefore X ′ = {a, b}. But {a, b} * F({a, b, c}) = {a, c} therefore it

is not a proper blocking set.

2.1.2 Three-Stability

The following stability concept was defined by Fleiner [17]. Given a two-sided market,

where the choice functions of each side over the contracts are F and G. A subset S of

E is three-stable, if there exist subsets A and B of E, such that F(A) = S = G(B) and

A ∪ B = E, A ∩ B = S. A pair (A,B) with this property is called a three-stable pair ,

and S is a three-stable set .

The explanation of the name, three-stable, is that we partition the set E of contracts

into three parts, as shown in Figure 2.1, S, A \ S and B \ S, where S is stable, A \ S
is F -dominated by S and B \ S is G-dominated by S.

Example 2.1.7. In the original marriage model, F and G select the single best partner

for the men and women. It is easy to see that every three-stable set S is a matching,

and it is stable, since men prefer contracts in S to A \S and women prefer S to B \S.

On the other hand, if S is a stable matching, then it is also a three-stable set with

the pair (A,B), where we define A \ S as the set of contracts that the men prefer less

than the contracts of S and B := S ∪ (E \ A). So we conclude that three-stable sets

yield exactly the stable marriages in this case.

Example 2.1.8. Figure 2.2 illustrates a small example for a possible market. There are

two possible contracts, a and b, and F = H1, G = H1, that is, F({a}) = G({a}) = {a},
F({b}) = G({b}) = {b}, F({a, b}) = G({a, b}) = ∅. These choice functions are

substitutable but not IRC. Then, only S = ∅ is three-stable, and it can be achieved with

two distinct three-stable pairs, where A = {a, b}, B = ∅ or A = ∅, B = {a, b}
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Figure 2.2: Example graph.

2.1.3 Four-Stability

We introduce the notion of four-stability. It is similar to three-stability, but when there

is a double-dominated contract e in the three-stable partition, we can choose whether

e should belong to A or B. Now, in four-stability, we put e in a fourth contract-set.

Therefore, while three-stability is a more natural definition, four-stability has nicer

properties and is more useful; as we will show, it is closely related to score-stability.

Moreover, for IRC choice functions, for any four-stable set, the corresponding (A,B)

pair is unique, which cannot be said of three-stable pairs.

Again, we have a two-sided market, the choice functions of the two sides are F and

G. A subset S of E is four-stable, if there exists subsets A and B of E, such that

A ∩ B = S and DF(A) = B,DG(B) = A. We call a pair (A,B) fulfilling this property

a four-stable pair.

Remark 2.1.9. If S is a four-stable set, then F(S) = S = G(S), that is, the set S is

acceptable.

Proof. Since F(A) = DF(A) ∩ A = B ∩ A = S, and F is substitutable this implies

F(S) = S. A similar proof applies for G.

This concept is called four-stable because we partition the set E of contracts into

four parts, as seen in Figure 2.3: S is stable, A \ S is F -dominated by S, B \ S is

G-dominated by S, and the contracts in E \ (A ∪B) are both F - and G-dominated.
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Figure 2.3: A four-partition of the edge-set.

Example 2.1.10. We consider the same example as we did for three-stability in Figure

2.2: There are two possible contracts, a and b, and F = H1, G = H1. Now, there are

three four-stable solutions:

� S = ∅, where A = {a, b}, B = ∅ or A = ∅, B = {a, b}

� S = {a}, A = {a}, B = {a}

� S = {b}, A = {b}, B = {b}.

Statement 2.1.11. [Fleiner, Jankó] [19] If F and G are substitutable and F is IRC,

then for a four-stable set S there exists a unique four-stable pair (A,B).

Proof. Suppose that there are two different four-stable pairs for S: (A,B) and (A′, B′).

We can assume that there exists a contract b for which b ∈ B, but b /∈ B′. Since S ⊆ B′,

it follows that b /∈ S. Moreover b ∈ F(A+ b), but b /∈ F(A′ + b), because DF(A) = B

and DF(A′) = B′. By A′ \ S = F(A′) ⊆ F(A′ + b), we get F(A′ + b) ⊆ S ⊆ (A′ + b),

hence F(A′ + b) = S.

We know that (A′ + b) \ S = F(A′ + b) and A \ S = F(A).

Since F is substitutable, F(A′ ∪ A + b) is a superset of both, (A′ ∪ A + b) \ S ⊆
F(A′ ∪ A+ b), so F(A′ ∪ A+ b) ⊆ S.

From F(A′+ b) = S, we get F(A+ b) ⊆ F(A+ b)∪F(A′+ b) ⊆ (A+ b), so F(A+ b) =

F(F(A+ b) ∪ F(A′ + b)).

Using that F is path-independent from Lemma 1.1.10, b ∈ F(A + b) = F(F(A +

b) ∪ F(A′ + b)) = F((A + b) ∪ (A′ + b)) = F(A′ ∪ A + b) ⊆ S. Therefore, b ∈ S, a

contradiction.

2.1.4 Score-Stability

In this subsection, we describe the stability notion used in the Hungarian college ad-

mission scheme. For this reason, we shall call the agents colleges and applicants, and

application is a synonym for contract. The mathematical model of the Hungarian col-

lege admissions system is close to stable matchings. Our model is a simplified version

of the one that is used in practice. Biró and Kiselgof [10], Azevedo and Leshno [8] also

examined the mathematics behind stable score limits.
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Assume that we have n applicants A1, A2, . . . , An and m colleges C1, C2, . . . , Cm.

Let E be the set of all contracts. It is convenient to think that E is the set of edges

of the bipartite graph with color classes {A1, . . . , An} and {C1, . . . , Cm}, where each

edge, AiCj, of the graph corresponds to a contract between applicant Ai and college

Cj. Every applicant has a strict preference order over the colleges she applies to, and

each college assigns some score s(AiCj) (an integer between one and M) to each of

its applicants. Moreover, each college C has a quota q(C) on admissible applicants.

According to the law, no college can accept more applicants than its quota; moreover

if an applicant Ai with a certain score s(AiCj) is not acceptable to some college Cj,

then any applicant with the same or lower score has to be unacceptable for Cj.

Let us the denote the preference order of applicant Ai with >i. To determine the

admissions after all information is known, each college has to declare a score limit.

Let the score limits for colleges C1, C2, . . . , Cm be t1, t2, . . . , tm, respectively. Each

applicant will study at her most preferred college where she has a high enough score.

More precisely, applicant Ai is assigned to college Cj if s(AiCj) ≥ tj ( i.e., score s(AiCj)

of Ai at Cj is not less than threshold tj for Cj) and s(AiCj′) < tj′ for j′ >i j ( i.e.,

score s(AiCj′) of Ai at Cj′ is less than the score limit tj′ , if Ai likes Cj′ more than Cj).

The vector of declared score limits (t1, t2, . . . , tm) is called a score vector . The stability

notion below is defined according to the requirements of Hungarian law.

A score vector (t1, t2, . . . , tm) is valid if no college exceeds its quota with these score

limits.

A score vector (t1, t2, . . . , tm) is violable if for every college Cj either tj = 0 or the

score vector (t1, t2, . . . , tj−1, tj − 1, tj+1, . . . , tm) would assign more than q(Cj) students

to Cj, that is, no single college can decrease its score limit without exceeding its quota.

A score vector, s, is stable if s is valid and violable.

The college admissions model above determines a natural choice function for ap-

plicants and another one for the colleges. Therefore, for subset X ⊆ E of contracts,

Fi(X) denotes the most preferred contract from X of applicant Ai, and F(X) is the

common choice function of all applicants, F = F1 + F2 + · · · + Fn. Similarly, Gj(X)

denotes the set of contracts that college Cj would choose if it could select freely. More

precisely, let Xj denote the set of contracts with Cj in X, and let Cj declare a score

limit tj such that no more than q(Cj) contracts from Xj have score of at least tj, but

either tj = 0 or more than q(Cj) contracts have a score of at least tj − 1. Let Gj(X)

be the set of all contracts in Xj exceeding the score limit tj. Define choice function

G : 2E → 2E as the common choice function of all colleges, G = G1 + G2 + · · ·+ Gm.

It is easy to see that choice function F of the applicants is IRC, but choice function

G of the colleges is not.

For example, G = H1 is a typical scoring choice function, there are two equally

good contracts a and b, and the quota is 1. However, G({a, b}) = ∅ ⊆ {a} ⊆ {a, b} and

G({a}) 6= G({a, b}), so it is not IRC.
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2.1.5 Generalized Score-Stability

We can generalize the above framework, keeping the main property needed to ensure

the existence of a stable solution, namely the loser-free property that allows us to

extend the model in a way that is fairly generalized and has economically interesting

choice functions. Assume that each contract c has some score s(c).

Recall that choice function G is simple-loser-free if any rejected contract has a lower

score than any accepted contract. That is, s(c′) < s(c) holds whenever c ∈ G(X) and

c′ ∈ X \G(X). A choice function is loser-free, if it is the direct sum of simple-loser-free

choice functions.

Let F be direct sum of substitutable choice functions of the applicants, and G is a

direct sum of simple-loser-free, substitutable choice functions Gj of the colleges.

We say a set {Ai1 , Ai2 , . . . , Aik} of applicants is feasible for college Cj if Gj(X) = X

for contract set X = {Ai1Cj, Ai2Cj, . . . AikCj}, otherwise, it is infeasible. Each contract

c has a score s(c).

Let P : NE → 2E be a function, that codes the scores of the applicants: P (t) is

the set of contracts above the score limit given by score vector t. P (t) = {AC ∈ E :

s(AC) ≥ t(C)}. Therefore, P (0) = E. There exists a score vector T where P (T ) = ∅
(assign 1+the highest possible score to every college). The function P is antitone on

the scores: if t1 ≤ t2 then P (t1) ⊇ P (t2).

Lemma 2.1.12 (Fleiner, Jankó). [19] A choice function G : 2E → 2E is loser-free

if and only if there exists a function PG : 2E → NE, such that for every contract-set

A ⊆ E, PG declares a score-limit where the accepted contracts above the score limit are

exactly the set accepted by G(A), i.e., P (PG(A)) ∩ A = G(A).

Proof. If G is loser-free, the set of accepted contracts from A are all above a score

vector, let the maximal score vector they reach be PG(A). On the other hand, if we

are given a score limit by PG, there can be no student that is missed out while others

with the same score get in, so G must be loser-free.

We can generalize the validity and stability of score vectors to this generalized

setting the following way: If contracts above score limit t are offered, students choose

F(P (t)), and from this, the contract set G(F(P (t))) is acceptable for the colleges.

Therefore, the score vector t is valid if and only if G(F(P (t))) = F(P (t)).

Score vector t is violable if for any 1 ≤ j ≤ m, the score vector (t1, t2, . . . , tj−1, tj −
1, tj+1, . . . , tm) is not valid for college Cj, or tj = 0. We call t stable if it is both valid

and violable.

A contract-set S is score-stable is S = F(P (t)) for some stable score vector t.

Example 2.1.13. If the choice function F of the applicants corresponds to a linear

preference order, and the choice function G of the colleges is the Hungarian scoring

choice function, we get the score stability defined in the previous subsection.
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If the choice function G of the colleges is the permissive (L-scoring) choice function,

defined as in Subsection 1.1.1 then we call the score-stable lets L-stable. This stability

concept appeared in [10] by Biró and Kiselgof.

Lemma 2.1.14. If t is valid, but t′ = (t1, t2, . . . , tj−1, tj − 1, tj+1, . . . , tm) is not valid,

then the only college that can get an infeasible set of students at score vector t′ is college

Cj.

Proof. The set of offered places increases at college Cj and stays unchanged at other

colleges. For applicant Ai, if she rejected a college, Ck, earlier (where Ck 6= Cj), she

will also reject Ck when she has more choices, so colleges other than Cj cannot have

too many students.

With score limit t, the set of students going to college Ck is F(P (t))∩E(Ck), denote

it by Z. Similarly, for score limit t′, denote it by Z ′. As we have seen, Z ′ ⊆ Z, and

from the substitutability, Gk(Z) = Z implies Gk(Z ′) = Z ′.

We call a score vector t Cj-valid , if it is acceptable for college Cj, i.e., Gj(F(P (t))) =

F(P (t)) ∩ E(Cj).

The following two lemmas help to understand how the set of the valid score vectors

look:

Lemma 2.1.15. Let t and t′ be two score vectors, such that t is Cj-valid. Suppose that

for college Cj, score limit t′j ≥ tj, but t′i ≤ ti for every college Ci 6= Cj. Then, t′ is also

Cj-valid.

Proof. If Ai is a student of Cj when the score vector is t (i.e., AiCj ∈ F(P (t))), then

Ai can leave Cj at t′ if she does not reach t′j or gets a better opportunity at another

college.

If student Al does not go to college Cj at the score vector t (AlCj /∈ F(P (t))), then she

will not go to Cj under score vector t′, because if Al does not reach tj, then she does not

reach the higher limit t′j. If Al reaches tj, but chooses a better college Ck instead, since

t′k ≤ tk, she will stay in college Ck. Therefore, the set of students assigned to Cj with t′

is the subset of the set of students going to Cj under t, (F(P (t′))∩E(Cj)) ⊆ (F(P (t))∩
E(Cj)). The choice function Gj of college Cj is substitutable. Since F(P (t)) ∩ E(Cj)

is valid, a subset of it is also valid, so t′ is Cj-valid.

Lemma 2.1.16. Let t1 and t2 be two valid score vectors, and let tmin be their pointwise

minimum (tminj = min(t1j , t
2
j) for every 1 ≤ j ≤ m). Then, tmin is also valid.

Proof. Let the set of contracts above with score vectors t1 and t2 be P (t1) = A and

P (t2) = B. Then, P (tmin) = A ∪ B. Suppose that t1j = tminj for college Cj. Since

A ⊆ A ∪ B, from substitutability F(A) ⊆ F(A ∪ B). Considering the set of contracts

of college Cj, E(Cj) ∩A = E(Cj) ∩ (A ∪B), i.e., Cj accepts the same set of contracts

with score vector t1 as with tmin. Therefore, E(Cj)∩F(A) ⊇ E(Cj)∩F(A∪B). Since
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G is substitutable, if a set is valid, then its subset is also valid. G(E(Cj) ∩ F(A)) =

E(Cj)∩F(A), so G(E(Cj)∩F(A)) = ∅. From substitutability, G(E(Cj)∩F(A∪B)) = ∅,
so (A ∪B) is also valid for college Cj.

In other words, if we change the score limit from t1 to tmin, college Cj keeps its score

limit, while other colleges may decrease it. Applicants may leave Cj, but no new

students will arrive at Cj, so the score limit tmin is Cj-valid. We can use the same

argument for every college, therefore tmin is valid.

A graph G is simple if it has neither parallel edges nor loops. Therefore, between

a given student and college, only one contract is permitted. In some applications, for

example in the college enrollment system, the underlying graph is simple: one cannot

apply to the same department, in the same year, twice. For the sake of generalizations,

the underlying graph in our model may not be simple.

Assume that F and G are substitutable choice functions and G is also loser-free.

Define the following function f : NE → NE:

f(t) = PG(DF(P (t))).

Therefore, we take all contracts above score limit t (this is P (t)) and add those

contracts that are not dominated by P (t). Then, f(t) is the score limit that the

colleges choose for this set.

Lemma 2.1.17. The function f is monotone, i.e., if t1 ≤ t2 then f(t1) ≤ f(t2)

Proof. If t1 ≤ t2, then P (t1) ⊇ P (t2). Since DF is antitone, DF(P (t1)) ⊆ DF(P (t2))).

For a larger contract set, PG assigns a higher score limit, so PG(DF(P (t1)) ≤ PG(DF(P (t2))).

Therefore, f is indeed a monotone function.

Statement 2.1.18. [Fleiner, Jankó][19] If the underlying graph G is simple, and the

choice functions F and G are substitutable and G is loser-free, then score vector t is

stable if and only if t = PG(DF(P (t))).

Proof. Let J = {e /∈ P (t) : e ∈ F(P (t) + e)} be the set of contracts that F prefers to

F(P (t)). In other words, J = (DF(P (t))) \ P (t), therefore, DF(P (t)) = F(P (t)) ∪ J .

(See Figure 2.4.)

Suppose t is a fixed point. Let B = DF(P (t)), and we use that: P (PG(B)) ∩ B =

G(B). From this, P (t)∩ (DF(P (t))) = P (PG(DF(P (t))))∩ (DF(P (t))) = G(DF(P (t))).

Since P (t)∩(DF(P (t))) = F(P (t)), we get that G(F(P (t))∪J) = F(P (t)), and since G
is substitutable, G(F(P (t))) ⊆ G(F(P (t))∪J) = J . Therefore, G(F(P (t))) = F(P (t)),

so t is valid.

To prove that t is violable, assume that college Cj lowers its score limit by 1. Let

t′ = (t1, t2, . . . , tj−1, tj−1, tj+1, . . . , tm). Then, at college Cj, the accepted P (t) increases

with some contracts.
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Now, we use that the graph is simple. If AiCj ∈ P (t), then applicant Ai will also

be accepted under t′. If Ai is not accepted at college Cj with score vector t, but she

has a score of at least tj − 1, then she will go to Cj if and only if CjAi ∈ J , because

she got only one new chance. Therefore, F(P (t′)) ∩ E(Cj) = (F(P (t)) ∪ J) ∩ E(Cj).

Other colleges cannot have new students, so they stay valid.

From F(P (t)) ∪ J , the scoring function PGj for college Cj chooses score limit tj.

Therefore it also chooses tj from F(P (t′), so t′ is not valid.

Now, assume that t is valid and violable. Therefore, G(F(P (t))) = F(P (t)), so

G(F(P (t)) ∪ J) accepts contracts in F(P (t)) (because contracts in J do not reach

score limit t). Therefore, PG(DF(P (t))) ≤ t.

As before, t′ = (t1, t2, . . . , tj−1, tj − 1, tj+1, . . . , tm). Function P is antitone, so

P (t) ⊆ P (t′). Since DF is antitone, DF(P (t)) ⊇ DF(P (t′)) ⊇ F(P (t′)). As t is violable,

F(P (t′)) is infeasible for college Cj, so DF(P (t)) is too, and we get PGj(DF(P (t))) ≥ tj.

This is valid for every college. Therefore PG(DF(P (t))) = t. We did not use that G is

simple in the second direction and in the “valid” part of the first direction, so these

parts remain true for general bipartite graphs.
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Figure 2.4: A four-partition.

Statement 2.1.18 and Tarski’s fixed point theorem implies the following corollary:

Theorem 2.1.19. [Fleiner, Jankó][19] If graph G is simple, choice functions F and G
are substitutable and G is loser-free, then the score-stable sets form a non-empty lattice.

Moreover, we can show a link with four-stability for every bipartite graph.

Statement 2.1.20. [Fleiner, Jankó][19] If choice functions F and G are substitutable,

G is loser-free and F is IRC, then the following two statements are equivalent: (i)

S = F(P (t)) for some score vector t, such that f(t) = t. (ii) The contract set S is

four-stable.

Proof. (i)⇒(ii) If t is a fixed point, t = PG(DF(P (t))), then let B = DF(P (t)).

As we have seen in the proof of Statement 2.1.18, F(P (t)) = P (t) ∩ (DF(P (t)) =

G(DF(P (t))) = G(F(P (t)) ∪ J), so S = G(B).
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This gives (E \ DG(B)) ∩ B = G(B) = J . From the contracts outside B, the set

B must dominate contracts under the score limit t, since if colleges do not accept

contracts from J , then they will not accept other contracts with the same or lower

scores. (It cannot happen that for some college Cj, all contracts in J have a score of

tj − 2 or less and some e /∈ B has a score of tj − 1, because in that case PGj would have

chosen tj − 1 and t would not be stable.) Therefore, A = DG(B) ⊆ P (t).

Since F is IRC and S = F(P (t)) ⊆ A ⊆ P (t), we find that F(A) = S.

From Lemma 1.3.4, DF(A) = DF(P (t)) = B, so S is indeed four-stable.

(i)⇐(ii)

If S is four-stable, then there exist A and B, such that F(A) = S,G(B) = S. Let the

score limit be t = PG(B). We want to know what P (t) is. It is sure that P (t)∩B = S,

because P (PG(B)) ∩B = G(B), and A = DG(B) ⊆ P (t).

Since DF(A) = B, substitutability implies that dominated contracts will not be

chosen from P (t), since A ⊆ P (t) ⊆ A ∪ (E \ B). Therefore, F(P (t)) ⊇ P (t) \ A.

Then, F(P (t)) ⊆ A ⊆ P (t). From the IRC property, S = F(A) = F(P (t)).

Using Lemma 1.3.4 again, DF(P (t)) = DF(A) = B, DF(P (t)) = B and PG(DF(P (t))) =

PG(B) = t. Therefore t is a fixed point.

As a corollary of Statements 2.1.18 and 2.1.20, we get the following theorem:

Theorem 2.1.21. [Fleiner, Jankó][19] If choice functions F and G are substitutable,

G is loser-free and the applicants’ choice function F is path independent, then every

score-stable set is also four-stable. Furthermore, if we require that the graph G is

simple, then score-stability is equivalent to four-stability.

Example 2.1.22. Figure 2.5 illustrates a counterexample for Theorem 2.1.21 if the

underlying graph is not simple.

a b
0 0

H1

a > b

F

G

t
t
s
s

Figure 2.5: A counterexample.

There are one college and one student, and the student applies both for mathematics

and physics, but prefers mathematics. She achieved a zero score on both. The college

has a common quota of 1 for these two faculties. If the score limit is 1, the college

accepts nobody.
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If the score limit is 0, the college accepts both contracts a and b, and the applicant

prefers a, so only a is realized. This is valid and stable. Therefore, the only score-stable

solution is t = 0 and S = F(P (t)) = {a}. However, there are two four-stable sets:

� S = ∅ with A = ∅, B = {a, b}

� S = {a} with A = {a}, B = {a}.

The fixed points of f are the same as the four-stable sets: {a} and ∅.

2.1.6 Connections between Different Stability Concepts

For a given two-sided market with choice functions F and G for each side, we have

defined four kinds of stability:

1. A subset S of E is three-stable, if there exist subsets A and B of E, such that

F(A) = S = G(B) and A ∪B = E, A ∩B = S.

2. A subset S of E is four-stable, if there exist subsets A and B of E, such that

A ∩B = S and DF(A) = B,DG(B) = A.

3. A subset S of E is dominating stable, if DF(S) ∩ DG(S) = S.

4. If F is substitutable, G is substitutable and loser-free we defined generalized

score-stability in Subsection 2.1.5.

We will examine the connections between these definitions with regard to the IRC

property. Aygün and Sönmez [6] showed that if F and G are substitutable and IRC,

three-stable and dominating stable are equivalent, but without IRC, they are not. We

extend this by considering all four definitions of stability.

Theorem 2.1.23. [Fleiner, Jankó][19] If F and G are substitutable and IRC, then

three-stability, four-stability and dominating stability are equivalent.

Proof. Three-stable ⇒ dominating

There are A and B, such that F(A) = S = G(B). From Lemma 1.3.4, DF(S) =

DF(A) ⊆ (E \ A) ∪ S. The same goes for G, so DG(S) ⊆ (E \ A) ∪ S. Since

A ∪ B = E, their intersection is DF(S) ∪ DG(S) ⊆ S. Additionally, S is accept-

able, so DF(S) ∩ DG(S) = S.

Dominating ⇒ four-stable

We know that DF(S) ∩ DG(S) = S. Let A = DG(S) and B = DF(S). A ⊆
S ∪ (E \ DF(S)), so F(A) = S. From Lemma 1.3.4, DF(A) = DF(S) = B. Simi-

larly, DG(B) = DG(S) = A. With this (A,B) pair, S is four-stable.
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Four-stable ⇒ three-stable

There exist subsets A, B of E, such that F(A) = S = G(B), A ∩ B = S, and

DF(A) = B,DG(B) = A. Let D = E \ (A ∪ B) and A′ = A ∪D. Now, A′ ∪ B = E,

A′ ∩ B = S, and from Lemma 1.3.4, DF (S) = DF (A) = B = A′ \ S. Therefore

F(A′) = S, G(B) = S, so with the pair (A′, B), S is three-stable.

Theorem 2.1.24. [Fleiner, Jankó][19] If F and G are substitutable choice functions,

F is IRC, (but G may not be) then, every four-stable set is three-stable.

Proof. Notice that the third part of the proof of Theorem 2.1.23 did not use that G

was IRC.

Compared to other stability concepts, three-stability, four-stability and dominating

stability are defined on every substitutable choice function, F and G, but for score

stability, we need substitutability on one side and a substitutable, loser-free function

on the other side.

As we showed in Theorem 2.1.21, if a choice function F is substitutable and IRC

and G is substitutable loser-free, then every score-stable set is also four-stable.

Theorem 2.1.25 (Fleiner, Jankó). [19] If F is substitutable and G is substitutable and

loser-free, then every score-stable solution is three-stable.

Proof. Let S ⊆ E be the enrollment realized from a stable score vector t. Define A as

the set of contracts above score vector t, i.e. A = P (t). Let B be the union of S and

the set of contracts under score limit t, i.e. B = S ∪ (E \ P (t)). From all contracts

above score vector t, the applicants choose contract set S, so F(A) = S. If colleges

choose from contract set B, just like from all contracts, they would set the score limit

to t, so G(B) = S. If colleges would like to accept one more contract, all the contracts

with the same score are in B, and accepting all would contradict the stability of t. It

is easy to see that A ∪B = E,A ∩B = S. Therefore S is three-stable.

Theorems 2.1.21, 2.1.23, 2.1.24, and 2.1.25 are summarized in Figure 2.6 below. In

the notation, 3 stands for three-stable, 4 for four-stable, d for dominating stable and s

for score-stable sets.

The solid lines denote implications that are true even if the underlying graph is

not simple. The dashed lines denote the extra implications when the graph of possible

contracts is simple.

Statement 2.1.26. For all the implications that are not shown in Theorems 2.1.21,

2.1.23, 2.1.24 and 2.1.25, and therefore not present in the above picture, we can show

a counterexample.
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both F and G are IRC
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Figure 2.6: Graphs of the connections.

Proof. Table 2.1 describes the choice functions, usually as a direct sum of the choice

functions of individual colleges or applicants. The notation H1(a, b) means a college

chooses from equally good contracts a and b and its quota is 1.

Table 2.2 shows the stable sets for each notion for the seven examples.

Number Simple graph F IRC G IRC

I no H1 no H1 no

II no a > b yes H1 no

III no a > b yes b > a yes

IV yes a+H1(b, c) no H1(a, b) + c no

V yes a+H1(b, c, d) no H1(a, b) + c+ d no

VI yes (a > c) + (d > b) yes H1(a, b) +H1(c, d) no

VII yes (a > c) + (d > b) yes H1(a, b) +H2(c, d) no

Table 2.1: The choice functions for the seven examples.
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Number Three-Stable Four-Stable Dominating Stable Score-Stable t Fixed

I ∅ ∅, {a}, {b} {a}, {b} ∅ ∅
II ∅, {a} ∅, {a} {a}, {b} {a} ∅, {a}
III {a}, {b} {a}, {b} {a}, {b} {a} {a}, {b}
IV {a}, {c} {a, c} {a, c}, {b} {a} {a},
V ∅, {a} {a} {b}, {a, c}, {a, d} {a} {a}
VI ∅, {a, d} ∅, {a, d} {a, d}, {b, c} ∅, {a, d} ∅, {a, d}
VII {a, d}, {c, d} {a, d} {a, d} {a, d} {a, d}

Table 2.2: Stable sets in case of different stability notions.
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Figure 2.7: Graphs of seven examples.
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2.1.7 Stability on lattices

Let L = (X,�) be a lattice. Dominating stability and four-stability can be generalized

nicely to choice functions over lattices.

We can generalize some of the stability definitions we used in the previous subsec-

tions to lattices in the following way: Assume that L = (X,�) is a lattice and F and

G are substitutable choice functions.

� An element s of X is FG-stable if

F(s) = G(s) = s and (2.1)

F(s ∨ x) ∧ G(s ∨ x) � s holds for each element x of X. (2.2)

Intuitively, this means that s is both F -independent and G-independent, more-

over, if some other option x is offered together with s, then it is impossible that

both these choice functions select x. We denote the set of FG-stable elements by

S(FG).

� An element s of X is dominating stable if

DF(s) ∧ DG(s) = s. (2.3)

� An element s of X is called four-stable if there exist elements a and b of X such

that

s = a ∧ b, DF(a) = b and DG(b) = a (2.4)

hold.

Note that FG-stability is one possible generalization of dominating stability, since

every x � s is either F -dominated or G-dominated.

However, we also defined the exact generalization of dominating stability, with

canonical determinants. We show that this definition is equivalent to FG-stability.

Lemma 2.1.27 (Fleiner, Jankó). [20] Assume that F and G are substitutable choice

functions on an infinitely distributive complete lattice L = (X,�). An element s of X

is FG-stable if and only if it is dominating stable.

Moreover, if D1 and D2 are antitone determinants of F and G and D1(s)∧D2(s) = s

holds for some element s of X then s is FG-stable.

Proof. Assume first that s is FG-stable. From Lemma 1.3.7 and the infinite distribu-
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tivity of L, we get

s = F(s) ∧ G(s) = s ∧ DF(s) ∧ DG(s) � DF(s) ∧ DG(s) =∨
{y : y � F(s∨y)}∧

∨
{z : z � G(s∨ z)} =

∨
{y∧ z : y � F(s∨y), z � G(s∨ z)} �∨

{y ∧ z : y ∧ z � F(s ∨ y), y ∧ z � G(s ∨ z)} �∨
{y ∧ z : y ∧ z � F(s ∨ (y ∧ z)), y ∧ z � G(s ∨ (y ∧ z))} =∨

{x : x � F(s ∨ x), x � G(s ∨ x)} =∨
{x : x � F(s ∨ x) ∧ G(s ∨ x)} �

∨
{x : x � s} = s .

So we have equality throughout, in particular (2.3) holds.

Now assume that s is dominating stable. Then

s = s ∧ s � F(s) ∧ G(s) = s ∧ DF(s) ∧ s ∧ DG(s) = s ∧ (DF(s) ∧ DG(s)) = s ∧ s = s,

hence we have equality throughout, in particular F(s) ∧ G(s) = s. As F and G are

choice functions, F(s) = G(s) = s follows. To see that F(s ∨ x) ∧ G(s ∨ x) � s holds

let x be an arbitrary element of X. By Lemma 1.3.7 and the antitone property of the

canonical determinants, we see that

F(s ∨ x) ∧ G(s ∨ x) = (s ∨ x) ∧ DF(s ∨ x) ∧ DG(s ∨ x) � DF(s) ∧ DG(s) = s

and this finishes the proof of the first part of the Lemma.

To prove the second part, observe that

s � F(s) = s ∧ D1(s) � s ∧ D1(s) ∧ D2(s) = s ∧ s = s

and a similar argument shows that G(s) = s as well. By Lemma 1.3.7 we get that

s � DF(s) ∧ DG(s) � D1(s) ∧ D2(s) = s,

hence we have equality throughout, in particular DF(s) ∧ DG(s) = s, proving the

FG-stability of s.

The following consequence of Lemma 2.1.27 is an important characterization of

FG-stable sets in the case where the substitutable choice functions F and G are also

path-independent.

Recall that a choice function F : X → X on a lattice L is path-independent if

F(x ∨ y) = F(x ∨ F(y)) holds for all elements x, y of X. F is IRC if F(x) � y � x

implies F(x) = F(y).

Lemma 2.1.28 (Fleiner, Jankó). [20] Assume that F and G are path-independent,

substitutable choice functions on an infinitely distributive complete lattice L = (X,�).

Then s ∈ X is FG-stable if and only if s is four-stable.

Furthermore, (2.4) implies F(a) = G(b) = s and a = DG(s), b = DF(s).
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Notice that property s = a ∧ b and DF(a) = b and DG(b) = a is exactly four-

stability. So this Lemma proves the equivalence between dominating stability and

four-stability for substitutable, path-independent lattice choice functions thus this is a

generalization of a part of Theorem 2.1.23

Proof. For sufficiency, assume that s = a∧b and DF(a) = b and DG(b) = a. By Lemma

1.3.7, DF and DG have property DF(x) = DF(F(x)) and DG(x) = DG(G(x)) thus

b = DF(a) = DF(F(a)) = DF(a ∧ DF(a)) = DF(a ∧ b) = DF(s) (2.5)

and similarly

a = DG(b) = DG(G(b)) = DG(b ∧ DG(b)) = DG(b ∧ a) = DG(s)

hence DF(s) ∧ DG(s) = a ∧ b = s. So s is FG-stable by Lemma 2.1.27.

To see necessity, assume that s is FG-stable, that is, DF(s)∧DG(s) = s by Lemma

2.1.27. Define a := DG(s) and b := DF(s) and observe that

F(a) = a ∧ DF(a) � a ∧ DF(s) = a ∧ b = s � a

so F(a) � s � a, hence F(a) = F(s) = s ∧ DF(s) = s ∧ b = s. Now DF(a) =

DF(F(a)) = DF(s) = b and a similar argument shows that DG(b) = a.

To see the second part, observe first that

G(b) = b ∧ DG(b) = b ∧ a = s and F(a) = a ∧ DF(a) = a ∧ b = s ,

hence we get

a = DG(b) = DG(G(b)) = DG(s) and b = DF(a) = DF(F(a)) = DF(s)

and this finishes the proof.

The following lemma is a generalization of the stable marriage theorem.

Lemma 2.1.29 (Fleiner, Jankó). [20] If L = (X,�) is an infinitely distributive com-

plete lattice and F and G are substitutable path-independent choice functions then there

exists an FG-stable element s of X.

Proof. Define a mapping

M(x) := DG(DF(x)). (2.6)

As both DF and DG are antitone,M is monotone, and by Tarski’s fixed point theorem

(Theorem 1.2.1) there exists a fixed point a of M. Define b := DF(a). Now a =

M(a) = DG(DF(a)) = DG(b), hence s = a ∧ b is four-stable, so by Lemma 2.1.28, it is

also an FG-stable set.
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Note that there is a generalization of the deferred acceptance algorithm of Gale and

Shapley that finds an FG-stable element in the case where the lattice L is finite. This

generalized algorithm finds a fixed point a of a monotone function M in the proof of

Lemma 2.1.29. This is done according to the remark after Theorem 1.2.1. Namely,

if 0 is the least element of the lattice L then 0 � M(0) implies M(0) � M(M(0)),

and this yields M(M(0)) � M(M(M(0))). So if L is a finite lattice then the chain

0 � DG(DF(0)) � DG(DF(DG(DF(0)))) � · · · must converge to a fixed point a. Then

s := a ∧ DF(a) is an FG-stable element of L.

2.2 Algorithms

In this section, we show algorithms to find three-stable, four-stable and score-stable

allocations. These stable solutions always exist, if F and G are substitutable (and

G is also loser-free in the case of score-stability). Moreover, these algorithms give us

the men-optimal or women-optimal solutions. We show a close connection between

Tarski’s fixed point theorem and the Gale–Shapley algorithm.

2.2.1 A Generalized Gale–Shapley Algorithm for Three- and

Four-Stability

For three-stable sets, we can generalize the Gale–Shapley algorithm to the case where

both choice functions are substitutable, but they do not have to be IRC. It is a special

case of the monotone function iteration that finds a fixed point of a monotone function.

The following algorithm is now well-known; it appeared in [28]:

Let F be the choice function of men (or students), and let G be the choice function

of women (or colleges). In the male-proposing version, in every step, let Xi be the

contract-set the men choose from, and let Yi be the contract-set women can select

from. First, the let X1 = E, so men choose from all contracts and propose to Y1 =

F(E) = E \ F(E). Women choose G(F(E)) and reject G(F(E)). In the second

step, men choose from all contracts, except for the previously rejected ones: X2 =

E\G(Y1) = E\G(F (X1)). The men choose F(X2), the women take these contracts and

the previously rejected contracts and choose from Y2 = F(X2)∪G(F(X1)) = E\F(X2).

Since G is substitutable, if a contract was rejected earlier, it will be rejected in this

step, too.

Here, this algorithm differs from the original Gale–Shapley, since there, women

choose only from their current proposals. However, if G is IRC, then G(Y2) ⊆ F(X2) ⊆
Y2 implies G(Y2) = G(F(X2)), so putting back already refused proposals to the choice

set does not change the outcome.

The general step of the algorithm is as follows: for a given Xi, let Yi = E \ F(Xi),

and let Xi+1 = E \ G(Yi).
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Define the following function, f :

f(Xi, Yi) = (E \ G(Yi), E \ F(E \ G(Yi)))

We can define a partial order on pairs with (A′, B′) v (A,B) if A′ ⊆ A and B′ ⊇ B.

Observe that f is monotone for this ordering. The iteration of this monotone

function gives us a fixed pair (Xi, Yi), which corresponds to a three-stable pair (A,B).

If we start our iteration from the pair (X1, Y1) = (E,F(E)), we get the male-optimal

matching, if we start from (X1, Y1) = (∅, ∅), we get the female-optimal one.

There is an alternative algorithm similar to the previous one. Define a function

f ′ : 2E × 2E → 2E × 2E by:

f ′(A,B) := (E \ (G(B)), E \ (F(A))).

If F and G are substitutable, then f ′ is monotone for the order v, since, if B decreases,

then G(B) decreases, so E \ G(B) increases. Similarly, if A increases, then E \ F(A)

decreases.

As before, three-stable pairs are exactly the fixed points of f ′. We start the itera-

tion from (A1, B1) = (E, ∅) for the men-optimal solution or with (A1, B1) = (∅, E) for

the women-optimal solution.

For four-stability, we define the monotone function f ′′ as follows:

f ′′(A,B) := (DG(B),DF(A))

If F and G are substitutable, then DF ,DG are antitone. Therefore, f ′′ is monotone

for the order v. Fixed points of f ′′ are four-stable pairs (A,B), since A = DG(B),

B = DF (A).

If we start the iteration of f ′′ from (A1, B1) = (E, ∅), we get a four-stable pair with

the largest possible A and smallest possible B, so it is men-optimal. Starting with the

pair (A1, B1) = (∅, E) leads to the women-optimal solution.

In these algorithms we had a v-monotone function over 2E × 2E and we stopped

when this function came to a fixed point. Therefore the runtime of the algorithms is at

most the height (i.e., the maximum cardinality of a chain) of the lattice (2E × 2E,v),

which is 2|E|. So the algorithms terminate in at most 2|E| steps, the same as the

Gale–Shapley algorithm.

2.2.2 Algorithms for Score-Stability

In this subsection, we describe algorithms for generalized score-stability, hence also for

score-stability. These algorithms are well-known by now, see e.g. [9]

1. The score-decreasing algorithm: colleges start from a valid score vector

t0 (e.g., tC := (M + 1, . . . ,M + 1)). First, if there is a college Ci that can lower its



44 CHAPTER 2. TWO-SIDED MARKETS

score limit without getting too many students, then Ci will decrease its score limit to

the lowest score, such that Ci still gets a feasible set of students. Here, Ci chooses

from free students and students who prefer Ci to their college, so it chooses score

limit PGi(DF(P (t)). Then, we choose another college, and iterate this score-decreasing

step. (It is convenient to check C1 first, then C2, then all colleges one-by-one. After

Cm, we return to C1 again.) The algorithm terminates if no college wants to lower

its score limit any more. As soon as no college can decrease its score limit, the score

vector is stable. Let sC denote the stable score vector that we get by running the

score-decreasing algorithm on tC .

Theorem 2.2.1 (Fleiner, Jankó). [19] If a stable score vector t is the output of the

score-decreasing algorithm with input t0, where t0 is valid, then t is stable and t is the

maximum of all the stable score vectors that are not greater than t0. Consequently, sC

is the maximum of all stable score vectors. Furthermore, sC is applicant-pessimal.

2. The score-increasing algorithm: colleges start with some violable score

vector t0 (e.g., tA = (0, . . . , 0)), and keep on raising their score limits. If there is

a college Ci that has an infeasible set of students, then it raises the score limit to

the lowest score where it becomes feasible. Therefore, it chooses PGi(F(P (t)). Then,

another college Cj increases the score limit and all colleges one-by-one. The algorithm

stops if no college wants to raise its score limit. Let sA be the stable score vector the

score-increasing algorithm outputs from input tA.

Theorem 2.2.2 (Fleiner, Jankó). [19] If a score vector t is the output of the score-

increasing algorithm with input t0, where t0 is violable, then t is stable, and it is the

minimum of all the stable score vectors that are not less than t0. Consequently, sA is

the minimum of all stable score vectors. Moreover, sA is applicant-optimal.

In [?] Biró showed that in the score-decreasing algorithm, if we start form a rea-

sonably high score-vector t0 where every university is under-subscribed, and in the the

score-increasing algorithm if we start from a zero, then the outputs sC and sA are the

maximal and minimal stable score vectors. Here we show a bit more general statement

since we allow any valid or violable starting score-vector.

Theorem 2.2.3 (Fleiner, Jankó). [19] The score-decreasing algorithm and the score-

increasing algorithm terminates in O(m2n) and O(mn) time, respectively.

In the proofs of Theorems 2.2.1 and 2.2.2, we use the alternative versions of the

score-decreasing/increasing algorithms, where in every step, a college decreases or in-

creases its score limit only by 1. These modified algorithms also find stable solutions,

as one step of the score decreasing or score increasing algorithm can be regarded as

several steps of this modified algorithm. From Lemma 2.1.15, if a score vector t is

valid and t′ = (t1, . . . , tj−1, tj − k, . . . , tm) is also valid, then for every 1 ≤ k′ ≤ k,
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t′′ = (t1, . . . , tj−1, tj − k′, . . . , tm) is valid (it is Cj-valid, because t′ is valid, and valid

for other colleges, because t is valid).

From the maximal/minimal property of the output solution, we see that the output

of the algorithm does not depend on the order in which the colleges modify their score

limits. Note that these algorithms may use m(M + 1) steps, for example, if we start

decreasing from tC := (M + 1, . . . ,M + 1)), but only (0, . . . , 0) is a stable score vector.

Proof of Theorem 2.2.1. From the algorithm description, the fact that no college can

decrease its score limit implies that t is a stable vector. Suppose that there exists

a stable score vector t1 ≤ t0, where t1 6≤ t. Therefore, t = (t1, . . . , tm) and t1 =

(t11, . . . , t
1
m), and t1i > ti for some i. Define the set:

T = {x ∈ Nm : xj ≥ t1j ∀j ∈ {1, . . . ,m}}

The algorithm starts from t0 ∈ T and ends with t /∈ T , so there is a step when the

score vector leaves T : from score vector w1 = (w1, w2, . . . , t
1
k, . . . , wm) ∈ T , we move to

w2 = (w1, w2, . . . , t
1
k − 1, . . . , wm) /∈ T . Since this step is possible, both w1 and w2 are

valid score vectors. We know that w1 ≥ t1. Using Lemma 2.1.16, both t1 and w2 are

valid, so their minimum w3 = (t11, t
1
2, . . . , t

1
k − 1, . . . , t1m) is also valid. Therefore, w3 is

stable, and it can be reached from t1 by lowering the score limit of Ck. Therefore, t1 is

not violable, hence it cannot be stable, a contradiction.

Since every stable score vector is less than or equal to t0 = (M + 1, . . . ,M + 1), the

biggest of all stable score vectors is sC . Every student is accepted by fewer colleges

than in any other stable admissions, so sC is applicant-pessimal. Figure 2.8 shows a

possible layout.
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Figure 2.8: The score-decreasing algorithm.

Proof of Theorem 2.2.2. It follows from the algorithm that t is valid. Suppose that it

is not stable, i.e., there is a college Cj such that t′ = (t1, t2, . . . , tj−1, tj−1, tj+1, . . . , tm)
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is still valid. If t0j ≤ tj − 1, look at the step where college Cj raises its score from tj − 1

to tj, moving from score vector v1 to v2.

Since the score limits in the algorithm always increase, v1 ≤ t and v1
j = tj − 1,

therefore v1 ≤ t′. We use Lemma 2.1.15: the score limit t′ is valid, so v1 is also Cj-

valid. However, then the algorithm would not have increased v1 to v2, a contradiction.

Therefore, t is stable.

If t0j = tj, since t0 is violable, the score vector t′0 = (t01, t
0
2, . . . , t

0
j−1, t

0
j−1, t0j+1, . . . , t

0
m)

is not valid for Cj. From t0 ≤ t, we get that t′0 ≤ t′. Using Lemma 2.1.15 again, if t′ were

valid, then t′0 would be Cj-valid. Therefore, t′ is not valid. Therefore, t is indeed stable.

To show that t is minimal, suppose that there is a stable score limit t1 such that

t0 ≤ t1, but t � t1, i.e., t1j < tj for some j. Let:

T ′ = {x ∈ Nn : xi ≤ t1i ∀i ∈ {1, . . . ,m}}.

Since t /∈ T ′, but t0 ∈ T ′, there is a step such that when we leave T ′, we move from w1

to w2. There is a college Ci, where w1
i = t1i . For other colleges, w1

k ≤ t1k, so by Lemma

2.1.15, w1 was Ci-stable. Therefore, Ci does not want to increase its score limit.

Therefore, sA is the smallest of all stable score vectors, so every student gets accepted

at as many colleges as possible, and they choose what is best for them. Therefore, sA
is applicant-optimal. Figure 2.9 shows a possible layout.
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Figure 2.9: The score-increasing algorithm.

Proof of Theorem 2.2.3. In this proof, we return to the algorithm versions where col-

leges increase/lower their score limits as much as they can. We call the set of realized

contracts at some score vector an enrollment . Each of the n students can go to one

of the m colleges or remain unmatched. Therefore, there are at most nm+1 possible
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enrollments. In the score-decreasing algorithm, the applicants always change to pre-

ferred assignments. In the score-increasing algorithm, the students’ positions get worse.

Therefore, we cannot return to an earlier enrollment in these algorithms.

If we order all enrollments according to the applicants’ preference order, the longest

chain contains n(m + 1) enrollments. It goes from “everyone gets the best college”

to “everyone gets the worst college”. In the score-decreasing algorithm, college Ci

may lower its score limit without changing the enrollment, taking the same students

as before. If all m colleges do this, we get the minimal score vector for that given

enrollment, next time we come to college Ci, it has to change to a different enrollment

or stop. Therefore, in the algorithm, there can be at most m consecutive steps without

changing the enrollment. Therefore, the number of steps is O(m2n).

In the score-increasing algorithm, every step will change the enrollment. Hence, if

Ci increase its score limit, the set of students going to Ci was infeasible before this step

and feasible after the step. Thus, the number of steps is O(mn).

2.3 The Lattice Property

Tarski’s Theorem implies the following corollary for three-stability.

Theorem 2.3.1 (Fleiner). [17] If F ,G : 2E → 2E are substitutable choice functions,

then three-stable pairs form a nonempty complete lattice for the partial order v.

Define the function f : 2E × 2E → 2E × 2E by:

f(A,B) := (E \ (G(B)), E \ (F(A))) = (E \ (B \ G(B)), E \ (A \ F(A)))

It is straightforward to see that three-stable pairs are exactly the fixed points of f .

Therefore, since f is monotone, three-stable pairs form a lattice.

A similar theorem can be proven for the four-stable (A,B) pairs:

Theorem 2.3.2 (Fleiner, Jankó). [19] If F ,G : 2E → 2E are substitutable choice

functions, then the four-stable pairs form a nonempty complete lattice for the partial

order v.

The function

f ′′(A,B) := (DG(B),DF(A))

is monotone, and its fixed points are exactly the four-stable pairs, so we can use Tarski’s

theorem again.

As in Theorem 2.1.19, if a graph G is simple, choice functions F and G are substi-

tutable and G is loser-free, then the (generalized) score-stable sets form a non-empty

lattice.
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2.3.1 A Generalization of Blair’s Theorem

Recall that in the traditional stable marriage model with strict preference ordering,

from Conways’s observation, if S1 and S2 are two stable marriage schemes and every

man chooses the better of his partners in S1 and S2, we get a stable matching that

we denote by S1 ∨ S2. When the women pick the better partner the same way, we

get S1 ∧ S2. The notations ∨ and ∧ are not mere coincidence. It is easy to see, that

if we take the partial ordering defined by the common preference of the men ≤M ,

S1 ∨ S2 ≥M S1 and S1 ∨ S2 ≥M S2, and it is the smallest upper bound for these

two marriage schemes. Since women’s preferences over the stable matchings are the

opposite of men’s, S1∧S2 is the greatest common lower bound of S1 and S2, according

to ≤M . Therefore, the set of all stable marriage schemes form a lattice over ≤M , and

also over ≤W .

Blair’s theorem [11] generalizes this to a situation where the men’s and women’s

preferences are described with substitutable, IRC choice functions, F and G. Here the

stable sets will form a lattice according to a partial order defined by the choice function

F , namely, if S ⊆ E and S ′ ⊆ E are two F -rational sets, let S ′ ≤F S if F(S ∪S ′) = S.

Observation 2.3.3. [11] If F is substitutable and IRC, then ≤F is indeed a partial

order over the F-rational sets. In particular, A ≤F B ≤F C implies A ≤F C.

Blair proved the lattice property of dominating stable sets assuming the IRC prop-

erty of the choice functions [11]. As we saw in Theorem 2.1.23, if F and G are both

IRC, dominating stability, three-stability and four-stability are equivalent, so Blair’s

theorem holds for each of these notions.

Theorem 2.3.4 (Blair). [11] If F ,G : 2E → 2E are substitutable, IRC choice functions,

then the dominating stable sets form a lattice for the partial order ≤F .

We generalize the above lattice property for four-stability, and there is a close

connection between score-stability and four-stability, so this generalization can be used

for student-college admission as well. Usually, when colleges define score limits, their

choice function is not IRC. To find a theorem fitting this scenario, we require IRC on

only one side.

Theorem 2.3.5 (Generalization of Blair’s theorem). [Fleiner, Jankó] [19] If F and G
are substitutable choice functions and F is IRC, then the four-stable sets form a lattice

for the partial order ≤F .

Proof. It was proven in Statement 2.1.11 that for any given stable set S there is a

unique four-stable pair (A,B). In the following, we will show that S ≤F S ′ if and only

if (A,B) v (A′, B′) for their corresponding pairs.
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(A,B) v (A′, B′) ⇒ S ≤F S ′.
From the ordering of the four-stable pairs, S ⊆ A ⊆ A′ and S ′ ⊆ A′, so S ∪ S ′ ⊆ A′.

Since F is IRC, S ′ = F(A′) ⊆ S ∪ S ′ ⊆ A′ implies F(S ∪ S ′) = S ′.

S ≤F S ′ ⇒ (A,B) v (A′, B′) .

Suppose that B′ * B. Consequently, ∃ b, such that b /∈ B, but b ∈ B′. From Lemma

1.3.4, DF(A) = DF(S), so:

b /∈ B ⇒ b /∈ DF(A) = DF(S) ⇒ b ∈ F(S + b)

b ∈ B′ ⇒ b ∈ DF(A′) = DF(S ′) ⇒ b /∈ F(S ′ + b)

We know that F(S ∪S ′) = S ′. Therefore F(S ∪S ′+ b) ⊆ (S ′+ b) ⊆ (S ∪S ′+ b). Since

F is IRC, F(S ∪ S ′ + b) = F(S ′ + b) 3 b, hence b ∈ F(S + b), a contradiction.

Similarly, from B′ ⊆ B, we get DF(B′) ⊇ DF(B) by the antitonicity of DF and hence

A′ ⊇ A.

The stable sets form a lattice.

We have seen that there is an order preserving bijection between the stable sets and

stable pairs. As stable pairs form a lattice, stable sets do as well.

If only one of F and G is IRC, dominating stable sets may not form a lattice.

Moreover, dominating stable sets do not necessarily exist, as we have seen in Example

2.1.3.

Example 2.3.6 (Dominating stable sets do not form a lattice). Given one college C1,

two applicants A1, A2, and two contracts a = A1C1, b = A2C1. The college has a quota

of 1, and both applicants want to go to C1, so G = H1,F = H2. The dominating stable

solutions are {a} and {b}, however, a and b are incomparable, since F({a, b}) = {a, b}.
Therefore, the dominating stable sets do not form a lattice.

Remark 2.3.7. If F and G are substitutable choice functions, but neither of them

is IRC, then the lattice property does not always hold for four-stability. Moreover, a

four-stable set S may have more than one corresponding (A,B) pair.

Example 2.3.8. We have two contracts, a and b. The choice function is H1 for both

sides: See Figure 2.2. In this situation, we have four four-stable pairs:

A = ∅ B = {a, b} S = ∅
A = {a} B = {a} S = {a}
A = {b} B = {b} S = {b}
A = {a, b} B = ∅ S = ∅

Now, ∅ ≤F {a} and ∅ ≤F {b}, but {a} and {b} are incomparable. Therefore, these

two sets do not have a supremum. However, if F is not IRC, then ≤F does not define

a partial order, see choice function G in Example 2.1.3, therefore it is not so surprising

that there is no lattice.
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We can state a version of Blair’s theorem also for lattice choice functions.

Assume that L = (X,�) is a lattice and F is a substitutable path-independent

choice function. We say that x is F-superior to y (denoted by y ≤F x) if F(x∨ y) = x

holds. Relation ≤F is a partial order on F -independent elements according to the

following lemma.

Lemma 2.3.9. If L = (X,�) is a lattice and F is a substitutable path-independent

choice function then ≤F is a partial order on F-independent elements of X.

Proof. We need to prove that ≤F is reflexive, antisymmetric and transitive. If x is

F -independent then x = F(x) = F(x∨ x), that is, x ≤F x, proving reflexivity. Now if

x ≤F y ≤F x, then y = F(x ∨ y) = x, hence ≤F is indeed antisymmetric. At last, if

x ≤F y ≤F z holds then by path-independence of F we have

F(x ∨ z) = F(x ∨ F(y ∨ z)) = F(x ∨ y ∨ z) = F(F(x ∨ y) ∨ z) = F(y ∨ z) = z,

hence x ≤F z, proving the transitivity of ≤F .

One can generalize Blair’s theorem [11] on the lattice structure of stable matchings

to our setting as follows. First, for four-stable elements, we can generalize 2.3.5.

Theorem 2.3.10 (Fleiner, Jankó). Assume that L = (X,�) is an infinitely distribu-

tive complete lattice and F and G are substitutable choice functions, F is also path-

independent. Then the partial order ≤F defines a lattice on the set of four-stable

elements of X.

Proof. It is easy to see that (a, b) is an four-stable pair if and only if a is a fixed point

of M(x) = DG(DF(x)) and b = DF(a).

As M is monotone, (XM,�) is a lattice according to Theorem 1.2.1. So to prove

Theorem 2.3.10, we should show that there is a bijection between four-stable (a, b)

pairs and four-stable elements and this bijection order-preserving.

For a given (a, b) let s = a ∧ b and for a given four-stable element s, let b = DF(s)

and a = DG(b). Since F is path-independent, we use equation 2.5 from the proof of

Lemma 2.1.28 to obtain b = DF(s). As we know, a = DG(b) so s unambiguously defines

(a, b).

Consider two four-stable sets s and s′ with their corresponding four-stable pairs

(a, b) and (a′, b′). Assume first that a � a′. So F(a) = s, and F(a′) = s′, and

path-independence of F shows

F(s ∨ s′) = F(F(a) ∨ F(a′)) = F(a ∨ a′) = F(a′) = s′ .

Hence a � a′ implies s ≤F s′.
If s ≤F s′ then s′ = F(s ∨ s′) and b = DF(s), b′ = DF(s′) by Lemma 2.1.28. By

(1.6) and path-independence of F , we get

b = DF(s) � DF(s ∨ s′) = DF(F(s ∨ s′)) = DF(s′) = b′ ,

thus a′ = DG(b′) � DG(b) = a by the antitone property of DG.
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Now for dominating stable elements, as known as FG-stable elements:

Theorem 2.3.11 (Fleiner, Jankó). [20] Assume that L = (X,�) is an infinitely dis-

tributive complete lattice and F and G are substitutable path-independent choice func-

tions. Then partial order ≤F defines a lattice on the set S(FG) of FG-stable elements

of X. Moreover, ≤F |S(FG) ≡≥G |S(FG), that is, if s and s′ are FG-stable elements then

s ≤F s′ and s′ ≤G s are equivalent.

Proof. It follows from Lemma 2.1.28 that s 7→ DG(s) is a bijection between S(FG) and

set XM of fixed points of mapping M(x) = DG(DF(x)). As M is monotone, (XM,�)

is a lattice according to Theorem 1.2.1. So to prove the first part of Theorem 2.3.11, it

is enough to show that the bijection between FG-stable elements and fixed points ofM
is order-preserving. We showed this in Theorem 2.3.10, therefore FG-stable elements

form a lattice for partial order ≤F .

To show the second part, observe that if s ≤F s′ then a � a′. Moreover, b′ :=

DF(a′) � DF(a) = b by the antitone property of DF . So path-independence of G
shows that

G(s ∨ s′) = G(G(b) ∨ G(b′)) = G(b ∨ b′) = G(b) = s ,

i.e. s′ ≤G s.

2.3.2 The Lattice of Stable Score Vectors

Stable score vectors form a lattice, even if the graph is not simple, so a stronger version

of Theorem 2.1.19 is also true:

Theorem 2.3.12. [Fleiner, Jankó][19] If choice functions F and G are substitutable

and G is loser-free, then the score-stable sets form a non-empty lattice.

Remark 2.3.13. If we consider L-stable score vectors, they also form a lattice, since

the permissive scoring choice function used in L-stability is also loser-free.

We prove Theorem 2.3.12 by taking a the pointwise minimum of t1 and t2 and

starting from there. The score-decreasing algorithm terminates at the stable score

vector t1 ∧ t2.

Proof of Theorem 2.3.12. We know from Theorems 2.2.1 and 2.2.2 that there exist a

greatest and a least stable score vector. Let t1 and t2 be two arbitrary stable score

vectors. We want to show that they have a join and a meet. Using Lemma 2.1.16,

tmin = min(t1, t2) is valid. Let us start the score-decreasing algorithm from tmin. From

the algorithm, we get a stable score vector, t. From Theorem 2.2.1, t is the biggest

among all the stable score vectors smaller than or equal to tmin. Therefore, t = t1 ∧ t2,

because for every stable vector, such that t′ ≤ t1, t2, t′ ≤ tmin, therefore t′ ≤ t.

We finish by showing the existence of t1 ∨ t2. There exists a common upper bound

of t1 and t2, for example sC . Since the lattice is finite, there has to be at least one least
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common upper bound. Suppose there exist two least common upper bounds: a and b.

Since t1 is a lower bound of a and b, t1 ≤ a ∧ b. Similarly, t2 ≤ a ∧ b. Therefore, we

found a common upper bound of t1 and t2 smaller than a, a contradiction.

2.4 Weighted Kernels on Two Posets

Sands, Sauer, and Woodrow proved an interesting generalization of the stable marriage

theorem [24] by Gale and Shapley in [45]. Namely, if digraph D is the union of two

acyclic digraphs, say D1 and D2 then there is a subset K of the vertices of D such that

neither D1 nor D2 contains a directed path between two vertices of K, but from any

vertex of D outside K there is a directed path of D1 or of D2 to some vertex of K.

The same result can also be formulated in terms of partially ordered sets as follows. If

�1 and �2 are two partial orders on the same ground set V then there is a common

antichain K of these posets such that for any element v ∈ V \ K of the ground set

there exists a vertex k ∈ K such that v �1 k or v �2 k holds. This latter formulation

comes from [17] by Fleiner (see also [15]) and the proof is based on a choice function

framework and Tarski’s well-known fixed point theorem [47]. Fleiner also described

a generalization of the deferred acceptance algorithm by Gale and Shapley that finds

such an antichain. Moreover, as an application of Blair’s theorem in [11], it turned out

that these antichains form a lattice under a natural partial order.

Recently, Aharoni Berger and Gorelik generalized the Sands Sauer Woodrow result

to a weighted setting in [2]. They follow the terminology by Sands Sauer and Woodrow

and call the above common antichain a kernel. They describe a generalized model,

define weighted kernels for weighted posets and prove that for any integral weighted pair

of posets, there exists an integral weighted kernel that has a so-called tame property.

As we have seen in the Preliminaries, a partially ordered set or poset is a pair

P = (V,�) of a ground set V and a partial order (i.e. a reflexive, antisymmetric and

transitive binary relation) � on V . Elements u and v of poset P are comparable if

u � v or v � u holds, otherwise u and v are incomparable. A chain of the above poset

P is a subset C of V such that its elements are pairwise comparable. Subset A of V is

an antichain if no two different elements of A are comparable. The following result of

Sands Sauer and Woodrow is a generalization of the stable marriage theorem of Gale

and Shapley [24].

Theorem 2.4.1 (Sands, Sauer, and Woodrow [45]). If P1 = (V,�1) and P2 = (V,�2)

are finite posets on the same ground set V then there exists a subset A of V that is a

common antichain of P1 and P2 and for any element v of V there is some element a

of A such that v �1 a or v �2 a.

Note that the original result of Sands, Sauer, and Woodrow in [45] was formulated

in terms of arc 2-colored digraphs and oriented paths. The antichain A in Theorem



2.4. WEIGHTED KERNELS ON TWO POSETS 53

2.4.1 is called a kernel in their terminology. In fact the main result in [45] is somewhat

more general than Theorem 2.4.1 above and corresponds to a certain acyclic case in the

digraph terminology. Still, it is not difficult to deduce the Sands, Sauer, and Woodrow

result from Theorem 2.4.1. Note also that the marriage model of Gale and Shapley

in [24] can also be translated to the language of Theorem 2.4.1. Namely, the common

ground set of the two posets consists of all possible marriages and �1 is given by

the men’s and �2 by the women’s preferences. This construction provides a bijection

between stable marriage schemes and kernels A in Theorem 2.4.1.

Let us return to our model. Fix a demand function w : V → R+. A weight

function f : V → R+ is �-independent (with respect to w) if f̃(C) :=
∑
{f(c) : c ∈

C} ≤ max{w(c) : c ∈ C} holds for any chain C of P , that is, if the total weight of no

chain exceeds the maximum demand of its elements. Clearly, if demand function w ≡ 1

then A is an antichain if and only if its characteristic function χA is independent (here

1 denotes the constant 1 function on V ). A weight function f is �-tame (with respect to

w) if for every chain C = {c1 � c2 � · · · � ck} with f(c1) > 0 we have f̃(C) ≤ w(c1),

that is, if the total weight of no chain exceeds the demand of its minimal element

unless this minimal element has weight zero. It is easy to see that if weight function

f is �-tame then f is �-independent. We say that element v of V is �-dominated by

f if there is a chain C = {v = c1 � c2 � · · · � ck} such that f̃(C) ≥ w(v), or in other

words, if there is a chain starting at v of total weight not less than the demand of v.

Let P1 = (V,�1) and P2 = (V,�2) be posets on the same ground set V . A common

antichain K of P1 and P2 is a kernel if each element v of V \ K is dominated by K,

that is, if there is an element k of K such that v �1 k or v �2 k holds. If w : V → R+

is a demand function then weight function f : V → R+ is a weighted kernel if f is

both �1-independent and �2-independent and moreover each element v of V is �1-

dominated or �2-dominated (or both). The above weight function f is called integral

if f : V → Z+. It is easy to see that for w ≡ 1 an integral weighted kernel is exactly

the characteristic function of a kernel. The main result of Aharoni, Berger, and Gorelik

states the following.

Theorem 2.4.2 (Aharoni, Berger, and Gorelik [2]). For any pair P1 = (V,�1) and

P2 = (V,�2) of posets and for any demand function w : V → Z+, there exists an

integral weighted kernel f : V → Z+ that is both �1-tame and �2-tame.

Note that if the common ground set V of the two posets is infinite then Theorem

2.4.2 might not hold, for example when P1 = P2 = ([0, 1],≤), w(1) = 0 and w(x) = 1

for each 0 ≤ x < 1. Although this condition is not stated in [2], the authors clearly

require this assumption on finiteness throughout their paper.
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2.4.1 Existence and Structure of Weighted Kernels

To prove the Aharoni, Berger, and Gorelik result in [2], we show that weighted kernels

are exactly the F1F2-stable elements of an appropriate lattice for certain substitutable

path-independent choice functions F1 and F2. First we define the lattice we work with.

Let V be a finite set and let w : V → Z+ be a demand function. Define the poset

Lw := ({f : V → Z+, f ≤ w},≤) of weight functions on V .

Observation 2.4.3. The lattice Lw is an infinitely distributive complete lattice with

lattice operations min and max.

Let P = (V,�) be a finite poset and let w and Lw be as in the definition above.

We define a choice function Fw� on Lw that always picks a �-tame weight function

which is maximal in some sense. Namely, let V = {v1, v2, . . . , vn} be a linear extension

of �, that is, if vi � vj then j ≤ i holds. (So v1 is �-maximal element of V and

vi+1 is a �-maximal element of V \ {v1, v2, . . . , vi} for i = 1, 2, . . ..) For any weight

function f in Lw, define Fw� (f) for each of the values of v1, v2, . . . , vn in this order

in a certain greedy manner. By this we mean that after we calculated the values of[
FW� (f)

]
(v1), . . . ,

[
FW� (f)

]
(vi−1), we determine a value

[
FW� (f)

]
(vi) = α such that

α ≤ f(vi) and α is maximal with the property that Fw� (f) is �-tame on any chain

vi ≺ l1 ≺ l2 ≺ · · · starting at vi. More precisely,

[
Fw� (f)

]
(vi) = min

{
f(vi),max

{
0, w(vi)−

[
F̂w� (f)

]
(vi)
}}

(2.7)

where
[
F̂w� (f)

]
(v) = 0 if v is a �-maximal element of V , otherwise

[
F̂w� (f)

]
(v) = max

{[
Fw� (f)

]
(u1) +

[
Fw� (f)

]
(u2) + · · · : v ≺ u1 ≺ u2 ≺ . . .

}
. (2.8)

By definition,
[
Fw� (f)

]
(vi) ≤ f(vi) holds for each element vi of V , hence mapping

Fw� is a choice function on Lw. Moreover, Fw� (f) is �-tame for any weight f ∈ Lw as

we have chosen each value [Fw� (f)](v) such that every chain v � u1 � u2 � · · · satisfies

the property that tameness requires. The following Lemma describes a determinant of

Fw� (f).

Lemma 2.4.4. Let P = (V,�) be a finite poset with a demand function w and a lattice

Lw = ({f : V → Z+, f ≤ w},≤). For any f ∈ Lw and v ∈ V define
[
Mw
�(f)

]
(v) = 0

if v is �-maximal otherwise let[
Mw
�(f)

]
(v) := max{f ′(c1) + f ′(c2) + · · ·+ f ′(ck) :

f ′ ≤ f and f ′ is �-tame and v ≺ c1 ≺ c2 ≺ . . . ≺ ck} (2.9)

as the maximum total f ′-weight of a chain above v where f ′ is a �-tame lower bound

of f . Then Dw� := max{0, w −Mw
�} is a determinant of Fw� , that is[

Fw� (f)
]

(v) = min
{
f(v),max{0, w(v)−

[
Mw
�(f)

]
(v)}

}
. (2.10)
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Moreover, Dw� = DFw
�

, i.e. Dw� is the canonical determinant of Fw� .

Proof. To show (2.10), according to (2.7), (2.8) and (2.9), it is enough to prove that

for each element vj of V [
Mw
�(f)

]
(vj) =

[
F̂w� (f)

]
(vj) (2.11)

holds. We apply induction on j. (Recall that v1, v2, . . . is a linear extension of the

reverse order � of �.) If vj is �-maximal in V (e.g. if j = 1) then both sides of (2.11)

equal 0 by definition. Assume now that vj is not �-maximal in V and (2.11) holds for

1, 2, . . . , j− 1, in particular for all elements of V above vj. We have seen that Fw� (f) is

�-tame, so the right hand side of (2.11) is a lower bound of the left hand side. To show

the opposite inequality, pick a chain vj ≺ c1 ≺ c2 ≺ · · · ≺ ck and a weight function

f ′ ∈ Lw that achieves the maximum in (2.9). We may assume that f ′(c1) > 0. We

distinguish two cases. If f(c1) +
[
F̂w� (f)

]
(c1) ≥ w(c1) then by (2.7) and the �-tame

property of f ′ we have[
F̂w� (f)

]
(vj) ≥

[
Fw� (f)

]
(c1) +

[
F̂w� (f)

]
(c1) ≥ w(c1) ≥

f ′(c1) + f ′(c2) + · · ·+ f ′(ck) =
[
Mw
�(f)

]
(vj) .

Otherwise, if f(c1) +
[
F̂w� (f)

]
(c1) < w(c1) then

[
Fw� (f)

]
(c1) = f(c1) again by (2.7).

As (2.11) holds for c1 by induction, we get[
Mw
�(f)

]
(vj) = f ′(c1) + f ′(c2) + · · ·+ f ′(ck) ≤ f(c1) + f ′(c2) + · · ·+ f ′(ck) ≤

f(c1)+
[
Mw
�(f)

]
(c1) = f(c1)+

[
F̂w� (f)

]
(c1) =

[
Fw� (f)

]
(c1)+

[
F̂w� (f)

]
(c1) ≤

[
F̂w� (f)

]
(vj)

This proves the induction step and justifies (2.10), hence Dw� is indeed a determinant

of Fw� . The fact that Dw� is the canonical determinant of Fw� immediately follows from

definition (1.9) and the observation that the value
[
Dw�(f)

]
(v) does not depend on

f(v). This finishes the proof.

Lemma 2.4.5. The mapping Mw
� in (2.9) is monotone and the choice function Fw� is

substitutable and path-independent.

Proof. Monotonicity ofMw
� directly follows from its definition (2.9). Namely, if f, g ∈

Lw, f ≤ g, v ∈ V and the weight function f ′ ∈ Lw defines the value of
[
Mw
�(f)

]
(v)

then f ′ ≤ f implies f ′ ≤ g, so
[
Mw
�(f)

]
(v) ≤

[
Mw
�(g)

]
(v) holds. The monotone

property of Mw
� and (2.10) immediately implies that Dw� is antitone, hence it is a

determinant of some substitutable choice function F and F = Fw� by to Lemma 2.4.4.

As Fw� (f) is �-tame for any weight function f ∈ Lw, (2.11) implies thatMw
�(f) =

F̂w� (f) = Mw
�
(
Fw� (f)

)
and consequently, Dw�(f) = Dw�(Fw� (f)) holds for Dw� which

is an antitone determinant of Fw� by Lemma 2.4.4. Path-independence of Fw� follows

directly from Lemma 1.3.6.
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The following lemma together with Lemma 2.1.29 immediately imply Theorem 2.4.2

of Aharoni, Berger and Gorelik.

Lemma 2.4.6. [Fleiner, Jankó][20] Assume that P1 = (V,�1) and P2 = (V,�2) are

finite posets, w : V → Z+ is a demand function and weight function f is �1-tame and

�2-tame. Then f is a weighted kernel if and only if f is Fw�1
Fw�2

-stable.

Proof. Assume first that f is a weighted kernel. To show that f is Fw�1
Fw�2

-stable, it

is enough to prove by Lemma 2.1.27 that

f = min
{
DFw

�1
(f),DFw

�2
(f)
}
. (2.12)

As f is �1-tame and �2-tame, f = Fw�1
(f) = Fw�2

(f), so f ≤ min
{
DFw

�1
(f), AFw

�2
(f)
}

by the definition of the determinant. Now pick any v ∈ V . As f is a weighted

kernel, v is either �1-dominated or �2-dominated by f (or both). In the first case[
Dw�1

(f)
]

(v) = f(v) and in the second one
[
Dw�2

(f)
]

(v) = f(v) holds, that is

f ≥ min
{
Dw�1

(f),Dw�2
(f)
}

= min
{
DFw

�1
(f),DFw

�2
(f)
}
,

by Lemma 2.4.4. This proves (2.12) hence the Fw�1
Fw�2

-stability of f .

Now suppose that f is Fw�1
Fw�2

-stable. As f = Fw�1
(f) = Fw�2

(f), f is both �1-tame

and �2-tame. Moreover, (2.12) holds by (2.3). Pick any v ∈ V . Now Lemma 2.4.4

implies

f(v) = min
{[
DFw

�1
(f)
]

(v),
[
DFw

�2
(f)
]

(v)
}

= min
{[
Dw�1

(f)
]

(v),
[
Dw�2

(f)
]

(v)
}

So either f(v) =
[
Dw�1

(f)
]

(v) or f(v) =
[
Dw�2

(f)
]

(v) (or both). In the first case v is

�1-dominated by f and in the second case v is �2-dominated by f according to the

definition (1.9) of the canonical determinant and Lemma 1.3.7. This proves that f is

indeed a weighted kernel.

Theorem 2.3.11 and Lemma 2.4.6 yields the following generalization of Theorem

2.4.2.

Corollary 2.4.7. For any posets P1 = (V,�1) and P2 = (V,�2) and for any demand

function w : V → Z+, there exists a �1-tame and �2-tame weighted kernel. Moreover,

�1-tame and �2-tame weighted kernels form a complete lattice under ≤Fw
�1

.

Although F -superiority in Corollary 2.4.7 is defined before Lemma 2.3.9 in a general

setting, the following lemma provides a choice function free characterization of ≤Fw
�1

.

Lemma 2.4.8. Assume that P = (V,�) is a poset, w : V → Z+ is a demand function

and f and g are �-tame weights in Lw. Then f ≤Fw
�
g if and only if

f(v) ≥ g(v) holds whenever v is not dominated by f . (2.13)
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Proof. Assume first that f ≤Fw
�
g, that is, Fw� (max{f, g}) = f . As Fw� is path-

independent and substitutable by Lemma 2.4.5, we get

Dw�(f) = Dw�(F(max{f, g}) = Dw�(max{f, g})

by Lemma 1.3.7. To justify (2.13), suppose that v is not dominated by f . Consequently,[
Dw�(f)

]
(v) > f(v) as Dw� is the canonical determinant of Fw� by Lemma 2.4.4. Now

f(v) =
[
Fw� (max{f, g})

]
(v) = min

{[
Dw�(max{f, g})

]
(v),max{f(v), g(v)}

}
=

min
{[
Dw�(f)

]
(v),max{f(v), g(v)}

}
= max{f(v), g(v)},

where the last equality holds because
[
Dw�(f)

]
(v) is greater than f(v), which is the

left hand side. Therefore, f(v) ≥ g(v) and (2.13) follows.

To show the opposite implication, assume that (2.13) holds for �-tame weight

functions f and g and suppose indirectly that f 6≤Fw
�
g, that is,

[
Fw� (max{f, g})

]
(v) 6=

f(v) for some element v of V . Pick a �-maximal v with the above property, that is,[
Fw� (max{f, g})

]
(u) = f(u) whenever v ≺ u. (2.14)

Now max{f(v), g(v)} ≥
[
Fw� (max{f, g})

]
(v) > f(v) by (2.14) and (2.10), so g(v) >

f(v). Hence v is dominated by f due to (2.13). Now (2.14) and (2.7) imply that[
Fw� (max{f, g})

]
(v) = f(v), a contradiction. This concludes the proof.

2.4.2 Further Generalizations

Our approach can be applied to prove other generalizations of the Sands, Sauer, and

Woodrow result than the one by Aharoni, Berger, and Gorelik. To do so, we may define

other lattices than the lattice Lw we used in Section 2.4.1. A natural extension is if we

define a “continuous” version of Lw on functions f : V → R+ and we allow the demand

function w : V → R+ to be nonintegral. Aharoni, Berger, and Gorelik remark in [2]

that a nonintegral analogue of Theorem 2.4.2 holds by the well-known Scarf lemma

[46]. Note that we get the same result by applying our framework. To do so, we only

need to copy the argument word for word in Section 2.4.1, replacing lattice Lw by

(Lw)′ := {f : V → R+, f ≤ w}, which is also an infinitely distributive complete lattice.

As a side product of this approach, one can deduce the lattice property of weighted

kernels, which does not seem to follow from the application of the Scarf lemma.

We may also use our framework to deduce the many-to-one and many-to-many

generalizations of the stable marriage theorem of Gale and Shapley. There, we are given

a bipartite graph G with color classes U and V and a quota function b : U ∪ V → Z+

and each vertex v of G has a linear preference order �v on the set E(v) of edges that

are incident with v. A subset M of E(G) is a b-matching if each vertex v of G is

incident with at most b(v) edges of M . A b-matching M is stable if for any edge e = uv

of E(G) \ M there exist either b(u) edges of M that are all preferred to e by u or
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there exist b(v) edges of M that are all preferred to e by v (or both conditions hold).

It is easy to see that if b ≡ 1 then a stable b-matching is exactly a stable matching.

The generalization of the stable marriage theorem of Gale and Shapley states that

for any quota function b, there exists a stable b-matching. We can deduce this result

from our framework by defining two partial orders on the ground set E(G). The first

order corresponds to preferences in U and the second to preferences in V . Define two

demand functions w1 and w2 on E such that if an edge e has end vertices u and v in

U and V , respectively then w1(e) = b(u) and w2(e) = b(v). We work on the lattice

L1 (hence all weight functions are characteristic functions of sets of edges) and define

choice functions F1 and F2 by determinants Dw1
�1

and Dw2
�2

, respectively. (As we work in

L1, these choice functions can be interpreted as ordinary set choice functions.) In this

model, it is easy to see that characteristic vectors of stable b-matchings are exactly the

F1F2-stable weight functions of L1 that form a nonempty complete lattice by Tarski’s

fixed point Theorem (Theorem 1.2.1).

But playing with the underlying lattice is not the only option to find a generalization

of Theorem 2.4.1. We may work on our well known lattice Lw with path-independent

substitutable choice functions other than Fw� . One possibility is to replace the sum

operation with maximization in the definition of Fw� . More precisely, if P = (V,�) is

a poset such that v1, v2, . . . , vn is a linear extension of �, w : V → Z+ is a demand

function and f ∈ Lw is a weight function then observe that (2.7) can be rewritten as

[
Fw� (f)

]
(vi) =

 0 if
[
F̂w� (f)

]
(vj) ≥ w(vi)

min
{
f(vi), w(vi)−

[
F̂w� (f)

]
(vj)

}
otherwise.

(2.15)

Now consider the following modification of (2.15)

[
Gw�(f)

]
(vi) =

{
0 if max

{[
Gw�(f)

]
(vj) : vi ≺ vj

}
≥ w(vi)

min {f(vi), w(vi)} otherwise

(2.16)

Similarly as we did in Section 2.4.1, one can prove that Gw� is substitutable and path-

independent. To motivate the choice function Gw�, let us say that a weight function

f of Lw is �-reasonable if f(v) > 0 implies that f(u) ≤ w(v) holds whenever v � u.

We say that a weight function f �-covers v if there is an element u of V such that

v � u and f(u) ≥ w(v). With these notions, for every vi the choice function Gw� picks

the maximum value
[
Gw�(f)

]
(vi) such that the choice Gw�(f) is �-reasonable. Theorem

2.3.11 yields the following generalization of Theorem 2.4.2.

Theorem 2.4.9. For any pair P1 = (V,�1) and P2 = (V,�2) of posets and for any

demand function w : V → Z+, there exists a weight function f such that f is both

�1-reasonable and �2-reasonable and any element v of V is �1-covered or �2-covered

by f .
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We may also mix the two kinds of choice functions we have seen so far.

Theorem 2.4.10. For any pair P1 = (V,�1) and P2 = (V,�2) of posets and for any

demand function w : V → Z+, there exists a weight function f such that f is �1-tame

and �2-reasonable and any element v of V is �1-dominated or �2-covered by f .

Clearly, Theorem 2.4.1 is a special case of Theorems 2.4.9, 2.4.10 and 2.4.7 for

w ≡ 1. Note that one can define further interesting path-independent substitutable

choice functions that provide nontrivial results when Theorem 2.3.11 is applied. For

example, if 0 < α ≤ 1 then we can modify the definition (2.7) as[
Fw,α� (f)

]
(vi) = min

{
f(vi),max

{
0, w(vi)− α ·

[
F̂w,α� (f)

]
(vi)
}}

.

Lemma 2.4.11. For any poset P = (V,�), any demand function w : V → Z+ and

for any 0 < α ≤ 1, the choice function Fw,α� : Lw → Lw is substitutable and path-

independent.

Sketch of the proof. Observe that[
F̂w,α� (f)

]
(v) = max

v≺u

{[
F̂w,α� (f)

]
(u) +

[
Fw,α� (f)

]
(u)
}

=

max
v≺u

{[
F̂w,α� (f)

]
(u) + min

{
f(u),max

{
0, w(u)− α ·

[
F̂w,α� (f)

]
(u)
}}}

=

max
v≺u

{
min

{[
F̂w,α� (f)

]
(u) + f(u),max

{[
F̂w,α� (f)

]
(u), w(u) + (1− α) ·

[
F̂w,α� (f)

]
(u)
}}}

.

From this formula, it is easy to prove by induction on |V | that F̂w,α� is monotone in

f . Consequently, the determinant Dw,α� of Fw,α� is antitone in f where
[
Dw,α�

]
(f) =

max
{

0, w − α ·
[
F̂w,α� (f)

]}
. So Fw,α� is substitutable. Path-independence of Fw,α�

follows the same way as we proved it for Fw� : the value of the
[
Dw,α� (f)

]
(v) depends

only on the Fw� (f)-values of elements u with v ≺ u, hence Dw,α� (f) = Dw,α� (Fw,α� (f))

holds for any f ∈ Lw, and Fw,α� is path-independent by Lemma 1.3.6.

We encourage the motivated reader to construct further nontrivial examples of

substitutable path-independent choice functions on Lw.

2.5 Matroid kernels

We can extend the notion of stability for matroids. In this section we will show a proof

for that matroid kernels always exist, and give a simple algorithm for finding one.

Definition 1. M = (E, I) is a matroid on a ground set E if E is a finite set and

I ⊆ 2E is a nonempty family satisfying the following two conditions.

1. If X ⊆ Y ∈ I, then X ∈ I.
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2. If X, Y ∈ I and |X| < |Y |, then X + e ∈ I for some e ∈ Y \X.

A subset X ⊆ E is called independent if X ∈ I.

We say C ⊆ E is a circuit in the matroidM = (E, I), if C is not independent, but

for every C ′ ( C, C ′ is independent. The set of all circuits is denoted by C.

The rank function rM : 2E → Z is defined by rM(X) = max{|Y | : Y ∈ I, Y ⊆
X}. For a subset X ⊆ E, its superset spanM(X) is defined by spanM(X) = {e ∈
E | rM(X) = rM(X + e)}.

Observation 2.5.1. For X ∈ I, spanM(X) = X ∪ {e ∈ E | X + e /∈ I}.

For a given independent set I and element u ∈ spanM(I), there is a unique circuit

in I + u containing u, which is denoted by C(I, u) and called the fundamental circuit

of u. For each element v ∈ C(I, u), the set I − v + u is also independent in M . If I

was a basis in M , then I − v + u is also a basis.

If there is a cost function c : E → R on the matroid, one can use the greedy

algorithm to find the maximum or minimum cost basis.

The following is a well-known property of the maximal weight basis of a matroid:

Statement 2.5.2. Basis B of a matroid is a minimal cost basis if and only if for all

y ∈ E \B and x ∈ C(B, y), c(y) ≥ c(x).

We call a triple (E, I,�) an ordered matroid on E if (E, I) is a matroid and � is a

total order on E. It can be presented as a preference list of an agent, i.e. for a, b ∈ E
we write a � b if the agent prefers a to b.

For an ordered matroid (E, I,�), we say that a subset X ∈ I �-dominates an

element e ∈ E \X if the following two conditions hold:

� X + e /∈ I

� ∀e′ ∈ X if X + e− e′ ∈ I then e′ � e.

We call subset K of E anM1M2-kernel if it is a common independent set ofM1 and

M2 and every e ∈ E \K is �1-dominated or �2-dominated by K.

In the following, represent the preferences �1 and �2 with cost functions c1 and

c2 such that ci(a) ≤ ci(b) if and only if a �i b. For any given i ∈ {1, 2}, if �i is a

strict preference order, all the ci(e) costs are different, if �i is a weak order, ci allows

equalities.

In the following we will use the greedy algorithm to define a choice function over an

ordered matroid. Let M = (E, C) be a matroid on ground set E and let c : E → R+

be a cost function on E = {e1, e2, . . . en} such that c(ei) ≤ c(ei+1) for 1 ≤ i < n. Define

the set Kn(E ′) recursively for any subset E ′ of E by K0(E ′) = ∅ and for 0 < i ≤ n
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Ki(E
′) =

Ki−1(E ′) if ei /∈ E ′ or Ki−1(E ′) + ei /∈ I

Ki−1(E ′) + ei otherwise
(2.17)

Statement 2.5.3 (Fleiner). [17] The above defined function Kn : 2E → 2E is substi-

tutable, and set Kn(E ′) is a minimum cost subset of E ′ that spans E ′. Moreover, if c

is injective then this minimum cost spanning set is unique for any subset E ′ of E.

Proof. [17] Let C denote a circuit in the matroid, Kn(E ′) = E ′ \ Kn(E ′) = {ei ∈
E ′ : C ⊆ {e1, e2, . . . , ei−1} with C + ei ∈ C} is a monotone function. Hence Kn is

substitutable. The other facts are well-known.

For matroids M1 = (E, I1) and M2 = (E, I2) and cost functions c1, c2 : E → R,

we say that (E1, E2) is an M1M2-stable pair of E if E1 ∪ E2 = E and E1 ∩ E2 is a

minimum ci-cost spanning set of Ei in Mi for i ∈ {1, 2}.

Theorem 2.5.4. [17] For matroidsM1 = (E, I1) andM2 = (E, I2) let c1, c2 : E → R
be cost functions on their common ground set. Then there is an M1M2-stable pair

(E1, E2) of E and an M1M2-kernel K.

Fleiner [17] gave a proof for Theorem 2.5.4, using choice functions and Tarski’s

fixed point theorem, but now we present an alternative, choice function-free proof for

it.

Proof. Suppose �1 is a strict preference order, so all the c1(e) costs are different. If �1

was not strict, we break the ties and modify c1 costs by a small amount.

We use induction by the size of |E|. For |E| = 1 the largest common independent

set ofM1 andM2 is theM1M2-kernel. (If {e} is independent in both matroids, this

is the kernel, otherwise ∅.)
Let B1 be the minimum c1-cost basis in matroid M1. (We can find it with the

greedy algorithm.) If B1 ∈ I2, then it is a common independent set, and every e /∈ B1

is �1-dominated, therefore B1 is a M1M2-kernel.

If B1 /∈ I2, there is an M2-circuit C in it, with C ⊆ B1 and C ∈ C2. Let f be one

of the maximum c2-cost elements of C. Now delete f from the system, and define new

ordered matroids M′
1 = M1|E−f and M′

2 = M2|E−f . By the induction hypothesis,

this scheme has an M′
1M′

2-kernel K.

When we return to our original matroids, every e ∈ (E \K) − f is �1-dominated

or �2-dominated.

Case 1: C − f ⊆ K. Then f is �2-dominated, since c2(a) ≤ c2(f) for every

a ∈ C − f .

Case 2: There exists a g ∈ (C − f) \ K. Since C ⊆ B1, g ∈ B1. Because of

Statement 2.5.2, g cannot be �1-dominated, therefore it is �2-dominated.
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Let (C − f) \K = {g1, g2, . . . , gk}. For every gi, there is a circuit Ci = C2(K, gi)

such that for every c ∈ Ci − gi, c �2 gi.

Since f ∈ C \ Ci for every 1 ≤ i ≤ k, we will use the strong circuit axiom multiple

times. There is a circuit C ′1 ∈ C2 such that f ∈ C ′1 ⊆ (C ∪C1− g1). If {g2, g3, . . . , gk}∩
C ′1 = ∅, then let C ′′ := C ′1. If C ′1 contains one of {g2, g3, . . . , gk} we can suppose

it is g2. Since g2 ∈ C ′1 ∩ C2 and f ∈ C ′1 \ C2 there is a circuit C ′2 ∈ C2 such that

f ∈ C ′2 ⊆ (C ′1 ∪ C2 − g2). Note that g1 /∈ C ′1 and g1 /∈ C2, therefore g1 /∈ C ′2. With

each step our circuits contain fewer gi-elements. Repeating this method, we will reach

a C2-circuit C ′′ such that f ∈ C ′′, {g2, g3, . . . , gk} ∩ C ′′ = ∅ and C ′′ ⊆ (C ∪
⋃k
i=1Ci).

Therefore C ′′ ⊆ (K+f). For every c ∈ C ′′−f , if c ∈ Ci then c �2 gi �2 f , and if c ∈ C
then c �2 f since f was one of the �2-worst elements in the circuit. Therefore f is

�2-dominated, which means K is anM1M2-stable kernel in the original instance.

Note that if �1 was a weak ordering, this solution still gives aM1M2-stable kernel,

since every node which is strongly �1-dominated here is weakly �1-dominated in the

original instance.

Using this proof, we can create an algorithm to find a kernel.

1. Find the c1-minimal M1-basis, B1.

2. If this is M2 independent, stop. Otherwise find a M2-circuit C in B1 and let

f -be a c2-maximal element of C. Delete f .

3. InM1−f , if B1−f is a basis, then let B2 = B1−f . Otherwise let B2 = B1−f+x,

where x is the c1-cheapest element such that B1 − f + x is an M1-basis.

4. Repeat.

Lemma 2.5.5. Consider a matroid M = (E, I) with cost function c : E → R and

suppose the costs of all elements are different. Let B be a minimum cost M1-basis and

f be an arbitrary element of B. If B−f is not a basis inM1−f , then let B′ = B−f+x

where x is the c-cheapest element such that B − f + x is a M1 − f -basis. Then this

B1 − f + x is a minimum cost M1 − f -basis.

Proof. Suppose c(ei) ≤ c(ei+1) for 1 ≤ i < n, f = ei and x = ej. Let Bk = B ∩
{e1, . . . , ek}. For any k < i if ek /∈ B, then Bk−1 + ek /∈ I therefore j > i. Since x /∈ B,

there is a fundamental circuit C = C(Bj−1, x) and f ∈ C.

Imagine removing f and doing the greedy algorithm. Let B′′ be the minimal cost

basis in M− f .

For every k > j such that ek /∈ B, Bk−1 + ek /∈ I. If f /∈ C(Bk−1, ek) then trivially

ek /∈ B′′. Otherwise f ∈ C(Bk−1, ek) and from the strong circuit axiom there is a

circuit C ′ ⊆ C ∪ C(Bk−1, ek) such that ek ∈ C ′ and f /∈ C ′ therefore ek /∈ B′′.
So B′′ ⊆ B − f + x and they are of the same size, thus B′′ = B − f + x.



Chapter 3

Trading Networks

In the previous chapter, we examined two-sided markets or the union of two posets,

which can be also represented with two choice functions. Now we will show a model

of supply chains. In our model, firms have heterogeneous preferences over bilateral

contracts with other firms. Contracts may encode many dimensions of a relationship

including the quantity of a good traded, time of delivery, quality, and price. The

universe of possible relationships between firms is described by a contract network – a

multi-sided matching market in which firms form downstream contracts to sell outputs

and upstream contracts to buy inputs.

We build on a seminal contribution by Ostrovsky [38], who introduced a matching

model of supply chains . In a supply chain, there are agents, who only supply inputs

(e.g. farmers); agents, who only buy final outputs (e.g. consumers); while the rest of

the agents are intermediaries, who buy inputs and sell outputs (e.g. supermarkets). All

agents are partially ordered along the supply chain: downstream (upstream) firms can-

not sell to (buy from) firms upstream (downstream) i.e. the contract network is acyclic.

His key assumption about the market, which we retain in his paper, was that firms’

choice functions over contracts satisfy same-side substitutability and cross-side com-

plementarity (Hatfield and Kominers [31] later called these two conditions togetherfull

substitutability). This assumption requires that firms view any downstream or any

upstream contracts as substitutes, but any downstream and any upstream contract as

complements.Ostrovsky [38] showed that any supply chain has a chain-stable outcome

for which there are no blocking downstream chains of contracts. Hatfield and Kominers

[31] further showed that, in the presence of network acyclicity, chain-stable outcomes

are equivalent to (what we call) set-stable outcomes i.e. those that are immune to devia-

tions by arbitrary sets of firms. Even under full substitutability, chain-stable/set-stable

outcomes in general supply chains may be Pareto inefficient.

While a supply chain may be a good model of production in certain industries

[5], in general, firms simultaneously supply inputs to and buy outputs from other firms

(possibly through intermediaries). If this is the case, we say a contract network contains

a contract cycle. For example, the sectoral input-output network of the U.S. economy,

63
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illustrated by [1, Figure 3], shows that American firms are very interdependent and

the contract network contains many cycles. Consider a coal mine that supplies coal

to a steel factory. The factory uses coal to produce steel, which is an input for a

manufacturing firm that sells mining equipment back to the mine. This creates a

contract cycle. However, Hatfield and Kominers [31] showed that if a contract network

has a contract cycle then set-stable outcomes may fail to exist. Our first result shows

that checking whether an outcome is in fact set-stable is computationally hard. We

then show that, even in the presence of contract cycles, outcomes that satisfy a weaker

notion of stability – trail stability – can still be found. A trail of contracts is a sequence

of distinct contracts in which a seller (buyer) in one contract is a buyer (seller) in the

subsequent one. We argue that trail stability is a useful and intuitive equilibrium

concept for the analysis of matching markets in networks. Along a blocking trail, firms

make unilateral offers to their neighbors while conditionally accepting a sequence of

previous pairwise blocks. Firms can receive several offers along the trail. Trail-stable

outcomes rule out any sequence of such consecutive pairwise blocks. Trail stability is

equivalent to chain stability (and therefore to set stability under our assumptions) in

acyclic contract networks and to pairwise stability in two-sided many-to-many matching

markets with contracts. Unsurprisingly, therefore, trail-stable outcomes may also be

Pareto inefficient [11].

In order to analyze properties of trail-stable outcomes, we introduce another stabil-

ity notion, called full trail stability, which does not force intermediary firms to accept

all the contracts along a trail, but rather only sign upstream/downstream pairs. We

argue that this could also be seen as a useful stability notion for short-run contract rela-

tionships. But studying full trail stability also allows us to use familiar fixed-point the-

orems and other techniques from the matching literature. Fully trail-stable outcomes

correspond to the fixed-points of an operator and form a particular lattice structure for

terminal agents, who can sign only upstream or only downstream contracts. The lattice

reflects the classic opposition-of-interests property of two-sided markets, but between

terminal buyers and terminal sellers. In addition to this strong lattice property, we

extend previous results on the existence of buyer- and seller-optimal stable outcomes,

the rural hospitals theorem [43],[31], strategyproofness [29],[31] as well as comparative

statics on firm entry and exit [38],[30] that have only been studied in a supply-chain

or two-sided setting under general choice functions. Fully trail-stable and trail-stable

coincide under separability, a condition that ensures that decisions over certain pairs of

upstream and downstream contracts are taken independently from others. We provide

a complete description of the relationships between all stability notions – set stability,

chain stability, trail stability, full trail stability – that we use here.

Our work complements a recent paper by Hatfield et. al. [33] on the properties of

set-stable outcomes in general contract networks. They show that in general contract

networks, under certain conditions, set-stable outcomes coincide with (what we call)
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strongly trail-stable outcomes i.e. those immune to coordinated deviations by a set of

firms which is simultaneously signing a trail of contracts. This model is also related

to the stability of (continuous and discrete) network flows discussed by Fleiner [18].

In these models, agents choose the amount of “flow” they receive from upstream and

downstream agents and have preferences over who they receive the “flow” from. The

network flow model allows for cycles. However, the choice functions in the network

flow models are restricted by Kirchhoff’s law (the total amount of incoming (current)

flow is equal to the total amount of outgoing flow) and in the discrete case, these choice

functions are special cases of Ostrovsky [38]. We generalize both of the supply chain

and the network flow models, while offering two appealing new stability concepts.

All Theorems, Lemmas and Prepositions in this Chapter, up to Section 3.9 are

results of Fleiner, Jankó, Tamura, and Teytelboym [22], unless stated otherwise.

General

networks

General

choice

functions

Existence

and structure

New stability

concepts used

Corresponding

name in this work

Ostrovsky [38]
%

acyclic
! ! Chain-stable Chain-stable

Westkamp [48]
%

acyclic
! !

Group-stable or

Setwise-stable, Core
–

Hatfield and Kominers[31]
%

acyclic
! ! Stable or Weak Setwise-stable Set-Stable

Hatfield et. al.[32],

Hatfield and Kominers[27]
!

%

quasilinear
!

Strong

group-stable
–

Hatfield et. al.[33] ! ! % Chain-stable Strong trail-stable

This work ! ! !
Trail-stable,

Fully trail-stable

Trail-stable,

Fully trail-stable

Figure 3.1: Relationship to previous work.

Paper Theorem Description Generalization in this Chapter

[38] Theorem 1 Existence of stable outcomes Theorem 3.4.1 and Theorem 3.5.1

[31] Theorem 4 Buyer- and seller-optimality Lemma 3.8.1 and Lemma 3.8.2

[31] Theorem 8 Rural hospitals theorem Proposition 3.9.1

[31] Theorem 10 Strategy-proofness Proposition 3.9.2

[38] Theorem 3 Firm entry Proposition 3.9.3

[30] Theorem Vacancy chain dynamics Proposition 3.9.4

Figure 3.2: Previous results generalized here to a trading network setting with general

choice functions.
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Figure 3.3: Supply chain
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Figure 3.4: Contract network

3.1 Model

There is finite set of agents (firms or consumers) F and a finite set of contracts (contract

network) X.1 A contract x ∈ X is a bilateral agreement between a buyer b(x) ∈ F

and a seller s(x) ∈ F . Hence, F (x) := {s(x), b(x)} is the set of firms associated with

contract x and, more generally, F (Y ) is the set of firms associated with contract set

Y ⊆ X. Call XB
f := {x ∈ X|b(x) = f} and XS

f := {x ∈ X|s(x) = f} the sets of f ’s

upstream and downstream contracts – for which f is a buyer and a seller, respectively.

Clearly, Y B
f and Y S

f form a partition over the set of contracts Y f := {y ∈ Y |f ∈ F (y)}
which involve f , since an agent cannot be a buyer and a seller in the same contract.

We can show graphically that our structure is more general than the setting de-

scribed by [38] or [31]. Each firm f ∈ F is associated with a vertex of a directed

multigraph (F,X) and each contract x ∈ X is a directed edge of this graph. For any

f , XB
f is represented by a set of incoming edges and XS

f is represented by outgoing

edges. In Figure 3.3, we illustrate a three-level supply chain with two producers, two

intermediaries and two final consumers. Supply chains require a partial order on the

firms’ positions in the chain although firms may sell to (buy from) any downstream

(upstream) level. Hence, in Figure 3.3, the right producer sells directly to the left

consumer bypassing the intermediary. In our model, we consider general contract net-

works, which may contain contract cycles (i.e. directed cycles on the graph), illustrated

in Figure 3.4.

Every firm has a choice function Cf , such that Cf (Yf ) ⊆ Yf for any Yf ⊆ Xf .

(Since firms only care about their own contracts, we can write Cf (Y ) to mean Cf (Yf ).

)

1The standard justification for this assumption is given by [40, p. 49]: “elements of a [contract]

can take on only discrete values; salary cannot be specified more precisely than to the nearest penny,

hours to the nearest second, etc.” In fact, the finiteness assumption is not necessary for our proofs.

We only require that the set of contracts between any two agents forms a lattice.
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For any Y ⊆ X and Z ⊆ X, define the chosen set of upstream contracts

Cf
B(Y |Z) := Cf (Y B

f ∪ ZS
f ) ∩XB

f (3.1)

which is the set of contracts f chooses as a buyer when f has access to upstream

contracts Y and downstream contracts Z. Analogously, define the chosen set of down-

stream contracts

Cf
S(Z|Y ) := Cf (ZS

f ∪ Y B
f ) ∩XS

f (3.2)

Hence, we can define rejected sets of contractsRf
B(Y |Z) := Yf\Cf

B(Y |Z) andRf
S(Z|Y ) :=

Zf \ Cf
S(Z|Y ). An outcome A ⊆ X is a set of contracts.

A set of contracts A ⊆ X is individually rational for an agent f ∈ F if Cf (Af ) = Af .

We call set A acceptable if A is individually rational for all agents f ∈ F . For sets of

contracts W,A ⊆ X, we say that A is (W, f)-rational if Af ⊆ Cf (Wf ∪ Af ) i.e. if the

agent f chooses all contracts from set Af whenever she is offered A alongside W . Set

of contracts A is W -rational if A is (W, f)-rational for all agents f ∈ F . Note that

contract set A is individually rational for agent f if and only if it is (∅, f)-rational. If

y ∈ XB
f and z ∈ XS

f then {y, z} is a (W, f)-rational pair if neither x nor z is (W, f)-

rational but {y, z} is (W, f)-rational. Note that any rational pair consists of exactly

one upstream and one downstream contract.

3.2 Assumptions on Choice Functions

We can now state our key assumption on choice functions introduced by Ostrovsky

[38].

Choice functions of f ∈ F satisfy full substitutability if for all Y ′ ⊆ Y ⊆ X and

Z ′ ⊆ Z ⊆ X they are:

1. Same-side substitutable (SSS):

(a) Rf
B(Y ′|Z) ⊆ Rf

B(Y |Z)

(b) Rf
S(Z ′|Y ) ⊆ Rf

S(Z|Y )

2. Cross-side complementary(CSC):

(a) Rf
B(Y |Z) ⊆ Rf

B(Y |Z ′)

(b) Rf
S(Z|Y ) ⊆ Rf

S(Z|Y ′)

Contracts are fully substitutable if every firm regards any of its upstream or any

of its downstream contracts as substitutes, but its upstream and downstream con-

tracts as complements. Hence, rejected downstream (upstream) contracts continue to

be rejected whenever the set of offered downstream (upstream) contracts expands or

whenever the set of offered upstream (downstream) contracts shrinks.

Remark 3.2.1. When a choice function is substitutable, we have seen in Lemma 1.1.10

that IRC and path-independence are equivalent. However, with full substitutability, this

is not the case. As in Example 1.1.11, for contracts a and b of firm f , where one is

a downstream, the other one is an upstream contract, let Cf ({a}) = Cf ({b}) = ∅ and
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Cf ({a, b}) = {a, b}. This choice function is IRC and fully substitutable, but it is not

path-independent, Cf ({a, b}) = {a, b} 6= ∅ = Cf (Cf ({a}) ∪ {b}).

We also introduce a new restriction on choice functions that will play a major role

in linking together various stability concepts.

Choice functions of f ∈ F satisfy separability if for any A,W ⊆ X and y ∈ XB
f \A

and z ∈ XS
f \ A, whenever A is (W, f)-rational, and {y, z} is a (W, f)-rational pair,

then A ∪ {y, z} is (W, f)-rational.

Separable choice functions impose a kind of independence on choices of pairs of

upstream and downstream contracts. It says that whenever the firm chooses A along-

side some set W and {y, z} alongside W (but y and z would not be chosen separately

alongside W since {y, z} is a (W, f)-rational pair), then it would choose A ∪ {y, z}
alongside W . Suppose signing A and {y, z} are decisions made by separate units of the

firm. Separable choice functions say that it can delegate the joint input-output deci-

sions to the units because its overall choices do not require any coordination between

the units. One natural example of separable choice functions is the following: suppose

each firms totally orders individual upstream contracts and individual downstream con-

tracts. Whenever a firm is offered k downstream and l upstream contracts, it chooses

the z best upstream and the z best downstream contracts where z = min(k, l). As the

example shows, separability is closely related “responsiveness” in the contract network

setting as was described by Roth [41]. It is worth noting, however, that separability,

unlike responsiveness, does not imply full substitutability.

3.2.1 Laws of Aggregate Demand and Supply

We first re-state the familiar Laws of Aggregate Demand and Supply (LAD/LAS)

[28],[31]. LAD (LAS) states that when a firm has more upstream (downstream) con-

tracts available (holding the same downstream (upstream) contracts), the number of

downstream (upstream) contracts the firms chooses does not increase more than the

number of upstream (downstream) contracts the firm chooses. Intuitively, an increase

in the availability of contracts on one side, does not increase the difference between the

number of contracts signed on either side.

Choice functions of f ∈ F satisfy the Law of Aggregate Demand if for all Y, Z ⊆ X

and Y ′ ⊆ Y

|Cf
B(Y |Z)| − |Cf

B(Y ′|Z)| ≥ |Cf
S(Z|Y )| − |Cf

S(Z|Y ′)|

and the Law of Aggregate Supply if for all Y, Z ⊆ X and Z ′ ⊆ Z

|Cf
S(Z|Y )| − |Cf

S(Z ′|Y )| ≥ |Cf
B(Y |Z)| − |Cf

B(Y |Z ′)|

We can easily show that LAD/LAS imply IRC, extending the result by [7].
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Lemma 3.2.2. In any contract network X if choice functions of f ∈ F satisfy full

substitutability and LAD/LAS then the choice functions of f satisfy IRC.

Proof. Consider Y ⊆ Xf and z ∈ XB
f \ Y such that z /∈ Cf (Y ∪ {z}). Then, from

SSS, Cf
B(Y ∪ {z}) ⊆ Cf

B(Y ) and from CSC Cf
S(Y ∪ {z}) ⊇ Cf

S(Y ). If choice functions

satisfy LAD/LAS then |Cf
B(Y )| − |Cf

S(Y ))| ≤ |Cf
B(Y ∪ {z})| − |Cf

S(Y ∪ {z})| so there

must be equality, so Cf (Y ∪ {z}) = Cf (Y ).

3.2.2 Stability Concepts

We start off by defining two stability notions that have appeared in previous work.

An outcome A ⊆ X is set-stable2 if:

1. A is acceptable.

2. There exist no non-empty blocking set of contracts Z ⊆ X, such that Z ∩A = ∅
and Z is (A, f)-rational for all f ∈ F (Z).

Set-stable outcome are immune to deviations by sets of firms, which can re-contract

freely among themselves. Set-stable outcomes always exist in acyclic networks. In order

to study more general contract networks, we first introduce trails of contracts.

A non-empty sequence of different contracts T = {x1, . . . , xM} is a trail if b(xm) =

s(xm+1) holds for all m = 1, . . . ,M − 1.

While a trail may not contain the same contract more than once, it may include

the same agents any number of times. Figure 3.4 illustrates a trail that starts from

firm i to firm j via firm k. A trail T is a chain if all the agents F (T ) involved in the

trail are distinct.3 A chain from firm i to firm j is illustrated in Figure 3.3.

An outcome A ⊆ X is strongly trail-stable if

1. A is acceptable.

2. There is no trail T , such that T ∩A = ∅ and T is (A, f)-rational for all f ∈ F (T ).

Hatfield et. al. [33] showed that in general contract networks set-stable outcomes

are equivalent to strongly trail-stable outcomes whenever choice functions satisfy full

substitutability and Laws of Aggregate Demand and Supply.4 However, Fleiner [18]

and Hatfield-Kominers [31] showed that a set-stable outcomes may not exist in general

2 Klaus and Walzl [35] call set-stable outcomes “weak setwise stable” and Hatfield and Kominers

[31] call them “stable”, we take the middle ground.
3The chains here are called paths in graph theory.
4[33] call trails “chains” and strong trail stability “chain stability”. We use our terminology to avoid

the confusion with the original definition of “chains” and “chain stability” in [38]. Our distinction

between “trails” and “chains” (or “paths”) is used in most graph theory textbooks.
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contract networks (see Example 3.3.1 below). Moreover, our first result demonstrates

that set stability is computationally intractable. Let us define decision problem GS

as follows. An instance of GS is a trading network with a set of agents F and set of

contracts X (with choice functions that satisfy full substitutability and IRC) and an

outcome A. The answer for an instance of GS is YES if the particular outcome A is

not set-stable (that is, if there is a set of contracts Z that blocks A), otherwise the

answer is NO.

Theorem 3.2.3. Problem GS is NP-complete. Moreover, if choice functions are rep-

resented by oracles then finding the right answer for an instance of GS might need an

exponential number of oracle calls.

Proof. Problem GS is clearly belongs to complexity class NP as a blocking set Z is a

polynomial time proof of non-set-stability.

To show that GS is NP-hard we reduce the NP-complete partition problem to GS.

An instance of the partition problem is given by a k-tuple A = (a1, a2, . . . , ak) of

positive integers such that a1 ≤ a2 ≤ . . . ≤ ak holds. The answer to this problem

is YES if and only if there is a subset I of {1, 2, . . . , k} such that
∑

i∈I ai = s where

2s =
∑k

i=1 ai. So assume that the partition problem is given by A = (a1, a2 . . . ak).

Construct a trading network with firms f and g and with contracts y and xi such that

f = s(y) = b(xi) and g = b(y) = s(xi) for i ∈ {1, 2, . . . , k}. Define choice function Cf
A

with the help of s := 1
2

∑k
i=1 ai by

Cf
A(X|Y ) =

{
(X|Y ) if

∑
{ai : xi ∈ X} ≥ s

(X|∅) if
∑
{ai : xi ∈ X} < s

It is easy to check that Cf
A satisfies full substitutability and IRC. Define Cg

A as follows:

Cg
A(Y |X) =


(∅|∅) if Y = ∅

(Y |X) if Y = {y} and
∑
{ai : xi ∈ X} ≤ s

(Y |X ∩ {x1, x2, . . . , xt})
if Y = {y} and

∑
{ai : xi ∈ X, i ≤ t} ≤ s

<
∑
{ai : xi ∈ X, i < t+ 1}

One can readily check that Cg
A also satisfies full substitutability and IRC. That is,

based on the partition problem instance, we have determined a trading network. To

define our GS instance, define an outcome A = ∅. We have to show that the answer to

the partition problem is YES if and only if A = ∅ is not set-stable.

Assume now that the answer to our partition problem instance is YES, that is∑
i∈I ai = s. Define XI := {xi : i ∈ I} and Y = {y}. By the above definitions,

Cf
A(X|Y ) = (X|Y ) and Cg

A(Y |X) = (Y |X), hence X ∪ Y blocks A = ∅, so A is not

set-stable.

Assume now that A = ∅ is not set-stable. This means that there is a blocking set

Z to A and define I = {i : xi ∈ Z}, XI := {xi : xi ∈ Z} and Y := Z ∩ {y}. As Z
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is blocking, we have Cf
A(XI |Y ) = (XI |Y ) and Cg

A(Y |XI) = (Y |XI). If Y = ∅ then

(Y |XI) = Cg
A(Y |XI) = Cg

A(∅|XI) = (∅, ∅), so Z = XI ∪ Y = ∅ ∪ ∅ = ∅, and hence

Z is not blocking. Otherwise, Y = {y}, and from Cg
A(Y |XI) = (Y |XI) we get that∑

i∈I ai ≤ s. Moreover, from y ∈ Cf
A(XI , Y ) we get that

∑
i∈I ai ≥ s. Consequently∑

i∈I ai = s, and the answer to the partition problem is YES.

To prove the second part of the theorem, define a contract network with firms f

and g and with contracts y and xi such that f = s(y) = b(xi) and g = b(y) = s(xi) for

for 1 ≤ i ≤ 2n. Define the following choice function

Cf
0 (X|Y ) =

{
(X|Y ) if |X| ≥ n+ 1

(X|∅) if |X| ≤ n
(3.3)

For I ⊆ {1, 2, . . . , n} define XI := {xi : i ∈ I}. For |I| = n let

Cf
I (X|Y ) =

{
(X|Y ) if |X| ≥ n+ 1 or if X = XI

(X|∅) if |X| ≤ n and X 6= XI

It is straightforward to check that choice functions Cf
0 and Cf

I above satisfy full sub-

stitutability and IRC. Define the following choice function for g

Cg(Y |X) =


(∅|∅) if Y = ∅

(Y |X) if Y = {y} and |X| ≤ n

(Y |X ∩ {x1, x2, . . . , xt}) if Y = {y} and |{xi ∈ X : i ≤ t}| = n

(3.4)

As Cg = Cg
A for A = (1, 1, . . . , 1), Cg also satisfies full substitutability and IRC.

Now assume that an instance of problem GS is given by the above network and

an outcome A = ∅. Assume that the choice functions are not given explicitly, but by

value-returning oracles. Moreover, we know exactly that the choice function of g is the

one defined in (3.4) and we know that the choice function of f is either Cf
0 or Cf

I for

some I. It is easy to check that A is not set-stable if and only if Cf = Cf
I and in this

case the only blocking set is Z = Xi ∪ {y}. So if one has to decide set stability of A,

then one must determine the Cf (Z) values for all such possible Z, and this means
(

2n
n

)
oracle calls.

3.3 Trail Stability

The non-existence of set-stable outcomes and their computational intractability moti-

vates us to define a less restrictive stability notions.

We first define trail stability, which coincides with pairwise stability in a two-sided

many-to-many matching market with contracts [40] and with chain stability in supply

chains [38, p. 903]. Define T≤mf = {x1, ..., xm} ∩ Tf to be firm f ’s contracts out of the

first m contracts in the trail and T≥mf = {xm, ..., xM} ∩ Tf to be firm f ’s contracts out
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of the last M −m+ 1 contracts in the trail.

An outcome A ⊆ X is trail-stable if

1. A is acceptable.

2. There is no trail T = {x1, x2, . . . , xM}, such that T ∩ A = ∅ and

(a) x1 is (A, f1)-rational for f1 = s(x1) and

(b) At least one of the following two options holds:

i. T≤mfm is (A, fm)-rational for fm = b(xm−1) = s(xm) whenever 1 < m ≤
M , or

ii. T≥m−1
fm

is (A, fm)-rational for fm = b(xm−1) = s(xm) whenever 1 < m ≤
M

(c) xM is (A, fM+1)-rational for fM+1 = b(xM).

The above trail T is called a blocking trail to A.

Trail stability is a natural stability concept when firms interact mainly with their

buyers and suppliers and deviations by arbitrary sets of firms are difficult to arrange.

In a trail-stable outcome, no agent wants to drop his contracts and there exists no set

of consecutive bilateral contracts comprising a trail preferred by all the agents in the

trail to the current outcome. First, f1 makes an unilateral offer of x1 (the first contract

in the trail) to the buyer f2. At this stage seller f1 does not consider whether he may

act as a buyer or a seller in the trail again (in that sense the deviations are pairwise

and consecutive). The buyer f2 then either unconditionally accepts the offer (forming a

blocking trail) or conditionally accepts the seller’s offer while looking to offer a contract

(x2) to another buyer f3. If f2’s buyer in x2 happens to be f1, then f1 considers the offer

of x2 together with x1 (which he has already offered). If f1 accepts, we have a blocking

trail. If f2’s buyer is not f1, then his buyer either accepts x2 unconditionally or looks

for another seller f4 after a conditional acceptance of x2. The trail of “conditional”

contracts continues until the last buyer fM+1 in the trail unconditionally accepts the

upstream contract offer xM .5 Note that as the blocking trail grows, we ensure that

each intermediate agent wants to choose all his contracts along the trail.

In general, trail stability is a weaker stability notion than set stability. The following

example illustrates that trail-stable outcomes are not necessarily set-stable.6

5The trail and the order of conditional acceptances can, of course, be reversed with fM+1 offering

the first upstream contract to seller fM and so on.
6This is similar to examples in [18] and [31, Fig. 3, p. 13].
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Figure 3.5: Example of a network that is trail-stable, but not set-stable

Example 3.3.1 (Trail-stable outcomes are not necessarily set-stable). Consider four

contracts x, y, z and m. Assume that i = b(x), j = s(x) = s(z) = b(y) = b(w),

k = b(z) = s(y) and m = s(w) (see Figure 3.5). Agents have the following preferences

that induce fully substitutable choice functions:7

�i: {x} �i ∅
�m: {w} �m ∅
�j: {x, y, w} �j {z, y, w} �j {x, y} �j {z, y} �j {w} �j ∅
�k: {z, y} �k ∅.
Hence, a trail-stable outcome exists: A = {w}.8 The trail-stable outcome is Pareto

inefficient as {w} is the least preferred outcome for all agents. There is, however, no

set-stable outcome.9

To illustrate trail stability further, let us drop agents i and m and their correspond-

ing contracts from the example above. The new preferences of j are {y, z} �j ∅. There

is one set-stable outcome {y, z}. There are, however, two trail-stable outcomes: ∅ and

{y, z}. Is ∅ a reasonable possible outcome of this market? We argue that, in a variety

of richer economic models of contracts, it may well be. Suppose that firms are unable

to have a joint meeting and must resort to making a unilateral offers. Either firm

may be reluctant to make the first offer because in absence of the counteroffer it could

end up revealing sensitive information about its costs. Therefore, firms are unable to

coordinate {y, z} and are stuck in the “inefficient equilibrium”. As such, trail stability

provides a natural solution concept for matching markets in which firms have limited

ability to coordinate their decisions in the contract network.

7In all our examples, � denotes a strict preference relation. Choice function induced by strict

preferences satisfy IRC. We say that f ∈ F “prefers” outcome A to outcome A′ if Cf (A ∪A′) = Af
8An outcome A is chain-stable if A is acceptable and there are no blocking chains [38]. Therefore,

{w} is also the unique chain-stable outcome.
9Because {w} �j {x,w} �k {x, z, w} �i,j {z, y, w} �j,k {w} and other outcomes are not accept-

able.
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3.4 Existence and Properties of Stable Outcomes

We can now state the key result about trail-stable outcomes.

Theorem 3.4.1 (Fleiner, Jankó, Tamura, Teytelboym). [22] In any contract network

X if choice functions of F satisfy full substitutability and IRC then there exists a trail-

stable outcome A ⊆ X.

This theorem establishes a positive existence result for stable outcomes in general

contract networks: under the usual assumptions, trail-stable outcomes always exist.10

To prove this theorem, first we have to look at fully trail-stable outcomes.

3.5 Fully Trail-Stable Outcomes

In order to examine the structure of trail-stable outcomes, we need to introduce another

stability notion.

An outcome A ⊆ X is fully trail-stable if

1. A is acceptable.

2. There is no trail T = {x1, x2, . . . , xM}, such as T ∩ A = ∅ and

(a) x1 is (A, f1)-rational for f1 = s(x1), and

(b) {xm−1, xm} is (A, fm)-rational for fm = b(xm−1) = s(xm) whenever 1 < m ≤
M and

(c) xM is (A, fM)-rational for fM+1 = b(xM).

The above trail T is called a locally blocking trail to A.

Full trail stability may, at first glance, appear to be an unappealing stability con-

cept. While it rules out (locally) blocking trails, it does not require, as trail stability,

that agents accept all their contracts along such blocking trails. More formally, a locally

blocking trail may not be an acceptable blocking trail. However, full trail stability has

an interesting and important economic interpretation. Suppose contracts only need

to be fulfilled sequentially i.e. once a firm’s upstream contract has been fulfilled, it

immediately fulfils its downstream contract.11 This is a natural assumption in sequen-

tial production networks as production may not be able to continue without inputs

and inputs would not be bought without a standing order. Then firms do not need to

worry about being involved in multiple chains of contracts along the trail since they

10Since trail stability is, in general, stronger than chain stability, Theorem 3.4.1 also implies than

any contract network has a chain-stable outcome. Our results do not contradict Theorem 5 on the non-

existence of set-stable outcomes in [31] since Theorem 3.4.1 only considers the existence of trail-stable

outcomes.
11Alternatively, contracts further down the trail could be specified to be fulfilled later.
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never need to be fulfilled together. As such full trail stability can be a useful stability

concept in production networks in which production is sequential rather than (possi-

bly) simultaneous. Full trail stability may be a better stability concept for a short-run

prediction of network stability whereas trail stability is more suitable for the long run.

It turns out that fully trail-stable outcomes also exist in general production networks.

Theorem 3.5.1. In any contract network X if choice functions of F satisfy full sub-

stitutability and IRC then there exists a fully trail-stable outcome A ⊆ X.

In order to prove Theorem 3.5.1, we use tools familiar to matching theory, such as

the Tarski fixed-point theorem.

Consider Y B and ZS, which are subsets of X, and represent sets of available up-

stream and downstream contracts for all agents, respectively. Define a lattice L with

the ground set X ×X with an order v such that (Y B, ZS) v (Y ′B, Z ′S) if Y B ⊆ Y ′B

and ZS ⊇ Z ′S.

Furthermore, define a mapping Φ as follows:

ΦB(Y B, ZS) = X \RS(ZS|Y B)

ΦS(Y B, ZS) = X \RB(Y B|ZS)

Φ(Y B, ZS) = (ΦB(Y B, ZS),ΦS(Y B, ZS))

whereRS(ZS|Y B) := ∪f∈FRf
S(ZS|Y B) andRB(Y B|ZS) := ∪f∈FRf

B(Y B|ZS). Clearly,

Φ is isotone [17],[38],[31] on L.

Proof of Theorem 3.5.1. Existence of fixed-points of Φ follows from Theorem 1.2.1

(Tarski’s fixed point theorem) since (X ×X,v) is a complete lattice.

We claim that every fixed point (ẊB, ẊS) of Φ corresponds to an outcome ẊB ∩
ẊS = A that is fully trail-stable. First, we show that A is individually rational.

Observe that if (ẊB, ẊS) is a fixed point then ẊS ∪ ẊB = X. To see this suppose

for contradiction that there is a contract x /∈ ẊS ∪ ẊB. Then x /∈ RS(ẊS|ẊB)

therefore x ∈ X \RS(ẊS|ẊB) = ẊB. So x is has to be in ẊS ∪ ẊB This implies that

RS(ẊS|ẊB) = X \ ẊB = ẊS \ A so CS(ẊS|ẊB) = A and similarly CB(ẊB|ẊS) = A

From this, we can see that A is individually rational.

Second, we show that A is fully trail-stable. This is similar to Step 1 of the Proof

of Lemma 1 in [38]. Suppose that T = {x1, ...xm} is a locally blocking trail and assume

towards a contradiction that T ∩A = ∅. Since we have that x1 ∈ Cs(x1)
S (A+ x1|A), we

must have that x1 ∈ Cs(x1)
S (ẊS + x1|A) Since if C

s(x1)
S (ẊS + x1|A) ⊆ ẊS then by IRC

C
s(x1)
S (ẊS +x1|A) = A, therefore C

s(x1)
S (A+x1|A) = A Also, x1 ∈ Cs(x1)

S (ẊS +x1|ẊB)

(by CSC). If x1 ∈ ẊS, then x1 ∈ ẊB = X \RS(ẊS|ẊB). But we assumed that x1 /∈ A,

so x1 ∈ ẊB. Now, consider x2.

By definition of a locally blocking trail, we have that x2 ∈ Cs(x2)
S (A + x2|A + x1).

Once again by full substitutability and IRC, we obtain that and x2 ∈ C
s(x2)
S (ẊS +
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x2|ẊB + x1). If x2 ∈ ẊS, then x2 ∈ ẊB = X \ RS(ẊS|ẊB). But we assumed that

x2 /∈ A, so x2 ∈ ẊB. Now proceed by induction, we show that every x ∈ T is in ẊB.

Consider the last contract xm. Since xm ∈ Cb(xm)
B (A+xm|A), using the same argument

we had for x1, we get that xm ∈ ẊS. A contradiction.

Now we show that every fully trail-stable outcome corresponds to a fixed point:

Suppose A is fully trail-stable. For every xi /∈ A, if there exists a trail {x1x2 . . . xi} such

that x1 is (A, s(x1))-rational, and {xm−1, xm} is (A, fm)-rational for fm = b(xm−1) =

s(xm) whenever 1 < m ≤ i, then let xi ∈ XB
0 , otherwise xi ∈ XS

0 . Let ẊB = A ∪XB
0

and ẊS = A ∪XS
0 . Clearly ẊS ∪ ẊB = X.

Outcome A is individually rational, so Cf (A) = Af for all f ∈ F . For every firm

f , if f = s(x) and x ∈ ẊS \A then x /∈ Cf (A+ x) otherwise x would be in XB. From

SSS, Cf
S(ẊS|A) = A. And if f = b(y) and y ∈ ẊB \ A then y /∈ Cf (A + y) otherwise

the trail ending in y would be a locally blocking trail. From SSS, Cf
B(ẊB|A) = A.

Moreover, {x, y} * C(A ∪ {x, y}) otherwise x would be in ẊB. These together imply

that CS(ẊS|ẊB) = A and CB(ẊB|ẊS) = A. Therefore RS(ẊS|ẊB) = ẊS \ A,

RB(ẊB|ẊS) = ẊB \ A, so X \ RS(ẊS|ẊB) = ẊB, X \ RB(ẊB|ẊS) = ẊS. So this

(ẊB, ẊS) pair is a suitable fixed point for A. We will call it the canonical stable pair

for A.

3.6 Relationships Between Stability Concepts

In this section, we link together all the stability concepts discussed above. We first

show that set stability implies full trail stability, which in turn implies trail stability.

We also link set stability and trail stability via intensity. We then link trail stable and

fully trail-stable outcome via separability. Finally, we explore chain stability [38].

The follow lemma ties three key stability concepts together.

Lemma 3.6.1. In any contract network X if choice functions of F satisfy full substi-

tutability and IRC then the following holds for an outcome A ⊆ X.

(i) If A is a fully trail-stable outcome then A is also trail-stable.

(ii) If A is a set-stable outcome then A is fully trail-stable.

To prove Lemma 3.6.1 the following two Lemmata come in handy.

In the proofs, we will use the concept of a circuit, which is a closed trail. A non-

empty sequence of different contracts Q = {x1, . . . , xM} is a circuit if b(xm) = s(xm+1)

holds for all m = 1, . . . ,M − 1, and b(xM) = s(x1).

Lemma 3.6.2. Let F be the set of agents and X be the set of contracts in a contract

network with fully substitutable choice functions. If Y and Z are disjoint sets of con-

tracts and f is an agent such that Zf is (Y, f)-rational then for any contract z ∈ ZB
f
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one of the following options hold:

(1) z is (Y, f)-rational or

(2) there exists some z′ ∈ ZS
f such that {z, z′} is a (Y, f)-rational pair or

(3) there are z1, z2, . . . , zk ∈ ZS
f such that both {z, z1, z2, . . . , zk} and {zi} (for 1 ≤ i ≤

k) are (Y, f)-rational. For z ∈ ZS
f an analogous statement holds.

Proof. We can suppose without loss of generality that z ∈ XB
f . From the SSS property,

it follows that z ∈ Cf (Yf ∪ ZS
f ∪ {z}).

Assume that Cf (Yf∪ZS
f ∪{z})∩ZS

f = ∅. Therefore Cf (Yf∪ZS
f ∪{z}) ⊆ (Yf∪{z}) ⊆

(Yf ∪ ZS
f ∪ {z}) so from IRC z ∈ Cf (Yf ∪ {z}), so z is (Y, f)-rational, we get option

(1).

If z is not (Y, f)-rational then there are some contracts {z1, z2 . . . zk} = Cf (Yf∪ZS
f ∪

{z})∩ZS
f . Using SSS again, we have zi ∈ Cf (Yf ∪{z, zi}) for every zi ∈ {z1, z2 . . . zk}.

If there exists an zi such that zi is not (Y, f)-rational, then suppose z /∈ Cf (Yf∪{z, zi}),
so Cf (Yf∪{z, zi}) ⊆ (Yf∪{zi}), and from IRC we have Cf (Yf∪{z, zi}) = Cf (Yf∪{zi}).
But since zi is not (Y, f)-rational this is impossible, therefore {z, zi} ⊆ Cf (Yf ∪{z, zi}),
we achieved a (Y, f)-rational pair.

If all of {z1, z2 . . . zk} are (Y, f)-rational, we get option (3).

In the following lemma, consider a firm f with some contracts x1, x2, . . . , xk ∈ XB
f

and z1, z2, . . . , zk ∈ XS
f . When we say that x1 is void, we mean that x1 is empty, every

“{x1, zj} is an (Y, f)-rational pair” translates to “{zj} is an (Y, f)-rational contract.”

Lemma 3.6.3. Let F be the set of agents and f be an agent in a contract network with

fully substitutable choice functions. Assume that Y is acceptable and x1, x2, . . . , xk ∈
XB
f and z1, z2, . . . , zk ∈ XS

f such that {xi, zi} is a (Y, f)-rational pair for any 1 ≤
i ≤ k but {x1, x2, . . . , xk, z1, z2, . . . , zk} is not (Y, f)-rational. Then {xi, zj} is a (Y, f)-

rational pair for some i 6= j.

The above statement remains true if x1 or zk or both are void. If both x1 and zk

are void, there is (Y, f)-rational pair {xi, zj}, i 6= j such that {xi, zj} 6= {xk, z1}.

Proof. Suppose for example zj /∈ Cf (Y ∪{x1, x2, . . . , xk, z1, z2, . . . , zk}) for some j such

that both xj and zj exist. Then from CSC, zj /∈ Cf (Y ∪ {xj, z1, z2, . . . , zk}). But

xj ∈ Cf (Y ∪ {xjzj}) so from CSC xj ∈ Cf (Y ∪ {xj, z1, z2, . . . , zk}). Since xj is not

(Y, f)-rational, there is a zl ∈ Cf (Y ∪ {xj, z1, z2, . . . , zk}) therefore {xj, zl} is (Y, f)-

rational and l 6= j.

In the case that x1 is void and z1 /∈ Cf (Y ∪ {x2, . . . , xk, z1, z2, . . . , zk}), from CSC,

z1 /∈ Cf (Y ∪ {z1, z2, . . . , zk}). This is impossible when z1 is (Y, f)-rational but none

of the other zj contracts are (Y, f)-rational. Therefore if we have found (Y, f)-rational

pair {xi, zj}, then at least one of xi and zj was not (Y, f)-rational by itself.

A consequence of Lemma 3.6.2 is that full trail stability is a stronger property than

trail stability, as we will show now:
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Proof of Lemma 3.6.1. Without the loss of generality, we may assume that (b)ii holds

in the definition of trail-stability. The other case when (b)i holds can be proved anal-

ogously. Consider a fully trail-stable outcome A. Suppose that A is not trail-stable,

i.e. there exists a blocking trail T for it. If this trail reaches firm f multiple times, let

TBf = {a1, a2 . . . ak} and T Sf = {b1, b2 . . . bk} where ai, bi are two consecutive contracts

in the trail. In the notation above some of contracts can be void, if the trail starts at

f then a1 is void, if the trail ends at f then bk is void.

We will show that there exist some 1 ≤ i1 ≤ i2 ≤ · · · ≤ il ≤ k and 1 ≤ j1 ≤ j2 ≤
· · · ≤ jl ≤ k such that

� ir+1 = jr + 1 for every 1 ≤ r < l

� either {ai1 , bj1} or bj1 is (A, f)-rational and

� {air , bjr} is (A, f)-rational for all 1 < r < l and

� either ail or {ail , bjl} is (A, f)-rational.

If none of the contracts {b1, b2 . . . bk} is (A, f)-rational, let i1 = 1, so ai1 = a1. If some

bn is (A, f)-rational, choose the last one in the trail, i.e. bn is (A, f)-rational but for

any m > n, bm is not (A, f)-rational. Then let j1 = n. (In this case i1 is not needed at

all.)

Suppose we have already found i1 . . . ir, j1 . . . jr that satisfies our requirements. If

air+1 = ajr+1 is (A, f)-rational, we end the trail there, and let l = r + 1, ail = air+1 .

From the definition of blocking trails, {air+1 , bir+1 . . . ak, bk} is (A, f)-rational. If air+1

is not (A, f)-rational, using Lemma 3.6.2, there is a bjr+1 such that jr+1 ≥ ir+1 and

{air+1 , bjr+1} is (A, f) rational. Using this method, we created a cutoff at firm f such

that we have a shorter trail, and the consecutive air , bjr passing through it are (A, f)-

rational. Using this method for every firm in the trail, we get a locally blocking trail,

therefore A is not fully trail-stable.

To show that every set-stable outcome is fully trail-stable, consider an outcome A

which is not fully trail-stable, and choose the shortest locally blocking trail T for it.

For every firm involved in T , if Tf * Cf (A ∪ Tf ), then using Lemma 3.6.3 there is a

upstream-downstream contract-pair xj ∈ TBf and zl ∈ T Sf such that j 6= l and {xj, zl}
is (A, f)-rational. This way we get a shorter locally blocking trail or circuit. Since

this was the shortest trail, it must be a circuit. Repeat finding shortcuts until we get

a circuit Z such that Zf ⊆ Cf (A ∪ Zf ) for every firm f , so this a blocking set. Since

T ∩ A = ∅ and Z ⊆ T , Z ∩ A = ∅.

Theorem 3.5.1 and Lemma 3.6.1 immediately imply Theorem 3.4.1. We now pin

down the role of separability for trail-stable and fully trail-stable outcomes.
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Proposition 3.6.4. In any contract network X whenever choice functions of F satisfy

full substitutability, IRC and separability, an outcome A ⊆ X is fully trail-stable if and

only if it is trail-stable.

Proof of Proposition 3.6.4. Lemma 3.6.1 implies that if outcome A is fully trail-stable

then A is also trail-stable. So assume that outcome A is trail-stable. If A is not fully

trail-stable then there is a locally blocking trail T to A. The separable property of the

choice functions imply that T is a blocking trail, contradicting the trail stability of A.

So A is fully trail-stable.

Under separability all properties of fully trail-stable outcomes apply to trail-stable

outcomes. This is summarized in the following corollary.

Corollary 3.6.5. Suppose that in a contract network X, choice functions of F satisfy

full substitutability, IRC and separability. Then all properties of fully trail-stable out-

comes, described in Lemma 3.8.1, Lemma 3.8.2, Proposition 3.9.1, Proposition 3.9.2,

Proposition 3.9.3 and Proposition 3.9.4, apply to trail-stable outcomes.

Separability is crucial for the correspondence between fully trail-stable and trail-

stable outcomes. Separability ensures that all blocking trails are locally blocking trails.

An example below shows that full trail stability is strictly stronger that trail stability.

Example 3.6.6 (Trail-stable outcomes are not always fully trail-stable). Consider

agents and contracts described in Example 1 and Figure 3.5. Agents have the following

preferences that induce fully substitutable choice functions:

�m: {w} �m ∅
�i: {x} �i ∅
�k: {z, y} �k ∅
�j: {z, y} �j {w, z} �j {y, x} �j ∅.
The empty set is preferred to any other set of contracts.

For outcome A = ∅, the trail {w, z, y, x} is locally blocking trail but not trail-blocking.

Therefore, trail-stable outcomes are ∅ and {z, y} but the only fully trail-stable outcome

is {z, y}. Note that j’s choice function induced by the preference is not separable.

Finally, we explore the relationship between trail stability, set stability and chain

stability.

Choice functions of f ∈ F satisfy simplicity if there exists an “intensity” mapping

w : Xf → R such that whenever A is a (W, f)-rational set for some acceptable set A of

contracts, then for every y ∈ XB
f ∩ A there exists z ∈ XS

f ∩ A such that w(y) > w(z)

holds.

One example of choice functions which are simple are the following: if the agent is

offered a set of contracts, he picks the upstream contract y with the highest intensity

and a downstream contract z with the lowest intensity (as long as the intensity of the y
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is greater than of z, otherwise he picks nothing). For example, if the intensity mapping

w represents the per-unit price of the contract, then the condition says that the firm

only signs a pair of contracts if the price in the downstream contract is greater than the

price in the upstream contract, while picking the highest-price downstream contract

and the lowest-price upstream contract.

Proposition 3.6.7. In any contract network X whenever choice functions of F satisfy

full substitutability, IRC and simplicity then an outcome A ⊆ X is set-stable if and only

if it is trail-stable.

Proof of Proposition 3.6.7. Lemma 3.6.1 implies that if outcome A is set-stable then A

is also fully trail-stable. Assume that outcome A is fully trail-stable, but not set-stable,

it has a blocking set Z.

If for every z ∈ Z, contract z is neither (A, s(z))-rational nor (A, b(z))-rational, then

using Lemma 3.6.2 we can find a circuit Q = {z1, z2, . . . zk} ⊆ Z such that {zi, zi+1}
is an (A, b(zi))-rational pair for every 1 ≤ i ≤ k and {zk, z1} is an (A, b(zk))-rational

pair. Since every {zi, zi+1} an (A, b(zi))-rational set by itself, as choice functions are

simple, intensity function w must strictly decrease along circuit Q, which is impossible.

If some of the contracts are A-rational: Suppose that z1 is (A, s(z1))-rational. From

Lemma 3.6.2 we can find a trail {z2, z3 . . . zk} ⊆ Z such that for every zi, either {zi, zi+1}
is a (A, b(zi))-rational pair, (therefore w(zi) > w(zi+1)) or there are some y1 . . . yl such

that b(yj) = s(zi) for all 1 ≤ j ≤ l and {zi, y1 . . . yl} is (A, b(zi))-rational. From the

simplicity property there is a yj such that w(zi) > w(yj), this yj contract will be zi+1.

The trail terminates at the first occasion when zi is (A, b(zi))-rational.

Since the intensity strictly decreases, we cannot get back to a contract used earlier

in the trail, so the trail must terminate. Let us pick a contract zi in the trail such that

it is the last one which is (A, s(zi))-rational, and then choose the smallest j such that

j ≥ i and zj is (A, b(zj))-rational. From Lemma 3.6.2, the trail from zi to zj is locally

blocking, so outcome A is not fully trail-stable.

We now formally define chain stability, introduced by [38]. To recap, a chain C is

a trail in which all the agents are distinct. Chain-stable outcomes rule out consecu-

tive pairwise deviations along chains. While this stability concept was introduced in

the context of acyclic trading network, it could also be applicable to general trading

networks in which firms only have one opportunity to recontract during a deviation.

An outcome A ⊆ X is chain-stable if

1. A is acceptable.

2. There is no chain C = {x1, x2, . . . , xM}, such as C ∩ A = ∅ and

(a) x1 is (A, f1)-rational for f1 = s(x1), and
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   Set-stable
        =(+LAD/LAS)

   strongly        
trail-stable

Ex. 1 
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Figure 3.6: Relationship between stability concepts in general contract networks

(b) {xm−1, xm} is (A, fm)-rational for fm = b(xm−1) = s(xm) whenever 1 < m ≤
M and

(c) xM is (A, fM)-rational for fM+1 = b(xM).

Since every chain is a trail, every trail-stable outcome is chain-stable. In acyclic

networks every trail is also chain, so chain-stable, trail-stable and fully trail-stable

outcomes coincide with set-stable outcomes [31]. However, as the example below shows,

chain stability is weaker than trail stability (and hence weaker than full trail stability)

in general contract networks.

Example 3.6.8 (Chain-stable outcomes are not necessarily trail-stable). Consider

agents and contracts described in Examples 1 and 2, and Figure 3.5. Agents have the

following fully substitutable preferences:

�m: {w} �m ∅
�i: {x} �i ∅
�k: {z, y} �k ∅
�j: {w, x, z, y} �j {w, z} �j {y, x} �j {y, z} �j ∅
The empty set is preferred to any other set of contracts.

Now, for outcome ∅, the trail {w, z, y, x} is trail-blocking, but there is no blocking chain

for A = ∅. Outcome {z, y} is, however, blocked by chain {w, x}. Therefore the only

trail-stable outcome is {w, z, y, x} and the chain-stable outcomes are ∅ and {w, z, y, x}.

This is intuitive because chains allows the firms to appear in the blocking set only

once therefore they rule out fewer possible blocks. Figure 3.6 summarizes the relation-

ships between various stability concepts in general contract networks. Set-stable and

strongly trail-stable outcomes may not exist and they are only equivalent under the

Laws of Aggregate Demand and Supply as Example 1 in [33] shows.
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3.7 Terminal Agents and Terminal Superiority

We now introduce some terminology that describes contracts of agents, who only act

as buyers or only act as sellers. A firm f is a terminal seller if there are no upstream

contracts for f in the network and f is a terminal buyer if the network does not contain

any downstream contracts for f . An agent who is either a terminal buyer or a terminal

seller is called a terminal agent . Let T denote the set of terminal agents in F and for a

set A of contracts let us denote the terminal contracts of A by AT :=
⋃
{Af : f ∈ T }.

A set Y of contracts is terminal-acceptable if there is an acceptable set A of contracts

such that Y = AT .

If Y is a set of contracts bought or sold by terminal agents, i.e., Y ⊆ XT , we say that

Y is terminal-trail-stable if there is a trail-stable outcome A ⊆ X such that Y = AT .

Similarly, Y is terminal-fully-trail-stable if there is a fully trail-stable outcome A ⊆ X

such that Y = AT .

If A and W are terminal-acceptable sets of contracts then we say that A is seller-

superior to W (denoted by A �S W ) if Cf (Af ∪Wf ) = Af for each terminal seller

f and Cg(Ag ∪Wg) = Wg for each terminal buyer g. Similarly, A is buyer-superior

to W (denoted by A �B W ) if Cf (Af ∪ Wf ) = Wf for each terminal seller f and

Cg(Ag ∪Wg) = Ag for each terminal buyer g. Clearly, these relations are opposite,

that is, W �S A if and only if A �B W holds. Whenever either relation holds, we call

this partial order on outcomes terminal superiority. Terminal agents are going to play

a key role when we describe the structure of outcomes in contract networks.

Recall that in the marriage model of Gale and Shapley, the existence of man-optimal

and woman-optimal stable matchings follow from the well-known lattice structure of

stable matchings. The key to extending this result to contract networks is to consider

only terminal agents. We say that a fully trail-stable outcome Amax is buyer-optimal if

any terminal buyer prefers it to any other outcome, so for any fully trail-stable Z ⊆ X,

we have that Amax �B Z.

A fully trail-stable outcome Amin that is seller-optimal if any terminal seller prefers

it to any other outcome, so Amin �S Z so for any fully trail-stable Z.

Since terminal agents have only upstream or only downstream contracts, for their

choice functions same-side substitutability is equivalent to substitutability. Recall that

a if a choice function C : 2X → 2X satisfies substitutability and IRC then C is also

path-independent, that is, C(Y ∪ Z) = C(Y ∪ C(Z)) holds for any subsets Y, Z of X.

This was shown in Lemma 1.1.10.

Lemma 3.7.1. If choice functions are fully substitutable in a trading network then both

buyer-superiority and seller-superiority are is a partial order on terminal-acceptable

outcomes.

Proof of Lemma 3.7.1. For seller-superiority, we need to prove that �S is reflexive,
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antisymmetric and transitive. Assume that A,A′ and A′′ are acceptable outcomes. As

Cf (Af∪Af ) = Cf (Af ) = Af holds for each agent (and hence for each terminal seller) f ,

relation �S is reflexive. If A �S A′ �S A then we have Af = Cf (Af ∪A′f ) = A′f holds

for any terminal agent f , hence A = A′ and �S is antisymmetric. For transitivity,

assume that A �S A′ �S A′′. Using this and path-independence, we get for any

terminal agent f that

Cf (Af ∪ A′′f ) = Cf (Cf (Af ∪ A′f ) ∪ A′′f ) = Cf (Af ∪ A′f ∪ A′′f ) =

Cf (Af ∪ Cf (A′f ∪ A′′f )) = Cf (Af ∪ A′f ) = Af ,

hence A �S A′′ holds, indeed. Similarly for buyer-superiority.

Now we consider only the contracts sold by the terminal sellers. For any Y ⊆ X,

let YS = {x ∈ Y : s(x) is a terminal seller }.
Given two fully trail-stable outcomes A and A′, let us denote the canonical stable

pair, defined as at the end of Proof of Theorem 3.5.1 for A with ẊB and ẊS, and the

canonical stable pair for A′ with Ẋ ′B and Ẋ ′S.

Lemma 3.7.2. Given two fully trail-stable outcomes A and A′, Cf (Af ∪A′f ) = Af for

each terminal seller if and only if ẊS
S ⊇ Ẋ ′SS and ẊB

S ⊆ Ẋ ′BS holds. A similar statement

holds for terminal buyers.

Proof. If f is a terminal seller, Cf (ẊS) = Af and Cf (Ẋ ′S) = A′f . Suppose that

ẊS
S ⊇ Ẋ ′SS . By IRC, Af ⊆ Af ∪ A′f ⊆ ẊS

f implies that Cf (Af ∪ A′f ) = Af .

For the opposite direction, take a contract x ∈ Xf such that x /∈ Cf (A′f ∪ x). We

use Lemma 3.7.1, A �S A′ �S x, therefore A �S x, so x /∈ Cf (Af ∪x). When we define

the stable pairs for A and A′, if x ∈ Cf (A′f ∪ x) then x ∈ ẊB, if x /∈ Cf (A′f ∪ x) then

x ∈ ẊS. From the previous observation we can see that ẊS
S ⊇ Ẋ ′SS and ẊB

S ⊆ Ẋ ′BS .

The proof for terminal buyers is analogous.

3.8 Lattice Property of Fully Trail-Stable Outcomes

Lemma 3.8.1. In any contract network X if choice functions of F satisfy full sub-

stitutability and IRC then the set of fully trail-stable outcomes contains buyer-optimal

and seller-optimal outcomes.

Lemma 3.8.1 extends Theorem 4 by [31], which establishes the existence of buyer-

and seller-optimal outcomes in acyclic trading networks.12 We say that Y ⊆ X is

terminal-fully-trail-stable if there is a fully trail-stable outcome A ⊆ X such that

Y = AT .

12This is a common property of stable outcomes in two-sided markets with substitutable choice

functions, however, it typically fails in richer matching models [39],[3],[4].
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Lemma 3.8.2. In any contract network X if choice functions of F satisfy full substi-

tutability and LAD/LAS then the terminal-fully-trail-stable contract sets form a lattice

under terminal superiority.

Lemma 3.8.2 shows that whenever LAD/LAS holds choice functions of termi-

nal agents define a natural partial order on outcomes and the terminal-fully-trail-

stable contract sets form a lattice under this order. Note that for the lattice and the

opposition-of-interests structure, only terminal agents play a role: two outcomes are

equivalent if all the terminal agents have the same set of contracts. Indeed, if A1 and

A2 are fully trail-stable outcomes then there is a fully trail-stable outcome A+ such

that all terminal buyers prefer A+ to both A1 and A2 and all sellers prefer any of A1

and A2 to A+.13 This establishes full “polarization of interests” in trail-stable outcomes

in the sense of [42] and immediately implies the existence of buyer-optimal (Amax) and

seller-optimal (Amin) fully trail-stable outcomes. Therefore, our result substantially

strengthens and generalizes the previous results by [42],[11],[14] and [31].14

3.8.1 The sublattice property of fixed points

We can rephrase the definitions of the Laws of Aggregate Demand and Supply (LAD/LAS)

in the following way:

If the choice functions of firm f satisfy LAD and LAS, for sets of contracts Y ′ ⊆
Y ⊆ XB

f , and Z ⊆ Z ′ ⊆ XS
f (i.e. (Y ′, Z ′) v (Y, Z)) then |Cf

B(Y ′|Z ′)| − |Cf
S(Z ′|Y ′)| ≤

|Cf
B(Y |Z)| − |Cf

S(Z|Y )|.
For every firm f we define a weight function on the contracts in Xf , namely let

w(x) = 1 if x ∈ XB
f and w(x) = −1 if x ∈ XS

f . So w(Cf (Y, Z)) = |Cf
B(Y |Z)| −

|Cf
S(Z|Y )|. Therefore if Cf is LAD-LAS, then (Y ′, Z ′) v (Y, Z) implies w(Cf (Y ′, Z ′)) ≤

w(Cf (Y, Z)).

Let Y and Y ′ be subsets of XB
f , Z and Z ′ are subsets of XS

f . We denote the

complement of Z in XS
f with Z = XS

f \ Z. Define the operation (Y, Z)\̃(Y ′, Z ′) =

(Y \Y ′, Z ′ \ Z). For a given firm f , we call a set function R : 2Xf → 2Xf a w-contraction

if for every (Y ′, Z ′) v (Y, Z) pair, w(R(Y, Z)\̃R(Y ′, Z ′)) ≤ w((Y, Z)\̃(Y ′, Z ′))
Let us describe some properties of this \̃ operation:

Lemma 3.8.3. For a firm f , let Y and Y ′ be subsets of XB
f , Z and Z ′ are subsets of

XS
f such that (Y ′, Z ′) v (Y, Z). Then the following holds:

1. w((Y, Z)\̃(Y ′, Z ′)) = w((Y, Z))− w((Y ′, Z ′))− |XS
f |.

2. For any (A,B) pair, w((A,B)\̃(Y, Z)) ≤ w((A,B)\̃(Y ′, Z ′)).

13Of course, the same holds for if we exchange the role of buyers and sellers.
14 Theorem 4 in [18], which states that any two stable flows agree on terminal contracts, is a further

strengthening of Lemma 3.8.2 in the special case of network flows.
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3. If (Y, Z) v (A,B) then the w((A,B)\̃(Y, Z)) = w((A,B)\̃(Y ′, Z ′)) equality im-

plies (Y ′, Z ′) = (Y, Z).

Proof. 1. w((Y, Z)\̃(Y ′, Z ′)) = |Y \ Y ′| − |Z ′ \ Z| = |Y | − |Y ′| − |XS
f |+ |Z ′| − |Z| =

w((Y, Z))− w((Y ′, Z ′))− |XS
f |.

2. Since Y ⊇ Y ′, this implies A \ Y ⊆ A \ Y ′, and similarly Z ⊆ Z ′ gives us

Z \ B ⊆ Z ′ \ B, so Z \B ⊇ Z ′ \B, therefore w((A,B)\̃(Y, Z)) = |A \ Y | −
|Z \B| ≤ |A \ Y ′| − |Z ′ \B| = w((A,B)\̃(Y ′, Z ′))

3. If w((A,B)\̃(Y, Z)) = w((A,B)\̃(Y ′, Z ′)) then equality must hold at |A \ Y | =

|A \ Y ′| and |Z \B| = |Z ′ \B|. Since Y ′ ⊆ Y ⊆ A and Z ′ ⊇ Z ⊇ B, we get that

Y = Y ′ and Z = Z ′.

Lemma 3.8.4. For a given firm f , if the firm’s choice functions satisfy full sub-

stitutability and LAD/LAS, then the rejection function Rf is v-isotone and a w-

contraction.

Proof. Let Y and Y ′ be subsets of XB
f , and Z and Z ′ are subsets of XS

f moreover

(Y ′, Z ′) v (Y, Z).

We have seen earlier that Rf is v-isotone, so Rf (Y ′, Z ′) v Rf (Y, Z). To prove that

it is w-contraction, w(Rf (Y, Z)\̃Rf (Y ′, Z ′)) + |XS
f | = w(Rf (Y, Z)) − w(Rf (Y ′, Z ′)) =

w((Y, Z) \Cf (Y, Z))−w((Y ′, Z ′) \Cf (Y ′, Z ′)) = w(Y, Z)−w(Cf (Y, Z))−w(Y ′, Z ′) +

w(Cf (Y ′, Z ′)) ≤ w(Y, Z)− w(Y ′, Z ′) = w((Y, Z)\̃(Y ′, Z ′)) + |XS
f |.

We used that w(Cf (Y ′, Z ′)) ≤ w(Cf (Y, Z)). If we subtract |XS
f | from both sides,

we get that

w(Rf (Y, Z)\̃Rf (Y ′, Z ′)) ≤ w((Y, Z)\̃(Y ′, Z ′)), so Rf is indeed a w-contraction.

We will work on the (2(X,X), ∪̃ , ∩̃ ) lattice. We can imagine it as a network that

contains exactly two (unrelated) copies of each contract, one for the buyer and one for

the seller of the contract.

Now the Cf choice functions of the firms are defined over disjoint set of contracts,

so for every Y ⊆ (X,X) we can define C(Y ) =
⋃
Cf (Yf ). Similarly R(Y ) =

⋃
Rf (Yf ).

On this whole network, we call a set function R : 2(X,X) → 2(X,X) a w-contraction if

for every firm f the corresponding Rf was a w-contraction.

Let us denote the set of the starting half-contracts (seller’s side) with XS
F =⋃

f∈F X
S
f , and the set of ending half-contracts (buyer’s side) with XB

F =
⋃
f∈F X

B
f .

Now |XS
F | = |XB

F | = |X|.
Let Y ⊆ XB

F and Z ⊆ XS
F . The dual of (Y, Z) is what we get by switching the two

parts. We denote it with (Y, Z)∗ = (Z, Y ).

In this model let all the contracts in XS
F have weight w = −1 and all contracts in

XB
F have weight w = 1.
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Lemma 3.8.5. If F : 2(X,X) → 2(X,X) is v-isotone and a w-contraction then fixed

points of F form a nonempty sublattice of (2(X,X), ∪̃, ∩̃)

Proof. By Tarski’s fixed-point theorem, the set of fixed points is nonempty. Now let

U ⊆ (X,X) and V ⊆ (X,X). Assume that F (U) = U and F (V ) = V . By monotonic-

ity, U ∩̃V = F (U) ∩̃F (V ) w F (U ∩̃V ) and U ∪̃V = F (U) ∪̃F (V ) v F (U ∩̃V ). From

the w-contraction property and Lemma 3.8.3

w(U \̃(U ∩̃V )) ≥ w(F (U)\̃F (U ∩̃V )) ≥ w(U \̃(U ∩̃V ))

w((U ∪̃V )\̃U) ≥ w(F (U ∪̃V )\̃F (U)) ≥ w((U ∪̃V )\̃U)

hence there must be equality throughout. Using the third part of Lemma 3.8.3 we can

see that (U ∩̃V ) = F (U ∩̃V ) and (U ∪̃V ) = F (U ∪̃V ) so they are also fixed points of

F .

Observation 3.8.6. Consider two intensity schemes (Y, Z) and (Y ′, Z ′) , where Y, Y ′ ⊆
XB
F and Z,Z ′ ⊆ XS

F and (X,X) \ (Y, Z) = (X \ Y,X \ Z). If (Y ′, Z ′) v (Y, Z), then

((X \ Y,X \ Z)∗\̃(X \ Y ′, X \ Z ′)∗) = ((X \ Z) \ (X \ Z ′), (X \ Y ′) \ (X \ Y )) =

((Z ′ \ Z), (Y \ Y ′)) = ((X,X) \ ((Y, Z)\̃(Y ′, Z ′))∗

Theorem 3.8.7. If the choice functions of all agents are fully substitutable and satisfy

LAD and LAS, then the fixed points of Φ(Y, Z) = (X \ RS(Z|Y ), X \ RB(Y |Z)) form

a nonempty, complete sublattice of (2X × 2X , ∪̃, ∩̃).

Proof. The Φ(Y, Z) = (X \ RS(Z|Y ), X \ RB(Y |Z)) function can be also written as

Φ(Y ) = ((X,X) \ R(Y, Z))∗. Since R is v-isotone, Φ is also v-isotone. We need

to show that Φ is a w-contraction. Suppose that (Y ′, Z ′) v (Y, Z) . Using Obser-

vation 3.8.6, w(Φ(Y, Z)\̃Φ(Y ′, Z ′)) = w(((X,X) \ R(Y, Z))∗\̃((X,X) \ R(Y ′, Z ′))∗) =

w(((X,X) \ (R(Y, Z)\̃R(Y ′, Z ′)))∗) = w(R(Y, Z)\̃R(Y ′, Z ′)) ≤ w((Y, Z)\̃(Y ′, Z ′)) be-

cause in Lemma 3.8.4 we showed that R is a w-contraction.

Since Φ is v-isotone and a w-contraction, Lemma 3.8.5 gives that the fixed points

of Φ form a sublattice of (2(X,X), ∪̃, ∩̃).

3.8.2 Lattice on the terminals

Theorem 3.8.8. If L is a nonempty complete sublattice of (2X × 2X , ∪̃, ∩̃) then LT =

{(YT , ZT ) : (Y, Z) ∈ L} is a sublattice of (2T × 2T , ∪̃, ∩̃).

Proof. For a given (AT , BT ) there can be more than one inverse image in the original

lattice. Let (A∗, B∗) =
⋃̃
{(Y, Z) ∈ L : (YT , ZT ) v (AT , BT )} since L is a complete

lattice with lattice operations ∪̃, ∩̃, this (A∗, B∗) ∈ L and (A∗T , B
∗
T ) = (AT , BT ). We

call it the canonical inverse image of (AT , BT ), since this is the v-greatest among all

inverse images.
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If (AT , BT ) and (CT , DT ) ∈ LT let us consider (Y, Z) = (A∗, B∗) ∩̃ (C∗, D∗). Since

(Y, Z) v (A∗, B∗) this implies (YT , ZT ) v (A∗T , B
∗
T ) = (AT , BT ). Similarly (YT , ZT ) v

(CT , DT ). We want to show that (YT , ZT ) is the greatest lower bound of (AT , BT ) and

(CT , DT ) in LT . We can see that (Y ∗, Z∗) v (A∗, B∗) and (Y ∗, Z∗) v (C∗, D∗) because

(A∗, B∗) is defined by the union of a greater set. Therefore (Y ∗, Z∗) = (Y, Z).

Suppose there exists a (ET , FT ) ∈ LT such that (ET , FT ) v (AT , BT ) and (ET , FT ) v
(CT , DT ) but (ET , FT ) 6v (YT , ZT ). Then in the original lattice (E∗, F ∗) v (A∗, B∗)

and (E∗, F ∗) v (C∗, D∗) but (E∗, F ∗) 6v (Y ∗, Z∗). But this is impossible since (Y, Z) =

(A∗, B∗) ∩̃ (C∗, D∗). So we have found a unique greatest common lower bound of

(AT , BT ) and (CT , DT ).

Similar argument can be made in order to find the lowest common upper bound

of (AT , BT ) and (CT , DT ). Let (Y, Z) = (A∗, B∗) ∪̃ (C∗, D∗). Since (Y, Z) w (A∗, B∗)

this implies (YT , ZT ) w (A∗T , B
∗
T ) = (AT , BT ). Similarly (YT , ZT ) w (CT , DT ).

Suppose there exists a (ET , FT ) ∈ LT such that (ET , FT ) w (AT , BT ) and (ET , FT ) w
(CT , DT ) but (ET , FT ) 6w (YT , ZT ). Then in the original lattice (E∗, F ∗) w (A∗, B∗) and

(E∗, F ∗) w (C∗, D∗) therefore (E∗, F ∗) w (Y, Z), so (E∗T , F
∗
T ) = (ET , FT ) w (YT , ZT ),

which is a contradiction.

So we have found a unique lowest common upper bound of (AT , BT ) and (CT , DT ),

so (LT , ∪̃, ∩̃) is indeed a lattice.

Proof of Lemma 3.8.1. In the proof of Theorem 3.5.1 we have seen that any fixed point

(ẊB, ẊS) of isotone mapping Φ on lattice L determines a fully-trail-stable outcome AX .

Moreover, each stable outcome A corresponds to at least one fixed point (ẊB, ẊS) of

Φ. From Theorem 1.2.1, it follows that fixed points of Φ form a lattice, hence there

is a v-minimal fixed point (Ẏ B, Ẏ S) and a v-maximal one (ŻB, ŻS). We show that

fully-trail-stable outcome AY is seller-optimal and AZ is buyer optimal. So assume

that A = AX is a fully-trail-stable outcome. As (Ẏ B, Ẏ S) v (ẊB, ẊS) v (ŻB, ŻS), we

have Ẏ B ⊆ ẊB ⊆ ŻB and Ẏ S ⊇ ẊS ⊇ ŻS. Lemma 3.7.2 implies that Cf (Af ∪ AYf ) =

AYf and Cf (Af ∪ AZf ) = Af for any terminal seller f and Cg(Ag ∪ AYg ) = Ag and

Cg(Ag ∪ AZg ) = AZg for any terminal buyer g. So, by definition A is seller-superior to

AY and AZ is seller-superior to A.

Proof of Lemma 3.8.2. In the proof of Theorem 3.5.1 we have seen that A is fully trail-

stable if and only if there is canonical pair (ẊB, ẊS) of such that (ẊB, ẊS) is a fixed

point of isotone mapping Φ and A = ẊB ∩ ẊS. Moreover, if the choice functions are

LAD/LAS, fixed points of Φ form a sublattice L of (2X × 2X , ∪̃, ∩̃). From Lemma

3.8.8, the projection of the above lattice to the terminals, LT is also a lattice under

v and from Lemma 3.7.2 this partial order coincides with �S. Therefore, the stable

outcomes form a lattice under terminal-superiority.
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Conjecture 3.8.9. Let F be the set of agents and X be the set of contracts in a contract

network. Preferences of F are fully substitutable, IRC and LAD/LAS. For every trail-

stable outcome A there exist a fully trail-stable outcome A′ such that At = A′t for all

the terminal agents. (That is, AT = A′T .)

Since we know form Lemma 3.6.1 that every fully trail-stable outcome is also trail-

stable, this Conjecture states that the terminal-fully-trail-stable and the terminal-trail-

stable outcomes are the same. The corollary of this Conjecture and Theorem 3.8.8 is

the following:

Conjecture 3.8.10. In any contract network X if choice functions of F satisfy full

substitutability and only LAD/LAS then the terminal-trail-stable contract sets form a

lattice under terminal superiority.

Example 3.8.11. If the choice functions of the agents are not LAD/LAS, we can

show an example where trail-stable and fully trail stable solutions differ on the terminal

agents. The network (F,X) consists of firms F = {s, z, v, w} and there are four

possible contracts: a = sv, d = zv, b = vw, c = wv (So the contracts b and c involve

the same firms, but with opposite roles.) Firm s and z are terminal sellers. The pref-

erences of each agent are as follows:

≺s: {a} �s ∅ In other words, a is rational.

≺w: {bc} �w ∅
≺v: {b, c} �v {a, d, b} �v {a, b} �v {c} �v {d} �v ∅
≺z: {d} �z ∅ The preference order of agent v is fully substitutable and IRC, however

it is not separable and do not satisfy the Laws of Aggregate Demand and Supply. Pref-

erences of other agents satisfy everything. We can show that {b, c} is both trail-stable

and fully trail-stable. {d} is trail-stable but not fully trail-stable, because {a, b, c} is a

locally blocking trail.

Therefore for the terminal seller z, the trail-stable and fully trail stable solutions

are different.

3.9 Rural Hospitals and Market Rearrangements

The lattice structure of fully-trail stable allows us to straightforwardly extend two

well-known properties of stable outcomes that have been known in two-sided matching

markets and acyclic contract networks. One such property is the classic “rural hospitals

theorem”, which shows that in every stable allocation of a two-sided many-to-one

doctor-hospital matching market, the same number of doctors are matched to every

hospital [43]. In buyer-seller networks, we can instead consider the difference between

the number of upstream and downstream contracts that firms sign [31]. The following

proposition gives the most general rural hospital theorem result.
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Proposition 3.9.1. Suppose that in a contract network X choice functions of F satisfy

full substitutability, IRC and LAD/LAS. Then, for each firm, the difference between

the number of upstream contracts and the number of downstream contracts is invariant

across fully trail-stable allocations.

Its proof, which we omit, follows the proof of Theorem 8 in [31] word-for-word, only

replacing “stable” with “fully trail-stable”.

The lattice structure of fully trail-stable outcomes also gives a (somewhat weak)

mechanism design result. A mechanismM is a mapping from a profile of agents’ choice

functions, CF = (Cf )f∈F , to the set of outcomes. A mechanism is group strategy-proof

for a group of agents if they cannot jointly manipulate their choice functions and obtain

an outcome that is better for all of them.

A mechanism is group strategy-proof for G ⊆ F if for any Ḡ ⊆ G, there does

not exist a choice function profile C̄Ḡ such that for outcomes Ā =M(C̄Ḡ,CF\Ḡ) and

A =M(CF ) we have that Cf (Ā ∪ A) = Ā for every f ∈ Ḡ.

Like Hatfield and Kominers [31], we are only going to consider group strategy-

proofness for terminal agents. We generalize their Theorem 10 with the following

result.

Proposition 3.9.2. Suppose that in a contract network X choice functions of F satisfy

full substitutability, IRC, LAD/LAS, and, additionally, all terminal buyers (terminal

sellers) demand at most one contract, then any mechanism that selects the buyer-

optimal (seller-optimal) fully trail-stable allocation is group strategy-proof for all ter-

minal buyers.

As is well known, the assumptions that underpin Proposition 3.9.2 – unit demands

and extreme one-sidedness – cannot be substantially relaxed.15

The second set of properties of fully trail-stable outcomes concerns the effect of

entry and exit of new firms in the trading network. This type of comparative static

analysis is well-studied in two-sided matching markets [25],[13],[28]. More recently, [38]

and [30] extended these results the case of supply chains.

First, let us consider what happens when a terminal seller is added to the market.

More formally, let F ′ = F ∪ f ′ and let A′max and A′min be the buyer-optimal and the

seller-optimal fully trail-stable outcomes in F ′ respectively.

Proposition 3.9.3. Suppose that in a contract network X, a new terminal seller f ′

comes, choice functions of F ∪ f ′ satisfy full substitutability and IRC, then every ter-

minal seller f 6= f ′ is at least as well off in Amax as in A′max and at least as well off in

Amin as in A′min, and each terminal buyer f is at most as well off in Amax as in A′max
and at most as well off in Amin as in A′min.

The opposite holds when f ′ is terminal buyer.

15Its proof, which we omit, just follows the proof of Theorem 1 in [29] (which was pointed out by

[31]).
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The proposition says that with a new seller, the seller-optimal outcome Amin and

the buyer-optimal outcome Amax move in the direction favorable to terminal buyers

and unfavorable to terminal sellers. Symmetrically, when a terminal buyer is added,

Amin and Amax move in the opposite direction. In other words, more competition on

one end of an industry is bad for the agents on that end and good for the agents on

the other end. This proposition generalizes Theorem 3 in [38].

Now consider the following market readjustment process : When the new terminal

seller f ′ enters, and we already have a fully trail-stable outcome A with corresponding

fixed point (ẊB, ẊS) then let X be the set of all contracts in the new network, and let

us define (Ẋ ′B, Ẋ ′S) = (ẊB, ẊS ∪ Xf ′). Operator Φ′ acts on (X
′B, X

′S) using choice

functions of F ′. Let (X̂B, X̂S) be the fixed point of the iteration of fuction Φ, with

associated outcome Â = X̂B ∩ X̂S. This Â be the result of the market readjustment

process.

Proposition 3.9.4. Suppose that all firms’ choice functions are fully substitutable and

that A is a fully trail-stable outcome with associated buyer and seller offer sets XB and

XS. Suppose that an terminal seller f ′ enters the market, and let Â be the result of

the market readjustment process. Then, all terminal sellers weakly prefer A to Â and

all terminal buyers (other than f ′) weakly prefer Â to A.

The opposite holds when f ′ is terminal buyer.

An analogous result can be obtained when terminal buyers and terminal sellers exit

the market so this proposition generalizes the Theorem in [30].

Our proof is similar to Ostrovsky’s proof. First we investigate the restabilized

outcome from A, which we play part in the proofs of both Propositions 3.9.3 and

3.9.4. Let A be an arbitrary fully trail-stable outcome in the original network, with

a corresponding canonical pair (ẊB, ẊS). After the new terminal seller f ′ arrives,

let X be the set of all contracts in the new network, and let us define (X∗B, X∗S) =

(ẊB, ẊS ∪Xf ′). In the following, we will use Φ according to the choice fuctions on the

new network, so (ẊB, ẊS) does not need to be a fixed point of Φ anymore.

Since Xf ′ ∩ X∗B = ∅, for every firm f 6= f ′, Rf
S(X∗S|X∗B) = Rf

S(ẊS|ẊB) and

Rf
B(X∗B|X∗S) = Rf

B(ẊB|ẊS). For example, if f has a conctracts with f ′, contract

x = f ′f was not offered for firm f in X∗B so it does not get rejected.

For firm f ′, Rf ′

S (X∗S|X∗B) = Xf ′ \ Cf ′

S (Xf ′) and Rf ′

B (X∗B|X∗S) = ∅.
Therefore Φ(X∗B, X∗S) = (ẊB ∪ Cf ′(Xf ′), Ẋ

S ∪Xf ′).

So (X∗B, X∗S) v Φ(X∗B, X∗S), and Φ isv-isotone, so Φ(X∗B, X∗S) v Φ(Φ(X∗B, X∗S))

and so on. The lattice of all possible subset-pairs is finite, so there is a k such

that Φk(X∗B, X∗S) = (X̂B, X̂S) is a fixed point. So (X∗B, X∗S) v Φ(X∗B, X∗S) v
Φk(X∗B, X∗S) = (X̂B, X̂S). Outcome Â = X̂B ∩ X̂S is fully trail-stable, and this is

what we call the restabilized outcome from A.

Proof of Proposition 3.9.3. If f ′ is a terminal seller, and we start from outcome Amax
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and the v-maximal pair (ŻB, ŻS). Using the previous method, outcome Â = ẐB ∩ ẐS

is the restabilized outcome from A. In the new network there exists a v-maximal fixed

point of Φ, namely (Z ′B, Z ′S), therefore (ŻB, ŻS ∪ Xf ′) = (Z∗B, Z∗S) v (ẐB, ẐS) v
(Z ′B, Z ′S). The fully trail-stable outcome corresponding to the maximal fixed point is

A′max = Z ′B ∩Z ′S. We have to show that A′max is better for terminal buyers and worse

for terminal sellers than the original Amax. If f is a terminal buyer, since (Z ′B, Z ′S) is

fixed point of Φ and (ŻB, ŻS) was fixed before the new agent arrived, Cf (Z ′B) = A′f,max
and Cf (Z∗B) = Af,max and Z∗B ⊆ Z ′B so from Cf (Z ′B) ⊆ (Af,max ∪A′f,max) ⊆ Z ′B by

IRC we obtain Cf (Af,max ∪ A′f,max) = A′f,max so A′f,max is better for terminal buyers.

Similarly, if f is a terminal seller outside f ′, Cf (Z ′S) = A′f,max and Cf (Z∗S) =

Af,max and Z ′S ⊆ Z∗S so from Cf (Z∗S) ⊆ (Af,max ∪ A′f,max) ⊆ Z∗S by IRC we obtain

Cf (Af,max ∪ A′f,max) = Af,max so Af,max is better for terminal buyers.

If f ′ is a terminal buyer then we can use the same proof with reversing the roles of

buyers and sellers.

Proof of Proposition 3.9.4. If f ′ is a terminal seller, and A is any fully trail-stable

outcome in the original network, with canonical pair (ẊB, ẊS), then (X∗B, X∗S) =

(ẊB, ẊS ∪Xf ′) v (X̂B, X̂S). The restabilized outcome is Â = X̂B ∩ X̂S, and similarly

to the proof of Proposition 3.9.3 one can show that initial producers weakly prefer A

to Â and all end consumers (other than f ′) weakly prefer Â to A.

If f ′ is a terminal buyer, preferences are the the opposite.

3.10 Trading Networks on Lattices

Consider a new model based on a directed graph D = (F,X), just like the one in

Section 3.1. Vertices of F represent the firms (selfish agents) and each arc x = uv of

X indicates a contract between agents u and v.

Now, differently from the previous sections, each contract is specified with a certain

”intensity”. Intensity can represent the amount of the good traded. (If we consider a

market with workers and firms, the intensity can show the number of hours worked.)

We assume that for each contract x, the set of possible intensities form a distributive

complete lattice Lx. The simplest (and most typical) example is Lx = ({0, 1},≤)

where a 0-contract means no trade, and a 1-contract is just a single contract between

the agents. This is what we covered in the previous sections. A more complex lattice

is for example Lx = ({0, 2, 3, 7},≤), which means that the only realizable possibilities

along arc x = uv are that u sells 0, 2, 3 or 7 units of the particular good to v. Note

that intensity-lattice Lx might even be infinite: Lx = ({
√

2, 4} ∪ [5, 9],≤) describes a

situation where u can sell
√

2, 4 or any (possibly non integral) amount between 5 and
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9 from the particular good to v, and no other option (like abandoning the contract and

selling nothing) is allowed.

Each firm f ∈ F has certain preferences over the set Xf of contracts that involve

f , that is, over the arcs entering or leaving f . Well, not exactly. Indeed, this is the

situation if Lx = ({0, 1},≤) holds for each contract x. However, in the general case,

these preferences are not over the set of contracts but over the intensity-vectors. For

this reason, we define lattice Lf :=
⊕

x∈Xf
Lx as the direct sum of contract-describing

intensity-lattices for agent f . Now elements of Lf that we shall call intensity-vectors are

the exact descriptions of all the possible situations that firm f can experience. If there

are k contracts that involve agent f then (`1, `2, . . . , `k) describes the situation where

the first contract is available for f up to intensity `1, the second one up to intensity `2,

and so on. The preference of f is represented by a choice function Cf : Lf → Lf . The

intended meaning of Cf (`1, `2, . . . , `k) = (`′1, `
′
2, . . . , `

′
k) is that if firm f picks its favorite

contract-intensities in a selfish manner such that `i is an upper bound for the intensity

of the ith contract then it sets the intensity of contract i to `′i for each 1 ≤ i ≤ k. (In the

0/1 case, Lf is isomorphic to (2Xf ,⊆), and a choice function on this lattice is basically

a ”traditional” choice function, that is, a subset mapping.) An intensity-vector l ∈ Lf
is rational for f if it is rational for Cf , that is, if Cf (l) = l, or in other words, if f is

happy to accept the intensities described by l. We assume that choice function Cf is

IRC for each firm f .

Define LD :=
⊕

x∈X Lx. Essentially, an element (`1, `2, . . . , `m) of LD assigns an

intensity to each of the m contracts, where m is the size of contract set X. We call

elements of LD contract schemes. (In the 0/1 case, a contract scheme is essentially a

subset of the contracts.) For a contract scheme l of LD and contract x of X, lx denotes

the corresponding coordinate of l, that is the intensity of x in l. For an agent f , lf

denotes the projection of l to Xf , that is lf contains only those intensities in l that

correspond to a contract involving f . From now on, we shall cruelly abuse notation

according to the following convention. We compare intensities, intensity-vectors and

contract schemes and interpret ”mixed” operations on them. For example for intensity-

vector l of Lf and intensity ` of contract x involving f we say that l ≤ ` if lx ≤ ` holds

and l ∨ ` means the intensity-vector of Lf that we get from l by replacing its x-

coordinate lx by lx ∨ `, whereas for contract scheme L, contract scheme L ∧ ` is the

contract scheme that we get from L by replacing Lx by Lx ∧ ` .

We say that a contract scheme l ∈ LD is acceptable if for each firm f , the f -

projection lf of l (which is an intensity-vector itself) is rational for Cf , that is, if

Cf (lf ) = lf . This means that no agent is interested in decreasing any of the intensities

on her contracts.

Example 3.10.1. Assume that D = (E ∪W,X) is a directed graph such that E and

W are disjoint sets of employers and workers, respectively, and each arc ew ∈ X is

oriented from an employer e to a worker w, moreover each vertex f of D has a linear
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order ≤f on the set Xf of arcs incident to f and lastly, each employer e has a quota

q(e) on the workers that it can employ. Let Lx := ({0, 1},≤) for each contract X.

Then elements of Lf bijectively correspond to subsets of Xf . Define choice function

Cf : Lf → Lf such that Cw(Y ) is the ≤w-best arc of Y for any worker w of W and

Ce(Y ) is the ≤e-best q(e) arcs of Y for any employer e.

In this situation, a rational contract scheme corresponds to a set of arcs of D such

that each worker has at most one contract and each employer e is involved in at most

q(e) contracts.

In what follows, we generalize the so called ”same side substitutable” and ”cross

side complementary” properties of traditional choice functions defined by Ostrovsky in

[38]. Observe that these two properties can be stated in a more compact way as follows.

Choice function Cf is same side substitutable and cross side complementary if the set

of ignored incoming arcs is monotone in the set of offered incoming arcs and antitone

in the set of offered outgoing arcs and the set of ignored outgoing arcs is monotone in

the set of offered outgoing arcs and antitone in the set of offered incoming arcs. This

latter approach allows us to generalize these notions.

Recall that XB
f and XS

f denote the set of incoming and outgoing arcs of f , re-

spectively, that is, Xf = XB
f ∪ XS

f . We say that mapping Df : Lf → Lf is same

side antitone if the following properties hold. If elements l = (`1, `2, . . . , `k) and

l′ = (`′1, `
′
2, . . . , `

′
k) of Lf are such that `i = `′i for any i ∈ XS

f and `j ≤j `′j for

any j ∈ XB
f then (Df (l))j ≥j (Df (l′))j holds for any j ∈ XB

f . Moreover, if elements

l = (`1, `2, . . . , `k) and l′ = (`′1, `
′
2, . . . , `

′
k) of Lf are such that `i ≤i `′i for any i ∈ XS

f

and `j = `′j for any j ∈ XB
f then (Df (l))i ≥i (Df (l′))i holds for any i ∈ XS

f . (Here the

i subscript denotes the ith coordinate of the corresponding intensity-vector.)

The above mapping Df : Lf → Lf is called cross side monotone if the following

properties hold. If elements l = (`1, `2, . . . , `k) and l′ = (`′1, `
′
2, . . . , `

′
k) of Lf are such

that `i = `′i for any i ∈ XS
f and `j ≤j `′j for any j ∈ XB

f then (Df (l))i ≤i (Df (l′))i

holds for any i ∈ XS
f . Moreover, if elements l = (`1, `2, . . . , `k) and l′ = (`′1, `

′
2, . . . , `

′
k)

of Lf are such that `i ≤i `′i for any i ∈ XS
f and `j = `′j for any j ∈ XB

f then

(Df (l))j ≤j (Df (l′))j holds for any j ∈ XB
f . Clearly, in the 0/1 case, the above

properties require a certain monotonicity and antitonicity property of the corresponding

set-function.

We say that choice function Cf : Lf → Lf has the SSS and CSC properties (or

in other words, fully substitutable) if there exists a same side antitone and cross side

monotone determinant Df : Lf → Lf of C. Observe that in the 0/1 case, an SSS and

CSC choice function is exactly a ”traditional” choice function that has the same side

substitutability and cross side complementarity properties.

Example 3.10.2. Ostrovsky’s model in [38] consists of a finite number of agents in a

supply chain and certain possible contracts between pairs of these agents. There is also

given a 2-partition of the contracts of each agent into incoming and outgoing contracts,
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and these partitions are given in an acyclic manner. Furthermore, each agent f has a

choice function Cf on its contracts that has the same side substitutability and cross side

complementarity properties. A set Y of contracts is individually rational in Ostrovsky’s

model if Cf (Yf ) = Yf holds for each agent f where Yf denotes the set of contracts of

Y that involve agent f .

To see that Ostrovsky’s above model fits in ours, define digraph D with vertices cor-

responding Ostrovsky’s agents and arcs of D are along the contracts and the orientation

is from the outgoing to the incoming. For each x contract, Lx := ({0, 1},≤). Clearly,

the above choice functions in Ostrovsky’s model define choice functions on Lf for each

agent f and these choice functions have the SSS and CSC properties. Furthermore,

elements of LD correspond to subsets of contracts, and individual rationality of an el-

ement of LD means that the corresponding subset of contracts is individually rational

in Ostrovsky’s model.

Example 3.10.3. In Fleiner’s model in [18], agents are the vertices of a directed

graph D, and an arc uv represents the contract that u sells some universal good to

f . Each contract x has a capacity c(x) determining the maximum amount that can

be sold along contract x. To represent this in our model, Lx = ([0, c(x)],≤) or Lx =

({0, 1, 2, . . . , c(x)} ≤), depending whether the traded good is divisible or not. Individual

rationality of a trading scheme in this model is nothing but requiring that the trading

scheme is a network flow, that is, no more good is traded along an arc than its capacity

and Kirchhoff’s conservation law holds for all agents except for s and t: they have to

buy the same amount as the amount they sell. Moreover, each agent f has a linear

preference order on the set Xf of arcs. These linear preferences determine a choice

function for f on Lf : agent f maximizes the amount of goods she trades and this

throughput is achieved along the most preferred arcs. (Special agents s and t have the

identity choice function: Cs(l) = l for each l ∈ Ls, and similar holds for t.) It is easy

to check that individually rational contract schemes correspond to network flows of the

underlying network.

The key to our result is understanding the relation between the SSS and CSC

properties of a choice function and comonotonicity. To do so, we look through certain

glasses that we construct from an unusual lattice, and all of a sudden the picture

becomes clear. So let us start with the lattice first. For each agent f of our model

define lattice

L̃f :=
⊕
x∈XB

f

Lx ⊕
⊕
x∈XB

f

L−1
x .

Observe that L̃f and Lf have the same ground set (so elements of L̃f are intensity-

vectors), the difference is that the partial order on the outgoing arcs are opposite. E.g.,

in the 0/1 case a set Z w Y of such arcs if ZB
f ⊇ Y B

f and ZS
f ⊆ Y S

f To distinguish

the lattice order and operations of lattices L̃f and Lf , vf , ∧̃ and ∨̃ denote it for
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the former and ≤f , ∧ and ∨ for the latter one (just as we did so far). We can now

formulate the promised key observation.

Observation 3.10.4. Mapping Df is same side antitone and cross side monotone on

Lf if and only if Df is antitone on L̃f .

Proof. Straightforward from the definition.

Recall that by definition, if choice function Cf : Lf → Lf has the SSS and CSC

properties then there is a same side antitone and cross side monotone determinant Df
of Cf . By Observation 3.10.4, Df is antitone in L̃f .

Note that an SSS CSC, IRC choice function C might have several antitone deter-

minants D. Recall that we can find a canonical determinant:

Lemma 3.10.5. Assume that Cf : Lf → Lf is an SSS CSC choice function on

complete and infinitely distributive lattice Lf and l ∈ Lf is an intensity vector, then

define

DCf (l) :=
∨
{` ∨ 0f : x ∈ Xf , ` ∈ Lx, ` ≤ Cf (l ∨ `)(x)} (3.5)

as the join of all `-rational intensities. Then DCf is an L̃f -antitone determinant of

Cf . Moreover, this is the smallest antitone determinant of Cf .

The proof of this Lemma is the same as the proof of Lemma 1.3.7, the only difference

is that we include 0f , the minimal element of lattice Lf in the definition, while in

Lemma 1.3.7 it was automatically 0.

Antitone determinant DCf in Lemma 3.10.5 is called the canonical determinant of

Cf . The definition in case of 0/1 lattices states that DCf (Y ) is the set of all contracts

a that are selected if f can choose only from Y ∪ a. Sometimes these contracts are

referred as the ones that are undominated by contract set Y . In the more general

case of lattices we can also say that DCf is the join of all contract intensities that are

undominated by the input of the determinant. A consequence of Lemma 3.10.5 that is

that if D is some L̃f -antitone determinant of Cf then DCf ≤ D holds, that is, DCf is

the smallest determinant of Cf . We remark moreover, that L̃f -antitone determinants

of SSS CSC, IRC choice function C form a complete lattice with lattice operations ∧
and ∨. This follows that DCf is the meet of all determinants of Cf .

Example 3.10.6. Lemma 3.10.5 shows that for choice functions in the flow model

seen in Example 3.10.3 we can calculate the canonical determinant the following way.

Suppose intensity vector l is offered for agent f . The agent calculates the total amount

of incoming and outgoing offers, say win =
∑

x∈XB
f
lx and wout

∑
x∈XS

f
lx. The value

of the determinant at an incoming arc x will be the minimum of the capacity of x

and the positive part of the difference of wout and the total offer in the incoming

arcs that are preferred to x by f . Similarly, the determinant on an outgoing arc y

will be the minimum of the capacity of y and the positive part of the difference of
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win and the total offer on outgoing arcs better than y. In particular, for the con-

crete case of ` = (0, 3, 0, 2; 0, 0, 1, 0, 3, 0) , if the capacities are (2, 4, 2, 2; 1, 7, 2, 2, 5, 3)

then we have DCf (`) = (2, 4, 1, 1; 1, 5, 2, 2, 4, 1). Clearly, Cf (0, 3, 0, 2; 0, 0, 1, 0, 3, 0) =

(0, 3, 0, 2; 0, 0, 1, 0, 3, 0) ∧ (2, 4, 1, 1; 1, 5, 2, 2, 4, 1) = (0, 3, 0, 1; 0, 0, 1, 0, 3, 0), just as we

have seen before.

Recall that contract scheme l ∈ LD is acceptable if for each agent f , the f -projection

lf of l is rational for Cf , that is, if Cf (lf ) = lf .

For an intensity ` ∈ Lx of contract x involving f , we say that ` is (0, f)-rational

if f is happy to accept intensity ` for contract x when for all other contracts the

minimum intensity is offered. Or, formally, if ` = Cf (0f ∨ `)x holds, where 0f denotes

the minimum element of lattice Lf and by abusing notation, we denote by 0f ∨ ` that

intensity-vector of Lf that has the corresponding lattice-minimum on each coordinate

except for x where it has intensity `.

If ` is an intensity of a contract x of firm f , and we have a contract scheme l, then

we say ` is (l, f)-rational if ` ≥ Cf (l ∨ `)x.
Now assume that `1 ∈ Lx1 and `2 ∈ Lx2 are intensities of contracts x1 = uv and

x2 = vw. We say that pair (`1, `2) is an (l, f)-rational pair if f does accept neither

`1 nor `2 if they are offered individually along with l (and for all other contracts the

minimum intensity is offered), but f is happy to accept both intensities if for all other

contracts the minimum is offered. The formal definition is that neither `1 nor `2 is

(l, v)-rational for f but `1 = Cf (0f ∨ `1 ∨ `2)x1 and `2 = Cf (0f ∨ `1 ∨ `2)x2 holds.

Contract schemes play the role what outcomes played in the 0/1 model. In the 0/1

model, outcome A was a subset of the contracts, A ⊆ X. Its correspondings contract

scheme l is defined as l(x) = 1 for x ∈ A, and l(x) = 0 for x /∈ A.

Our next goal is to define stability of a rational contract scheme l in our model.

We can generalize the concept of full trail-stability here. Namely, a contract scheme

l ∈ LD is fully trail-stable if

1. l is acceptable i.e., Cf (lf ) = lf for every firm f .

2. There is no trail T = {x1, x2, . . . , xM} with intensity `i on contract xi = fifi+1

such that

(a) `i � l(xi) for every 1 ≤ i ≤M .

(b) x1 with intensity `1 is (l, f1)-rational for f1 = s(x1) i.e., (Cf1(l ∨ `1))x1 ≥ `1

(c) (Cfi(l ∨ `i ∨ `i+1))xi ≥ `i and (Cfi(l ∨ `i ∨ `i+1))xi+1
≥ `i+1 for every 1 ≤ i ≤

M − 1.

(d) xM with intensity `M is (l, fM+1)-rational for fM+1 = b(xM) i.e. (CfM+1(l ∨
`M))xM ≥ `M

The above trail T is called a locally blocking trail to l.
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So if a contract scheme l is not fully trail-stable then there is some agent f1 that

would like to increase the intensity of her selling to agent f2. If agent f2 accepts

this increase then we already have the blocking walk. Otherwise, f2 asks around

whether some other agent f3 would be happy if the intensity of a f2f3 contract would

be increased to an amount that follows from the increased volume of the f1f2 contract.

There might be an agent f3 who accepts it right away or on the condition that she

can increase the intensity of a certain f3f4 selling contract. As contract scheme l is

unstable, this sequence must end such that some fM accepts the intensity increase

without looking for some further agent to whom she can sell.

Notation defined over name

` ∈ Lx a contact intensity

l ∈ Lf contacts involving f intensity vector

l ∈ LD all contacts contract scheme

l ∈ L̃f contacts involving f intensity vector 16

l̃ ∈ L̃D all contacts, twice intensity scheme

Table 3.1: Names

3.10.1 Existence of a Stable Contract Scheme

Our main result below states that there always exists a fully trail-stable contract scheme

in our model.

Theorem 3.10.7. [Fleiner, Jankó, Tamura For any digraph D = (F,X), for any

complete lattices Lx for each contract x ∈ X and for any IRC, SSS and CSC choice

functions Cf : Lf → Lf for each f ∈ F there exists a fully trail-stable contract scheme

l ∈ LD.

To prove Theorem 3.10.7, we construct a tricky lattice and a monotone mapping

on it. Define lattice L̃D :=
⊕

f∈F L̃f and call the elements of L̃D intensity schemes.

Observe that each intensity scheme l is a vector with coordinates lf indexed by agents

f . Each coordinate lf ∈ Lf is an intensity-vector itself, coordinate (lf )a correspond-

ing to contract a is a single intensity of La. This means that each intensity scheme

contains exactly two (unrelated) intensities for each contract, one for the agent that

the corresponding arc leaves and another one where this arc enters. Observe that L̃D
is a lattice, but the lattice order is unusual as it comes from the lattice orders of L̃f
that are opposite on the outgoing arcs. For any contract scheme l, we can define an

intensity scheme ll by ”duplicating” the coordinates, that is, (llf )a = la holds for each

agent f and each contract a involving f .
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We define two operations on L̃D. For an intensity scheme l, define intensity scheme

D(l) :=
⊕
f∈F

(Df (lf ))

where Df is the v-antitone determinant of Cf . By Observation 3.10.4, l 7→ D(l) is

an v-antitone mapping. It is easy to see that D is a determinant of choice function

C :=
⊕

f∈F C
f .

The other operation is the following. The dual of intensity scheme l̃ ∈ L̃D is the

intensity scheme l̃∗ of L̃D that we get by switching the two intensities of each contract.

Formally, for each arc x = uv we have (l̃∗u)x = (l̃v)x and (l̃∗v)x = (l̃u)x. (According to our

notation, l̃v is the v-coordinate of l̃ that is itself an intensity-vector, with x-coordinate

(l̃v)x.)

Observation 3.10.8. If l̃ ∈ L̃D is an intensity scheme and each choice function Cf

is SSS and CSC then both l̃ 7→ D(l̃) and l̃ 7→ l̃∗ are v-antitone mappings.

Proof. We have already seen that the first mapping is v-antitone. To prove the same

for the dual, assume that l̃ v l̃′ holds for intensity schemes l̃ and l̃′. This means that

intensities are greater in l̃ than in l̃′ on outgoing arcs and less in l̃ than in l̃′ on incoming

arcs. Dualization means that we switch intensities along the two vertices of each arcs,

so these relations hold the opposite way for l̃∗ and (l̃′)∗, and this is exactly we had to

prove.

The key to the proof of Theorem 3.10.7 is the following lemma.

Lemma 3.10.9 (Fleiner,Jankó,Tamura). [21] If there exists an intensity scheme l̃

such that ll = l̃ ∧ l̃∗ and l̃ = (D(l̃))∗ then intensity scheme ll is a duplication of a fully

trail-stable contract scheme.

Proof of Lemma 3.10.9. Suppose l̃ is a fixed point. Observe that ll = l̃ ∧ l̃∗ = l̃ ∧
(D(l̃)∗)∗ = l̃∧D(l̃) = C(l̃). Using the notation b = D(l̃), b∗ = l̃, and b∧ b∗ = l̃∗ ∧ l̃ = ll

Assume indirectly that there is locally blocking trail for l, namely T = (f0, x1, f1, x2 . . .

xk, fk) and the contracts x1, x2 . . . xk have intensities `x1 , `x2 , . . . , `xk respectively.

Let us use the following names: arc xi = fi−1fi of the trail is a starter if (l̃fi−1
)xi ≥

`i. Arc xi is an ender if (l̃fi)xi ≥ `i and let us call xi neutral if (l̃fi−1
)xi � `i and

(l̃fi−1
)xi � `i. It is easy to see that every xi falls in at least one of these categories, and

might be a starter and ender at the same time.

Note that l is defined over all contracts, and l̃ has a value for all (l̃v)a if v is a firm

and a is a contract involving v (i.e. l̃ has two unrelated intensities for each contract).

However, ` is only defined on the arcs of the trail, so every time an arc x′ is not on this

trail, then ((l̃ ∨ `)v)x′ = (l̃v)x′ and (l ∨ `)x′ = lx′ .
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(i) We will show that if any of the following is true, then trail T with intensity `

cannot block the contract scheme.

1. x1 is a starter.

2. xk is an ender.

3. For some 1 ≤ i ≤ k − 1, arc xi is an ender and xi+1 is a starter.

To check these three possibilities in one setting, let fi be the firm where the two

consecutive contract involving it are a starter and ender. If x1 is a starter, then i = 0,

and if xk is an ender, then i = k.

In this case, lxi ≤ (l ∨ `)xi ≤ (l̃fi)xi (if i ≥ 1) and lxi+1
≤ (l ∨ `)xi+1

≤ (l̃fi)xi+1
(if

i < k). Since C(l̃) = l, from the IRC property we get C(l ∨ `xi ∨ `xi+1
) = l, so this `

cannot be locally blocking.

(ii) Also, we will show that if trail T with intensity ` is a locally blocking trail, then

every xi is an ender. (i.e. (l̃fi)xi ≥ `i for all 1 ≤ i ≤ k.) We are going to prove it by

induction. Suppose that i = 0 or xi is an ender. Let k̃ be the intensity scheme we get

from l̃ by replacing (l̃fi)xi+1
with (l̃fi)xi+1

∨ `xi+1
. In other words, k̃fi = l̃fi ∨ `xi+1

and

k̃v′ = l̃v′ for every v′ 6= fi. (We may use the notation k̃ = l̃ ∨ `xi+1
but it is ambiguous,

since there are two intensities of xi+1 in l̃.)

Since we only increased intesity on an arc leaving fi, for the twisted partial ordering

k̃ v l̃.

Since D is w-antitone, D(k̃) w D(l̃) = b, so at contract xi+1, D(k̃fi)xi+1
≤ (bfi)xi+1

.

Looking at contract xi+1 only, Cfi(l̃ ∨ `xi+1
)xi+1

= (l̃fi ∨ `xi+1
)xi+1

∧ Dfi(l̃ ∨ `xi+1
)xi+1

≤
(l̃fi ∨ `xi+1

)xi+1
∧ (bfi)xi+1

= ((l̃fi)xi+1
∨ `xi+1

) ∧ (l̃fi+1
)xi+1

In the last step, we use that

b = l̃∗. From now on, let us use the notation x = ((l̃fi)xi+1
∨ `xi+1

) ∧ (l̃fi+1
)xi+1

.

Using that the lattice is distributive:

x = (`xi+1
∨ (l̃fi)xi+1

) ∧ (l̃fi+1
)xi+1

= (`xi+1
∧ (l̃fi+1

)xi+1
) ∨ ((l̃fi)xi+1

∧ (l̃fi+1
)xi+1

)

From definition, ((l̃fi)xi+1
∧ (l̃fi+1

)xi+1
) = lxi+1

therefore x = (`xi+1
∧ (l̃fi+1

)xi+1
)) ∨ ((l̃fi)xi+1

∧ (l̃fi+1
)xi+1

) ≤ `xi+1
∨ lxi+1

Let m̃ = l̃|l ∨ `xi+1
denote the intensity scheme we get from l̃ if for all e ∈ XS

fi
(i.e.

contract e whose seller is fi), we replace (l̃fi)e with le and on contract xi+1 we replace

(l̃fi)xi+1
with lxi+1

∨ `xi+1
. Therefore, m̃ ≤̃ k̃ and m̃fi w (l ∨ `xi+1

)fi .

For contract xi+1 we have seen that Cfi(l̃fi ∨ `xi+1
)xi+1

≤ x ≤ `xi+1
∨ lxi+1

For contract e whose seller is fi, buyer is v′ and e 6= xi+1, Cfi(l̃fi ∨ `xi+1
)e = (l̃fi ∨

`xi+1
)e ∧ Dfi(l̃ ∨ `xi+1

)e ≤ (l̃fi)e ∧ (bfi)e = ((l̃fi)e) ∧ (l̃v′)e = le

All together, at firm fi, Cfi(l̃fi ∨ `xi+1
) ≤ m̃fi ≤ (l̃fi ∨ `xi+1

), in other words

Cfi(k̃fi) ≤ m̃fi ≤ k̃fi and Cfi is IRC, so Cfi(k̃) = Cfi(m̃).
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Since we supposed that xi is an ender, m̃xi = l̃xi ≥ (l∨`)xi , so m̃fi w (l∨`xi∨`xi+1
)fi .

If i = 0, then m̃f0 w (l ∨ `x1)f0 .
The determinant is antitone so Dfi(m̃)xi+1

≥ Dfi(l∨ `xi ∨ `xi+1
)xi+1

≥ `xi+1
(because

we supposed that ` is a locally blocking trail) so Cfi(m̃)xi+1
≥ `xi+1

. Thus Cfi(k̃)xi+1
≥

`xi+1
. We know that k̃fi differs from l̃fi only on the value on contract xi+1. From the

definition of the canonical determinant, Cfi(k̃)xi+1
≥ `xi+1

implies Dfi(l̃)xi+1
≥ `xi+1

so

(l̃fi+1
)xi+1

≥ `xi+1
therefore xi+1 is an ender.

At the end of the trail, xk is an ender, and by (i) this implies that the trail with `

intensities cannot be blocking.

Example 3.10.10. If the lattice of intensities on a contract, Lx, is not distributive

then this fixed-point method may not lead to a fully trail-stable contraxt scheme, as we

show in this counterexample.

The market consists of only one contract. F = {s, t}, X = {x} = st. Lattice Lx =

({0, a, b, c, 1},≤) where 0 < a < 1, 0 < b < 1, 0 < c < 1, and a, b, c are incomparable.

The choice functions and their determinants are:

0 a b c 1

Cs 0 0 b c b

Ds 1 b b 1 b

Ct 0 a 0 c a

Dt 1 a a 1 a

One can check that these D functions are antitone, Cs and Ct are IRC.

Let (l̃s)x = a, (l̃t)x = b, so D(l̃) = (b, a) and (D(l̃))∗ = (a, b). Therefore (a, b) is a fixed

point. Here l = l̃ ∧ l̃∗ = (0, 0). Thus 0 should be fully trail-stable, but contract x with

intensity ` = c is a blocking trail, since both ends accept c. The only fully trail-stable

solution is c.

Proof of Theorem 3.10.7. Define ϕ : L̃D → L̃D by ϕ(l̃) = (D(l̃))∗ as a composition of

two mappings that are v-antitone by Observation 3.10.8. So ϕ is monotone on lattice

L̃D, hence it has a fixed point l̃ by Theorem 1.2.1 of Tarski. Lemma 3.10.9 implies that

intensity scheme l̃ ∧ l̃∗ is the duplication of a stable contract scheme.
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3.11 Conclusion

We summarize here the results of the Thesis. In the first part, we dealt with two-sided

markets (where contracts form an general undirected bipartite graph) and supply chains

(where contracts form a directed graph). In both scenarios, we defined various models

of stability and compared them with each other. For three- four- and score-stability we

can generalize the Gale-Shapley algorithm to get the optimal and pessimal matchings

for one side of the market.

We can generalize Blair’s theorem to show that the four-stable outcomes form a

lattice for a natural partial order. This remains true even with lattice choice functions.

Using this, we can show an alternative proof for the Theorem of Aharoni, Berger, and

Gorelik about the existence of weighted kernels [20].

For contract networks, we can show set-stable outcomes do not always exist, more-

over for a given outcome, deciding whether a blocking set exist is NP-hard. Trail-stable

and fully trail-stable outcomes always exists, moreover fully trail-stable outcomes form

a lattice for a preference ordering of the terminal agents. We conjecture that terminal-

superiority on the trail-stable outcomes has the lattice property [22].

If a new agent (a terminal seller) enters or leaves the market, after a market rear-

rangement, the new outcome will be worse for all terminal sellers, and better for all

terminal buyers.

The thesis is based on three and a half papers of the candidate.

� [19] Tamás Fleiner and Zsuzsanna Jankó. Choice function-based two-sided mar-

kets: Stability, lattice property, path independence and algorithms. Algorithms,

7(1):32, 2014.

This paper yields the base of Sections 2.1, 2.2 and 2.3.

� [20] Tamás Fleiner and Zsuzsanna Jankó. On weighted kernels of two posets.

Order, 33(1):51–65, 2016.

(Some parts of Section 1.1 and Section 2.3 concerning the lattice choice functions,

and all of Section 2.4.)

� [22] Tamás Fleiner, Zsuzsanna Jankó, Akihisa Tamura, and Alexander Teytel-

boym Trading networks with bilateral contracts. Working paper, Oxford Univer-

sity, 2015.

The results of this working paper are contained in Chapter 3 (except Section 3.10

and 3.11.)

� [21] Tamás Fleiner, Zsuzsanna Jankó, and Akihisa Tamura: Stability of gener-

alized network flows, Proceedings of the 8th Japasese-Hungarian Symposium on

Discrete Mathematics and Its Applications, Veszprém, Hungary , 133-141, 2013
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(Section 3.10.)

Finally, the following paper has a topic different from the others, namely house

exchange markets, thus it is not included in this thesis.

� [12] Kataŕına Cechlárová, Tamás Fleiner, and Zsuzsanna Jankó. House-swapping

with divorcing and engaged pairs. Discrete Applied Mathematics, 206:1–8, 2016.
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Abstract

The Thesis consists of two main parts, in the first, we deal with two-sided markets,

which can be represented with a bipartite graph, every vertex corresponds to an agent,

who has a preference ordering, or more generally a choice function over all the edges

(contracts) incident to them.

� We deal with various concepts of stability, such that dominating stability, three-

stability, four-stability and explore their relation to each other.

� We define generalized choice functions over arbitrary lattices and show the use-

fulness of the determinant.

� We generalize Blair’s Theorem [11], and show that four-stable sets form a lattice

if the choice function of one side is IRC, even for lattice choice functions.

� We show that in the Hungarian college entrance model, the stable score limits

form a lattice.

� We give an alternative proof for Aharoni, Berger and Gorelik’s Theorem [2] and

show the lattice property of weighted kernels.

� We show and alternative proof and an algorithm for finding a stable kernel defined

in two ordered matroids.

In the second part of the thesis, we work with trading networks, which can be rep-

resented with a directed graph, every vertex corresponts to a firm, and every arc

represents a bilateral contract between them. A set contracts is called an outcome.

� We introduce the concept of trail-stability and fully trail-stability, and show that

trail-stable and fully trail-stable outcomes always exist.

� We show that the decision problem whether a given outcome is set-stable or has

a blocking set is NP-complete.

� If we define a partial order concerning only the preferences of terminal buyers

and sellers, we can show that trail-stable outcomes include a buyer-optimal and

a seller-optimal one, and fully trail-stable outcomes form a lattice.

� Given a fully trail-stable outcome, if a new terminal seller enters the market,

after a market rearrangement period, the new fully trail-stable outcome will be

better for all terminal buyers, and worse for all terminal buyers than before.

� In the last section we describe a more complex model: in a trading network,

every contract has an intensity, (which is an element of a lattice on this contract).

Choice functions can be defined on the direct sum of intensities, and there always

exists a fully trail-stable contract scheme.
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Összefoglalás

A tézis két fő részből áll, az első részben kétoldalú piacokkal foglalkozunk. Egy

kétoldalú piacot egy páros gráffal ı́rhatunk le, a csúcsok a játékosok, az élek a lehetséges

kapcsolatok. A szereplők preferenciáit a lehetséges kapcsolatokon kiválasztási függvényekkel

ı́rhatjuk le.

� Megvizsgáljuk a dominálásos, háromrészes, négyrészes és vonalhúzásos stabilitást,

és ezek kapcsolatát.

� Általánośıtjuk a kiválasztási függvényeket hálókra, és a megmutatjuk, hogy a

determináns seǵıtségével szebben lehet definiálni a komonotonitást.

� Blair tételét [11] általánośıtjuk négyrészes stabilitásra, a mindkét oldal kiválasztási

függvénye komonoton, és legalább egyiké IRC.

� A magyar felvételi rendszert és a stabil vonalhúzásokat vizsgáljuk. A stabil von-

alhúzások hálót alkotnak.

� Egy alternat́ıv bizonýıtást adunk Aharoni, Berger és Gorelik tételére [2], miszerint

súlyozott kernel mindig létezik. Egy erősebb álĺıtást is belátunk, a súlyozott

kernelek hálótulajdonságát.

� Mutatunk egy alternat́ıv bizonýıtást és egy algoritmust két rendezett matroid

esetén stabil kernel megtalálására.

A dolgozat második felében kereskedési rendszereket modellezünk egy iránýıtott gráffal,

ahol a csúcsok a cégek, az élek a lehetséges kereskedések.

� Definiáljuk a trail-stabilitást és a teljes trail-stabilitást, és megmutatjuk, hogy

trail-stabil és a teljes trail-stabil megoldások mindig léteznek.

� Egy adott kereskedési rendszerre az eldöntési feladat, hogy egy adott kimenetel

halmaz-stabil, vagy létezik hozzá blokkoló élhalmaz, NP-teljes.

� Csak a végső eladók és végső vevők (azaz források és nyelők) preferenciáit fi-

gyelembe véve definiálhatunk egy részbenrendezést a kimeneteleken. A trail-

stabil megoldások között találhatunk vevő-optimális és eladó-optimális megoldást.

A teljesen trail-stabil élhalmazok hálót alkotnak.

� Ha adott egy teljesen trail-stabil kimenetel, és érkezik egy új végső eladó a pi-

acra, egy átrendeződési időszak után kapunk egy olyan, új teljesen trail-stabil

kimenetelt, ahol minden végsó vevő jobban jár, és minden végső eladó rosszab-

bul jár mint az eredeti megoldásban.

� Az utolsó fejezetben még egy ennél is általánosabb modellt ı́runk le: az iránýıtott

éleken adottak hálók, ebből választhatják ki a cégek, hogy mekkora mennyiséget

küldenek rajta. Az éleken lévő hálók direkt összegén definiálhatók kiválasztási

függvények, és ezek seǵıtségével találhatunk teljesen trail-stabil megoldásokat.
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