Übungsaufgaben 66-68 zur Abgabe zu Beginn der Vorlesung am 06.05.2011.

Sie können die Lösungen in Zweiergruppen erstellen. Alle Personen müssen dann aber der gleichen Übungsgruppe angehören.

Aufgabe 66:(10 Punkte)

Bestimmen Sie für die symmetrische Bilinearform $\langle .,. \rangle$, die durch die folgende darstellende Matrix M gegeben ist, die Normalform im Sinne des Trägheitssatzes von Sylvester:

$$M = \left(\begin{array}{cccc} 5 & -2 & -2 & 0 \\ -2 & 6 & 0 & 0 \\ -2 & 0 & 4 & 0 \\ 0 & 0 & 0 & 3 \end{array}\right)$$

Hinweis: Es kommt nur auf die Anzahl der positiven und negativen Eigenwerte an.

Aufgabe 67:(16+8 Punkte)

Betrachten Sie den reellen Vektorraum der beschränkten Funktionen

$$V = \{f : [0,1] \to \mathbb{R} \mid \exists C > 0 : f([0,1]) \subset [-C,C]\}$$

mit der Supremumsnorm

$$|| f ||_{\infty} = \sup \{ |f(x)| | x \in [0, 1] \}.$$

- a) Beweisen Sie, dass $(V, \|.\|_{\infty})$ ein Banachraum ist. Insbesondere ist dabei die Vollständigkeit zu beweisen.
- **b)** Beweisen Sie, dass $(V, \|.\|_{\infty})$ kein Hilbertraum ist.

Aufgabe 68:(6 Punkte)

Betrachten Sie die Funktion

$$f: \mathbb{R} \longrightarrow \mathbb{R} \quad x \longmapsto \left\{ \begin{array}{cc} -1 & , & x \leq 0 \\ 1 & , & x > 0 \end{array} \right.$$

Finden Sie eine offene Teilmenge von \mathbb{R} , die bezüglich f kein offenes Urbild hat.