Übungsaufgaben 36-40 zur Abgabe zu Beginn der Vorlesung am 14.01.2011.

Sie können die Lösungen in Zweiergruppen erstellen. Alle Personen müssen dann aber der gleichen Übungsgruppe angehören.

Aufgabe 36:(5 Punkte)

Betrachten Sie den Körper der reellen Zahlen als Vektorraum über \mathbb{Q} . Beweisen Sie, dass die Elemente 1 und $a \in \mathbb{R}$ genau dann linear abhängig sind, wenn $a \in \mathbb{Q}$.

Aufgabe 37:(2+3+3+4 Punkte)

Welche der folgenden Mengen sind Untervektorräume der angegebenen Vektorräume? (Beweis oder Gegenbeispiel)

a)
$$U_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 1\} \subset \mathbb{R}^3$$

b)
$$U_2 = \{ f : \mathbb{R} \to \mathbb{R} \mid f(1) \cdot f(2) = f(3) \} \subset \text{Abb}(\mathbb{R}, \mathbb{R})$$

c)
$$U_3 = \{ f : \mathbb{R} \to \mathbb{R} \mid -f(x) = f(-x) \text{ für alle } x \in \mathbb{R} \} \subset \text{Abb}(\mathbb{R}, \mathbb{R})$$

d)
$$U_4 = \{(x, y, z) \in \mathbb{R}^3 \mid y^2 z + x^3 + z^3 = 0 \} \subset \mathbb{R}^3$$

Aufgabe 38:(4 Punkte)

Sei V ein Vektorraum über einem Körper $\mathbb K$ und U ein Untervektorraum von V. Beweisen Sie:

$$\dim U \leq \dim V$$

Aufgabe 39:(3+4 *Punkte*)

Seien U_1 und U_2 Untervektorräume eines Vektorraums V über einem Körper \mathbb{K} und $u_i \in U_i \setminus \{0\}$ für i = 1, 2. Beweisen Sie:

- a) Die Vektoren u_1 und u_2 sind linear unabhängig, wenn $U_1 \cap U_2 = \{0\}$.
- b) Sei nun $U_1 = \operatorname{span}(u_1)$ und $U_2 = \operatorname{span}(u_2)$. Beweisen Sie, dass u_1 und u_2 genau dann linear unabhängig sind, wenn $U_1 \cap U_2 = \{0\}$.

bitte wenden

Aufgabe 40:(4+2+6 Punkte)

a) Bestimmen Sie für den folgenden Untervektorraum U von \mathbb{R}^3 eine Basis:

$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y - z = 0, \ 2x + z = 0 \}$$

b) Bilden die folgenden Vektoren eine Basis von \mathbb{R}^3 ?

$$\begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$

c) Beweisen Sie, dass die folgenden Vektoren (i) linear unabhängig sind und (ii) ein Erzeugendensystem von \mathbb{R}^4 bilden:

$$\begin{pmatrix} 3 \\ 2 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ 1 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ 1 \\ 1 \end{pmatrix}$$