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Abstract—Natural images contain crucial information in sharp
geometrical boundaries between objects. Therefore, their descrip-
tion by smooth isotropic function spaces (e.g. Sobolev or Besov
spaces) is not sufficiently accurate. Moreover, methods known to
be optimal for such isotropic spaces (tensor product wavelet de-
compositions) do not provide optimal nonlinear approximations
for piecewise smooth bivariate functions. Among the geometry-
based alternatives that were proposed during the last few
years, adaptive thinning methods work with continuous piecewise
affine functions on anisotropic triangulations to construct sparse
representations for piecewise smooth bivariate functions. In this
article, a customized compression method for coding the sparse
data information, as output by adaptive thinning, is proposed.
The compression method is based on contextual encoding of both
the sparse data positions and their attached luminance values. To
this end, the structural properties of the sparse data represen-
tation are essentially exploited. The resulting contextual image
compression method of this article outperforms our previous
methods (all relying on adaptive thinning) quite significantly.
Moreover, our proposed compression method also outperforms
JPEG2000 for selected natural images, at both low and middle
bitrates, as this is supported by numerical examples in this article.

I. INTRODUCTION

Many applications in image analysis require a preprocessing
decomposition of the underlying function over a specific
library of building blocks, which are usually depending on
the nature of the image. For the sake of efficiency, the utilized
representation is required to be sparse. Moreover, the image
reconstruction, to be obtained from a small number of atoms,
should match further specific requirements of the diverse tar-
get applications, such as object segmentation, denoising, and
geometry-preserving compression. In the latter, a challenging
task is the design of effective edge-preserving methods for
image compression. It has become a widespread paradigm
to model the image geometry mathematically by bivariate
functions which are smooth over a finite number of (two-
dimensional) domain regions separated by (one-dimensional)
locally regular curves, see [6].

Recall that JPEG2000 (based on [10]) works – as well as
other efficient image compression methods – with a wavelet
decomposition of the image, followed by a suitable encoding
method. In the utilized encoding methods, the clustering of
significant image coefficients along sharp edges (or other

characteristic features) is exploited, so that in large smooth
areas of the image only very few coefficients are needed
in their representation. As shown in [7], however, the rep-
resentation of characteristic functions over smooth domains
by wavelet coefficients has severe restrictions. In fact, the
corresponding nonlinear approximations, as they are obtained
by a simple thresholding of the wavelet coefficients, are only
suboptimal. Just very recently, different improvements using
adaptive triangulations have been developed to tackle this
problem, see [1], [8], [9], [12].

This article proposes an alternative concept for contextual
compression of geometry-dominated images. The resulting
compression method relies on adaptive image approximation
using adaptive thinning, which yields a sparse representation
of the image through a very small scattered set of significant
pixels. The adaptive thinning algorithm, dating back to our
papers [2], [3], is a recursive point removal scheme for
scattered data, which has recently resulted in a complete image
compression method [3], [4]. The selection of the significant
pixels by adaptive thinning works with linear splines over
adaptive Delaunay triangulations. The resulting compression
method was shown to outperform JPEG2000 for a test set of
natural and geometrical images [3], [4].

But the compression methods in [3], [4] do not rely on
contextual-based coding. Instead of this, they work with a
rather pragmatic and simple hierarchical coding scheme for
scattered data, dating back to our 2003 paper [5]. Now the
present paper improves the compression methods of our pre-
vious work quite significantly by using a completely different
concept for the coding. In fact, this paper is the first one, where
we combine adaptive thinning (for image approximation) with
contextual coding. Unlike in [3], [4], the focus of this paper
is on coding rather than on approximation.

To be somewhat more precise, the contextual-based coding
scheme of this paper essentially exploits (unlike in [3], [4]) the
structure of our adaptive image approximation, where spatial
properties of the utilized anisotropic triangulations play a key
role: due to their construction (by adaptive thinning), long,
thin and steep triangular elements are aligned with sharp
boundaries between neighbouring objects, whereas large, wide
and flat triangles are lying in smooth areas. In the design of



suitable local coding contexts, we make essential advantage
of this important point.

In comparison with contextual coding in wavelet-based
compression methods [10], the coding of the wavelet decom-
position is done by using judiciously chosen local contexts:
spatial structures in the wavelet domain are exploited to reduce
the size of the compressed image. This explains that in spite
of non-optimal approximation rates for wavelets, JPEG2000
outputs good image reconstructions at high compression rates.

In the numerical comparisons of Section III, we show
that the performance of the proposed contextual-based com-
pression method reduces the coding costs of our previous
compression methods [3], [4] quite significantly. Moreover,
it is shown that our contextual-based compression method
outperforms JPEG2000 now also for higher (more realistic)
compression rates, unlike the compression methods in [3], [4].

II. CONTEXTUAL COMPRESSION OF SPARSE IMAGE DATA

A. Image Approximation and Sparse Data Representation

We consider a digital gray-scale image

I : X = [1, N ]× [1,M ]→ [0, 1, . . . , 2r − 1]

as a function, where X ⊂ Z2 is the discrete pixel domain of
the image function I , and r is the number of bits used for the
representation of the luminance values. The adaptive thinning
algorithm [3] constructs a small subset Y ⊂ X of significant
pixels in only O(|X| log(|X|)) steps, where |X| is the number
of pixels in X . The (unique) Delaunay triangulation D(Y )
of Y yields a linear approximation space SY , containing all
continuous linear spline functions over D(Y ).

Now the resulting sparse image representation is given by
the (unique) best approximating spline function L∗Y ∈ SY

which minimizes the mean square error among all linear
splines in SY . The construction of Y , by adaptive thinning,
and so the selection of the spline space SY , aims to reduce
the resulting minimal mean square error. Since the selection
of an optimal subset Y ∗ ⊂ X (among all subsets Y ⊂ X of
equal size) is known to be an NP-hard optimization problem,
the adaptive thinning algorithm could be viewed as a very
efficient method for finding a good image approximation in a
(huge) dictionary of linear splines over triangulations.

The sparse representation of image I can be written as

L∗Y (p) =
∑
q∈Y

L∗Y (q)ϕq(p) for p ∈ X,

where the Courant element ϕq ∈ SY is, for q ∈ Y , the unique
Lagrangian basis function satisfying

ϕq(p) =
{

1 for q = p;
0 for q 6= p; for q ∈ Y.

Since the Delaunay triangulation D(Y ) of the significant
pixels Y ⊂ X , as output by adaptive thinning, will be unique
(see [3], [4] for subtle details), there is no need to code any
connectivity information. Therefore, we are concerned with
coding sparse data from the small information set

{(p, αp) : p ∈ Y and αp ∈ {0, 1, . . . , S}} ,

where S < 2r, due to uniform quantisation.
Now our proposed compression algorithm performs the

following two steps, one after the other.
(i) code the subset Y (see Subsection II-C);

(ii) code the symbols αp, for p ∈ Y (see Subsection II-D).
At the decoder, the information Y is decoded first, before

the corresponding Delaunay triangulation D(Y ) is recon-
structed from Y . Therefore, the required connectivity infor-
mation is readily available at step (ii), and so it can be used
for the purpose of contextual coding.

B. Deterministic Contextual Encoding

Let us first recall some general principles of contextual en-
coding. Contextual encoding of an information unit makes use
of causal information being attached to this unit. The causal
information is usually given by specific context information
that is available at the corresponding decoding step. A context
is given by causal information that is used by the encoder and
the decoder to agree on the mode according to which a current
symbol is coded.

For the sake of further illustration, let us make one simple
example. Suppose the symbols to be coded are binary (0 or 1)
and there are only two possible coding modes (say A and B)
determined by the context. A contextual compression scheme
can be regarded as a map which associates each context of
a symbol with a mode. With that map, the occurences of 0
and 1, conditionally to the modes A and B, are first counted.
Let us denote the occurences by n0,A, n1,A, n0,B and n1,B

(e.g. n0,A may be the number of 0 to be coded according to
the coding mode A). Each symbol is then coded according to
its corresponding conditional frequency in the set of symbols
which have not been coded, yet.

We remark that non-adaptive arithmetic encoding usually
produces codes whose length is given by the conditional
entropy, defined as

log
(

n0,A

n0,A + n1,A

)
+log

(
n0,B

n0,B + n1,B

)
< log

(
n0

n0 + n1

)
,

where the upper bound on the right hand side is the global
(non-contextual) entropy of the data. Contextual encoding
decreases the corresponding coding length quite significantly,
especially when the differences between the conditional fre-
quencies n0,A/(n0,A+n1,A) and n0,B/(n0,B+n1,B) are large.

Now we consider the generic case where the symbols to
be coded belong to a finite set S and the contextual modes
belong to a finite setM. The combinatorial contextual coding
method is formulated in Algorithm 1.

In contrast to standard contextual encoding methods, where
adaptive (i.e. learning probabilistic) approaches are used [10],
we prefer to work with a combinatorial (i.e. deterministic)
approach, where the frequencies are initially transmitted (in
step (1)) and updated after each symbol coding (in step (3c)).

In the following two subsections we design contextual
modes which lead to small conditional entropies for the two
relevant classes of information sets, that is (i) the positions
of the significant pixels and (ii) the luminance values at these



pixels. Since image structures are local in space, causal context
is, for any element to be coded, given by causal information
restricted to its local neighbourhood.

Algorithm 1: (Combinatorial Contextual Coding).
(1) Compute frequency table ns,M for all s ∈ S and

M ∈M; then transmit nij ;
(2) Add the table to the bitstream;
(3) For i = 1, . . . , N ;

(3a) Determine the contextual state M of i;
(3b) Code symbol si according to a determin-

istic arithmetic coding scheme, where each
symbol s ∈ S is assigned a probability
ps = ns,M/(

∑
t∈S nt,M );

(3c) Let ns,M = ns,M − 1;

C. Contextual Coding of the Pixel Positions

This section deals with the coding of the pixel positions,
or, equivalently, with the coding of the subset Y ⊂ X of
significant pixels, as output by adaptive thinning (step (i)).
We recall that adaptive thinning outputs clusters of significant
pixels which are aligned with sharp edges (i.e. regular curves).
But significant pixels are also clustered around fine details of
the image, see the numerical examples [3], [4]. We make use
of these observations to design appropriate contexts.

For the sake of simplicity, we restrict ourselves to the
case where the information (i.e. the significant pixels) are
coded line by line, from top-left to bottom-right. Accordingly,
we define a contextual box of order r, B(p), of a pixel
p = (px, py) ∈ X as the set of causal pixels q satisfying
max(|px − qx|, |py − qy|) ≤ b, for b ∈ N. For any pixel
p ∈ X , we denote by np the number of significant pixels
in B(p), i.e. np = |Y ∩B(p)|. The numbers np are then used
to determine the contextual mode of the point p. We remark
that the size of the boxes and the number of modes become
parameters of the coding method which have to be transmitted
in the global header. An illustrating example is displayed in
Figure 1.

Fig. 1. Contextual Box. Each square of the grid corresponds to a pixel p;
significant pixels are displayed in gray. The crossed square is the pixel to be
coded. The contextual box for b = 2 is the area surrounded by the fat line;
it contains np = 3 significant pixels.

D. Contextual Coding of the Luminance Values

We remark that the Delaunay triangulation D(Y ) of the
significant pixels Y ⊂ X – output by adaptive thinning –
can be used as causal context in the coding/decoding of the
(gray-scale) luminance values. We can explain this as follows.

For piecewise smooth functions, large, wide and flat tri-
angles are lying in smooth areas, whereas long, thin and
steep triangles are lying near the image contours. This is
due to the construction of the triangulation D(Y ) by adaptive
thinning, which aims to capture the geometry of the image.
Therefore, for pixel pairs lying opposite across an edge of
D(Y ) the difference between their luminances is assumed to
be a decreasing function of the edge length. This assumption
is corroborated by numerical observations, see the example
Drunken Sunset in Figure 2.

This reasonable assumption motivates our iterative contex-
tual coding strategy: starting at the longest edge in D(Y ),
we transmit the differences of the luminances along the
current longest neighbouring edge, respectively, for which
the information at the other vertex has already been coded.
The range taken by the lengths of the longest causal edge is
partitioned into intervals each of which corresponding to one
contextual mode.

III. NUMERICAL RESULTS

In this section, we compare the performance of the proposed
contextual image compression method, CAT, with that of our
previous compression method, AT in [3], and with that of
JPEG2000 [10]. For JPEG2000 we used the Kakadu imple-
mentation available at [11]. The results presented for CAT and
AT are based on a full compression/decompression scheme
rather than on an evaluation of theoretical coding costs.

The utilized test cases are comprising three popular images:
Cameraman, Lena and Fruits. The Cameraman test
image is of size 256× 256 pixels, whereas the other two test
images are containing 512× 512 pixels.

Figure 3 shows rate-distortion curves for the three test cases,
where for each of the three different compression methods the
resulting peak signal to noise ratio (PSNR, measured in dB)
is plotted as a function of the compressed data size (measured
in bits per pixel, bpp).

Note that in all test cases, the compression method CAT
of this article outperforms our previous compression method
AT quite significantly. Moreover, the performance of CAT
is also superior to JPEG2000 for a larger range of small
and mid bitrates, unlike AT. For the geometry-dominated test
image Fruits, for instance, the compression method CAT
outperforms JPEG2000 for all bitrates smaller than 0.6 bpp.
For the test image Lena, CAT outperforms JPEG2000 for
all bitrates smaller than 0.27 bpp. But for bitrates larger
than 0.27 bpp, JPEG2000 achieves to outperform CAT. This
is due to textures in the test image Lena whose accurate
resolution, when working with CAT, requires more energy
(in terms of significant pixels), whereas the wavelet-based
JPEG2000 renders higher frequencies (like textures) very well
for high bitrates.



Fig. 2. Drunken Sunset. Original image (top); 80 significant points Y
(middle); Delaunay triangulation D(Y ) (bottom). Edges with high luminance
variation are fat.

In conclusion, we can recommend the proposed compres-
sion method CAT (also our previous AT) for images with
dominant geometrical features and with widely texture-free
content. For texture-dominated images, however, our compres-
sion method CAT can only be competitive at small bitrates.

Figures 4–6 show visual comparisons for three selected
test cases. Note that for all test images, our compression
method CAT avoids, unlike the wavelet-based JPEG2000,
oscillating artefacts around edges, especially for the test image
Cameraman. As supported by the presented test cases, our
compression method CAT is edge-preserving and denoising.

Fig. 3. Comparison of rate-distortion curves (bits per pixel vs PSNR) for
methods JPEG2000 (thin curve); AT of [3] (dashed curve); CAT (of this
article, fat curve). Three images are tested: Cameraman, Fruits and Lena.



JPEG2000.
PSNR: 29.84 dB at 3247 Bytes

Contextual Compression.
PSNR: 30.66 dB at 3233 Bytes

Fig. 4. Test image Cameraman. Comparison between JPEG2000 and the
contextual compression method CAT.
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JPEG2000. Contextual Compression.
PSNR: 34.15 dB at 9829 Bytes PSNR: 35.04 dB at 9825 Bytes

Fig. 5. Test image Fruits. Comparison between JPEG2000 and the contextual compression method CAT.

JPEG2000. Contextual Compression.
PSNR: 33.56 dB at 6986 Bytes PSNR: 33.75 dB at 6873 Bytes

Fig. 6. Test image Lena. Comparison between JPEG2000 and the contextual compression method CAT.


