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Abstract This paper concerns the approximation of bivariate functions by using the well-
known filtered back projection (FBP) formula from computerized tomography. We prove
error estimates and convergence rates for the FBP approximation of target functions from
Sobolev spaces Hα(R2) of fractional order α > 0, where we bound the FBP approximation
error, which is incurred by the application of a low-pass filter, with respect to the weaker
norms of the rougher Sobolev spaces Hσ (R2), for 0≤ σ ≤ α . In particular, we generalize
our previous results to non band-limited filter functions and show that the decay rate of the
error saturates at fractional order depending on smoothness properties of the filter’s window
function at the origin. The theoretical results are supported by numerical simulations.
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1 Introduction

The method of filtered back projection (FBP) is a commonly used reconstruction technique
in computerized tomography (CT), which deals with recovering the interior structure of an
unknown object from given X-ray scans, where the measured X-ray data is interpreted as a
set of line integrals for a bivariate function, termed attenuation function. To formulate the
classical CT reconstruction problem mathematically, we regard for f ≡ f (x,y) its Radon
transform R f ≡R f (t,θ), given by

R f (t,θ) =
∫
`t,θ

f (x,y)d(x,y) for (t,θ) ∈ R× [0,π),

where the set
`t,θ =

{
(x,y)

∣∣ xcos(θ)+ ysin(θ) = t
}
⊂ R2

describes the unique straight line that is orthogonal to the unit vector nθ = (cos(θ),sin(θ))
and has (signed) distance t to the origin, i.e., `t,θ passes through (t cos(θ), t sin(θ)) ∈ R2.
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With this definition, the basic CT reconstruction problem can be formulated as follows.

Problem 1 (Reconstruction problem) On domain Ω ⊆R2, reconstruct a bivariate function
f ∈ L1(Ω) from given Radon data{

R f (t,θ)
∣∣ t ∈ R, θ ∈ [0,π)

}
.

Hence, the CT reconstruction problem seeks for the inversion of the Radon transform R.
We remark that this problem has a very long history, dating back to Johann Radon, whose
seminal work [17] provided an analytical inversion of R already in 1917. This has later led
to the filtered back projection (FBP) formula (cf. [6,13]),

f (x,y) =
1
2
B
(
F−1[|S|F (R f )(S,θ)]

)
(x,y) for all (x,y) ∈ R2, (1)

where F is the univariate Fourier transform acting on the radial variable, i.e., for g≡ g(t,θ)

Fg(S,θ) =
∫
R

g(t,θ)e−itS dt for (S,θ) ∈ R× [0,π),

and the back projection Bh≡Bh(x,y) of h≡ h(t,θ) is defined as

Bh(x,y) =
1
π

∫
π

0
h(xcos(θ)+ ysin(θ),θ)dθ for (x,y) ∈ R2.

In the following of this paper, we explain on (1) and its ingredients in more detail. For
the moment, we only wish to remark that the FBP formula (1) is highly sensitive with respect
to noise, due to the filter |S|. In standard stabilization methods for the FBP formula, |S| in (1)
is replaced by a compactly supported low-pass filter AL : R −→ R, with bandwidth L > 0,
of the form

AL(S) = |S|W (S/L) for S ∈ R, (2)

where W ∈ L∞(R) is an even window function of compact support supp(W ) ⊆ [−1,1],
cf. [14]. This modification leads us to an approximate FBP reconstruction formula

fL(x,y) =
1
2
B
(
F−1[AL(S)F (R f )(S,θ)]

)
(x,y) for (x,y) ∈ R2. (3)

Examples for window functions W of commonly used low-pass filters are shown in Table 1.
However, the limitation to band-limited low-pass filters is not required, see e.g. [23].

Although the FBP method has been one of the standard reconstruction algorithms in
CT for decades, its error analysis and convergence behaviour are not completely settled so
far. In [15], Popov showed pointwise convergence restricted to a small class of piecewise
smooth functions. The approach of Rieder and Schuster [19] leads to L2-convergence with
suboptimal rates for compactly supported Sobolev functions. In contrast to this, in [18,20]
Rieder et al. prove optimal L2-convergence rates for sufficiently smooth Sobolev functions.

Name W (S) for |S| ≤ 1 Parameter
Ram-Lak 1 -
Shepp-Logan sinc(πS/2) -
Cosine cos(πS/2) -
Hamming β +(1−β )cos(πS) β ∈ [1/2,1]
Gaussian exp(−(πS/β)2) β > 1

Table 1 Window functions of commonly used low-pass filters, where W (S) = 0 for all |S|> 1 in all cases.
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However, the authors verify their assumptions only for a restricted class of filters based
on B-splines. More recently, Qu [16] showed convergence without rates in the L2-norm for
compactly supported L∞-functions and in points of continuity under additional assumptions.
Note that [16] deals with the continuous problem, while [18,19,20] discuss discrete settings.

In this paper, we also focus on the continuous setting and analyse the inherent FBP
reconstruction error

eL = f − fL

of the FBP approximation fL that is incurred by the application of the low-pass filter AL.
To this end, we prove novel error estimates in Sobolev spaces of fractional order and pro-
vide quantitative criteria to evaluate the performance of the utilized filter by means of its
window function, which is not required to have compact support. Further, we prove con-
vergence for the approximate FBP reconstruction in the treated Sobolev norms along with
asymptotic convergence rates as the filter’s bandwidth goes to infinity, where the smooth-
ness order of the target function f is only required to be positive. Most notably, our results
allow us to predict saturation of the order of convergence at fractional rates depending on
smoothness properties of the filter’s window function, which can be easily evaluated. The
results presented in this paper generalize our previous findings in [1,2,3] and confirm the
key observation that the flatness of the filter’s window function at the origin determines the
convergence behaviour of the approximate FBP reconstruction.

The outline of this paper is as follows. In §2 we explain how low-pass filters can be used
to stabilize the FBP formula (1) yielding an approximate inversion formula for bivariate
functions. We analyse the approximation error of the FBP reconstruction in §3 and derive
Sobolev error estimates for target functions from fractional Sobolev spaces. Assuming cer-
tain regularity of the filter’s window, we prove asymptotic convergence rates as the band-
width goes to infinity in §4, where the presented results generalize our previous work [1,2,3]
to more general filters and show that the rate of convergence saturates at fractional order de-
pending on smoothness properties of the window. We finally provide numerical experiments
in §5 to support our theoretical results and conclude with summarizing remarks in §6.

2 Approximate FBP reconstruction formula

In this section we rigorously define the approximate FBP reconstruction fL in (3), i.e.,

fL(x,y) =
1
2
B
(
F−1[AL(S)F (R f )(S,θ)]

)
(x,y) for (x,y) ∈ R2,

where we more generally assume that the even window W : R −→ R satisfies W ∈ L∞(R)
and

| · |W (·) ∈ L2(R). (W)
In particular, we show that fL is defined almost everywhere on R2, for f ∈ L1(R2), and can
be rewritten as

fL =
1
2
B(qL ∗R f ), (4)

where ∗ denotes the convolution product of bivariate functions in polar coordinates, given
by

(qL ∗R f )(S,θ) =
∫
R

qL(t,θ)R f (S− t,θ)dt for (S,θ) ∈ R× [0,π),

and where we define the convolving function qL : R× [0,π)−→ R as

qL(S,θ) = F−1AL(S) for (S,θ) ∈ R× [0,π). (5)
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Moreover, for f ∈ L1(R2)∩L2(R2) we show fL ∈ L2(R2) and express fL directly in
terms of the target function f via

fL = f ∗KL, (6)

where the convolution kernel KL : R2 −→ R is defined as

KL(x,y) =
1
2
BqL(x,y) for (x,y) ∈ R2. (7)

Before we proceed with the derivation of the representations (4) and (6), for the reader’s
convenience we briefly collect a few relevant facts concerning the Radon transform R that
we need in our subsequent analysis. Since the following results are well-known, we omit the
proofs and refer to the literature instead, e.g. [7,13,22].

We first recall that for f ∈ L1(R2) its Radon transform R f is in L1(R× [0,π)).

Lemma 1 Let f ∈ L1(R2). Then, R f (·,θ) ∈ L1(R) for all θ ∈ [0,π) with

‖R f (·,θ)‖L1(R) ≤ ‖ f‖L1(R2) ∀θ ∈ [0,π).

Moreover, if f is compactly supported, then R f has compact support as well.

Next we recall that the L2-norm of R f is bounded, provided that the function f belongs
to L2

c(R2), i.e., f is square integrable and has compact support.

Lemma 2 Let f ∈ L2
c(R2) be supported in a compact set K ⊂ R2 with diameter diam(K).

Then, R f ∈ L2(R× [0,π)) with

‖R f‖2
L2(R×[0,π)) ≤ π diam(K)‖ f‖2

L2(R2).

Lemma 2 indicates that R can be viewed as a densely defined unbounded linear operator
from L2(R2) to L2(R× [0,π)) with domain L2

c(R2). We now turn to its adjoint operator R#.

Lemma 3 The adjoint operator of R : L2
c(R2)−→ L2(R× [0,π)) is given by

R#g(x,y) =
∫

π

0
g(xcos(θ)+ ysin(θ),θ)dθ for (x,y) ∈ R2.

For g∈ L2(R× [0,π)), R#g is defined almost everywhere on R2 and fulfils R#g∈ L2
loc(R2).

According to Lemma 3 the back projection B is, up to constant 1
π

, the adjoint of R. In
particular, for g ∈ L2(R× [0,π)) the function Bg is defined almost everywhere on R2 and
satisfies

Bg ∈ L2
loc(R2).

We are now prepared to show that the approximate FBP reconstruction fL in (3) is de-
fined almost everywhere on R2, for f ∈ L1(R2), and can be represented as in (4).

Proposition 1 Let f ∈ L1(R2) and let W ∈ L∞(R) be even with | · |W (·) ∈ L2(R). Then, for
any L > 0 the FBP approximation fL in (3) is defined almost everywhere on R2 and satisfies
fL ∈ L2

loc(R2). Furthermore, fL can be rewritten as

fL =
1
2
B(qL ∗R f ) a.e. on R2.
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Proof For f ∈ L1(R2) we have R f (·,θ) ∈ L1(R) for all θ ∈ [0,π) according to Lemma 1
and, thus, F (R f )(·,θ) ∈ C0(R) for all θ ∈ [0,π) due to the Riemann-Lebesgue lemma.
Since W ∈ L∞(R) satisfies | · |W (·) ∈ L2(R), we have AL ∈ L2(R) and for fixed θ ∈ [0,π)
follows that the function

S 7−→ AL(S)F (R f )(S,θ)

is in L2(R). Hence, applying the Rayleigh-Plancherel theorem shows that the function

(S,θ) 7−→F−1[AL(S)F (R f )(S,θ)]

belongs to L2(R× [0,π)) and so

(x,y) 7−→ 1
2
B
(
F−1[AL(S)F (R f )(S,θ)]

)
(x,y) = fL(x,y)

is defined almost everywhere on R2 due to Lemma 3 and we have fL ∈ L2
loc(R2).

Note that the function qL = F−1AL in (5) satisfies qL(·,θ) ∈ L2(R) for all θ ∈ [0,π).
Therefore, for any fixed θ ∈ [0,π) the Fourier inversion formula

AL(S) = F (F−1AL)(S) = FqL(S,θ)

holds in L2-sense. Thus, an application of the Fourier convolution theorem shows that

AL(S)F (R f )(S,θ) = FqL(S,θ)F (R f )(S,θ) = F (qL ∗R f )(S,θ)

holds in L2-sense for fixed θ ∈ [0,π), since R f (·,θ)∈L1(R) and qL(·,θ)∈L2(R). Further-
more, we have (qL ∗R f )(·,θ) ∈ L2(R) for any θ ∈ [0,π) according to Young’s inequality
and so the Fourier inversion formula holds again in L2-sense. Hence, for any fixed θ ∈ [0,π)
we obtain the representation

(qL ∗R f )(S,θ) = F−1[F (qL ∗R f )(S,θ)] = F−1[AL(S)F (R f )(S,θ)]

for almost every S ∈ R. This implies the desired representation of fL. ut

Note that the convolving function qL =F−1AL in (5) satisfies qL ∈ L2(R× [0,π)), since
the filter AL in (2) is in L2(R) due to Assumption (W). Thus, the convolution kernel KL in (7)
is defined almost everywhere on R2 and satisfies KL ∈ L2

loc(R2) according to Lemma 3. In
the following, we prove KL ∈ L2(R2) and determine the bivariate Fourier transform of KL,
as needed in the upcoming analysis of the FBP approximation error. To this end, we extend
the window function WL =W (·/L) to R2 by its radialization WL : R2 −→ R, i.e.,

WL(x,y) =W
( r(x,y)

L

)
for (x,y) ∈ R2, (8)

where we let r(x,y) =
√

x2 + y2 for (x,y) ∈ R2.

Proposition 2 Let W ∈ L∞(R) be even with | · |W (·) ∈ L2(R). Then, for any L > 0 the
convolution kernel KL in (7) satisfies KL ∈ L2(R2) and its Fourier transform is given by

FKL(x,y) =WL(x,y) for almost every (x,y) ∈ R2.
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Proof Since W ∈ L∞(R) satisfies | · |W (·) ∈ L2(R), the bivariate window WL also satis-
fies WL ∈ L2(R2)∩L∞(R2) and F−1WL ∈ L2(R2) due to the Rayleigh-Plancherel theorem.
Moreover, in L2-sense and, thus, for almost all (x,y) ∈ R2 follows that

F−1WL(x,y) =
1

4π2

∫
R2

WL(X ,Y )ei(xX+yY ) d(X ,Y )

=
1

4π2

∫
π

0

∫
R

AL(S)eiS(xcos(θ)+ysin(θ)) dSdθ

by transforming (X ,Y ) = (Scos(θ),S sin(θ)) from Cartesian to polar coordinates.
Recall that we have qL ∈ L2(R× [0,π)) and, for all θ ∈ [0,π),

qL(t,θ) =
1

2π

∫
R

AL(S)eiSt dS for almost all t ∈ R.

Thus, with the definition of the back projection operator B follows that

F−1WL(x,y) =
1

2π

∫
π

0
qL(xcos(θ)+ ysin(θ),θ)dθ =

1
2
BqL(x,y) = KL(x,y).

Consequently, we have KL ∈ L2(R2) and applying the Fourier inversion formula shows that

FKL =WL

holds in L2-sense and, in particular, almost everywhere on R2. ut

Before we proceed, we wish to add one remark concerning the convolution kernel KL.
If the even window function W ∈ L∞(R) in addition to Assumption (W) satisfies

| · |W (·) ∈ L1(R),

the bivariate window WL ∈ L∞(R2) is also in L1(R2) and we have KL ∈ C0(R2)∩L2(R2)
with

KL(x,y) = F−1WL(x,y) for all (x,y) ∈ R2.

We can now prove the desired representation in (6) in the L2-sense. In particular, we
show that fL ∈ L2(R2) and determine its Fourier transform as

F fL =WL ·F f

with the radially symmetric bivariate window WL ∈ L∞(R2)∩L2(R2) defined in (8).

Proposition 3 Let f ∈ L1(R2)∩L2(R2) and let W ∈ L∞(R) be even with | · |W (·) ∈ L2(R).
Then, for any L > 0 the FBP approximation fL in (3) satisfies fL ∈ L2(R2) and can be
written as

fL = f ∗KL

in the L2-sense, in particular almost everywhere on R2.
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Proof Since f ∈ L1(R2) by assumption and KL ∈ L2(R2) due to Proposition 2, applying
Young’s inequality yields ( f ∗KL) ∈ L2(R2) and, thus, the Fourier inversion formula

( f ∗KL)(x,y) =
1

4π2

∫
R2

F ( f ∗KL)(X ,Y )ei(xX+yY ) d(X ,Y )

holds in L2-sense and, in particular, for almost every (x,y) ∈ R2. Additionally, from the
Fourier convolution theorem and Proposition 2 we obtain

F ( f ∗KL) = F f ·FKL =WL ·F f ,

where we have WL ·F f ∈ L1(R2) because f ∈ L2(R2) and WL ∈ L2(R2) so that

( f ∗KL)(x,y) =
1

4π2

∫
π

0

∫
R

F f (Scos(θ),S sin(θ))W (S/L) |S|eiS(xcos(θ)+ysin(θ)) dSdθ

by transforming (X ,Y ) = (Scos(θ),S sin(θ)) from Cartesian to polar coordinates. Further-
more, for f ∈ L1(R2) the Fourier slice theorem (see e.g. [13, Theorem II.1.1]) gives

F f (Scos(θ),S sin(θ)) = F (R f )(S,θ) ∀(S,θ) ∈ R× [0,π),

which in turn implies that

( f ∗KL)(x,y) =
1

4π2

∫
π

0

∫
R

F (R f )(S,θ)AL(S)eiS(xcos(θ)+ysin(θ)) dSdθ .

Recall that the identity

AL(S)F (R f )(S,θ) = F (qL ∗R f )(S,θ)

holds for almost all S ∈ R and fixed θ ∈ [0,π). Hence, we obtain

( f ∗KL)(x,y) =
1

4π2

∫
π

0

∫
R

F (qL ∗R f )(S,θ)eiS(xcos(θ)+ysin(θ)) dSdθ

=
1

2π

∫
π

0
F−1[F (qL ∗R f )](xcos(θ)+ ysin(θ),θ)dθ .

Since (qL ∗R f )(·,θ) ∈ L2(R) for all θ ∈ [0,π), the Fourier inversion formula holds again
in L2-sense and, in particular, almost everywhere on R. Thus, for fixed θ ∈ [0,π) we get

(qL ∗R f )(S,θ) = F−1[F (qL ∗R f )](S,θ) for almost all S ∈ R

and the definition of the back projection B in combination with Proposition 1 yields

( f ∗KL)(x,y) =
1

2π

∫
π

0
(qL ∗R f )(xcos(θ)+ysin(θ),θ)dθ =

1
2
B(qL ∗R f )(x,y) = fL(x,y)

for almost all (x,y) ∈ R2. This finally implies fL = f ∗KL ∈ L2(R2). ut

Combining Propositions 2 and 3 allows us to determine the Fourier transform F fL of
the approximate FBP reconstruction fL.

Corollary 1 Let f ∈ L1(R2)∩L2(R2) and let W ∈ L∞(R) be even with | · |W (·) ∈ L2(R).
Then, for all L > 0 the Fourier transform F fL of the approximate FBP reconstruction fL is
given by

F fL =WL ·F f

in L2-sense and, in particular, almost everywhere on R2.
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We wish to add the following remark on the regularity of the FBP approximation fL.
Since the target function f and the kernel KL are both in L2(R2), the representation (6)
implies that fL is continuous and vanishing at infinity, i.e., we have fL ∈ L2(R2)∩C0(R2).

Recall that we typically deal with even window functions W ∈ L∞(R) with compact
support supp(W ) ⊆ [−1,1] so that | · |W (·) ∈ L1(R)∩L2(R) is automatically satisfied and
the assumption f ∈ L2(R2) can be omitted. Moreover, Corollary 1 shows that in this case
the approximate FBP reconstruction formula (4) provides a band-limited approximation fL
to the target function f . In particular, the FBP approximation fL is arbitrarily smooth.

Corollary 2 (Band-limited FBP approximation) Let f ∈ L1(R2) and let W ∈ L∞(R) be
even with supp(W )⊆ [−1,1]. Then, the approximate FBP reconstruction fL in (3) satisfies

fL =
1
2
B(qL ∗R f ) = f ∗KL ∈ C ∞

0 (R2)∩L2(R2)

with the band-limited function qL ∈ L2(R× [0,π))∩L∞(R× [0,π)) defined in (5) and the
convolution kernel KL ∈ C ∞

0 (R2)∩L2(R2) defined in (7). Moreover, its Fourier transform is
given by

F fL =WL ·F f ∈ L2(R2)

with the compactly supported bivariate window WL ∈ L2(R2)∩L∞(R2) defined in (8).

To close this section, we remark that the approach taken in this work is standard in
the mathematics of computerized tomography and especially the representations (4) and (6)
of the approximate FBP reconstruction fL are known from the literature, see e.g. [8,23].
However, we prove the statements under relatively mild conditions directly posed on the
filter’s window W and not on the corresponding convolution kernel K, unlike in [8,23].

3 Analysis of the inherent FBP reconstruction error

In the previous section we have seen that the application of a low-pass filter AL of the form

AL(S) = |S|W (S/L) for S ∈ R

with finite bandwidth L > 0 and an even window W ∈ L∞(R) satisfying | · |W (·) ∈ L2(R)
leads to an approximate FPB reconstruction fL that can be expressed as

fL =
1
2
B(F−1AL ∗R f ). (9)

For the sake of brevity, we call the application of the approximate FBP formula (9) an FBP
method. Therefore, each FBP method provides one approximation fL to f , fL ≈ f , whose
quality depends on the choice of the low-pass filter AL.

We remark that in practical situations the target function f belongs to L2(R2) and has
compact support such that its Radon transform satisfies R f ∈ L2(R× [0,π)). However, the
Radon data g =R f is usually not known precisely, but only up to an error bound δ > 0, and
we have to reconstruct f from given data gδ ∈ L2(R× [0,π)) with

‖g−gδ‖L2(R×[0,π)) ≤ δ .
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Applying the FBP method (9) to the noisy measurements gδ now yields the reconstruction

f δ
L =

1
2
B(F−1AL ∗gδ )

and, using standard concepts from the theory of inverse problems and regularization (cf. [4]),
we observe that the total reconstruction error

eδ
L = f − f δ

L

can be split into an approximation error term and a data error term:

eδ
L = f − fL︸ ︷︷ ︸

approximation error

+ fL− f δ
L︸ ︷︷ ︸

data error

.

For an analysis of the data error in the L2-norm in the case of band-limited low-pass
filters we refer to [2, Section 8]. In this paper, we focus on the approximation error, i.e., we
analyse the inherent error of the FBP method which is incurred by the application of the
low-pass filter AL. More precisely, we wish to analyse the reconstruction error

eL = f − fL (10)

with respect to the filter’s window function W and bandwidth L. We remark that pointwise
and L∞-error estimates on eL in (10) are discussed by Munshi et al. in [9,10]. Their results
are further supported by numerical experiments in [11]. Error bounds on the Lp-norm of eL,
in terms of Lp-moduli of continuity of the target function f , are proven by Madych in [8].
But our approach is essentially different from previous approaches, see also [2, Section 3].

We prove Sobolev error estimates on eL for target functions f from Sobolev spaces
Hα(R2) of fractional order α > 0. Let us recall that the Sobolev space Hα(R2) of order
α ∈ R is defined as

Hα(R2) =
{

f ∈S ′(R2)
∣∣ ‖ f‖α < ∞

}
,

where
‖ f‖2

α =
1

4π2

∫
R2
(1+ x2 + y2)α |F f (x,y)|2 d(x,y)

and S ′(R2) denotes the space of tempered distributions on R2. In relevant applications of
(medical) image processing, Sobolev spaces of compactly supported functions,

Hα
0 (Ω) =

{
f ∈ Hα(R2)

∣∣ supp( f )⊆Ω
}
,

on an open and bounded domain Ω ⊂ R2, and of fractional order α > 0 play an important
role (cf. [12]). In fact, the density function of an image in Ω ⊂ R2 has usually jumps along
smooth curves, but is otherwise smooth off these curve singularities. Such functions belong
to any Sobolev space Hα

0 (Ω) with α < 1
2 and we can consider the density of an image as a

function in a Sobolev space Hα
0 (Ω) whose order α is close to 1

2 .

Consequently, throughout this section, we assume that we deal with target functions
f ∈ L1(R2)∩Hα(R2) for some α > 0 and that we are given some bandwidth L > 0 and an
even window W ∈ L∞(R) satisfying | · |W (·) ∈ L2(R). Under these assumptions, we now
prove Sobolev error estimates for the FBP reconstruction error eL in (10) with respect to
the Hσ -norm, for all 0 ≤ σ ≤ α . This in particular gives L2-error estimates, when σ = 0.
Moreover, this generalizes our previous results in [1,2,3], where we more restrictively deal
with band-limited low-pass filters, i.e., compactly supported window functions.
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We start with showing that the FBP approximation fL belongs to the Sobolev space
Hσ (R2) for 0≤ σ ≤ α . To this end, recall that we have fL ∈ L2(R2) with F fL =WL ·F f .
Thus, the Hσ -norm of fL can be bounded above by

‖ fL‖2
σ =

1
4π2

∫
R2
(1+ x2 + y2)σ |WL(x,y)|2 |F f (x,y)|2 d(x,y)

≤
(

esssup
(x,y)∈R2

|WL(x,y)|
)2 1

4π2

∫
R2
(1+ x2 + y2)α |F f (x,y)|2 d(x,y) = ‖W‖2

L∞(R) ‖ f‖2
α

and, hence, we have fL ∈ Hσ (R2) for any 0≤ σ ≤ α .

Let us now analyse the inherent FBP reconstruction error eL = f − fL with respect to the
Hσ -norm. For γ ≥ 0, we define

rγ(x,y) = (1+ r(x,y)2)γ = (1+ x2 + y2)γ for (x,y) ∈ R2

so that, for any ε > 0, the Hσ -norm of eL can be expressed as

‖eL‖2
σ =

1
4π2

∫
R2

rσ (x,y) |(F f −WL ·F f )(x,y)|2 d(x,y) = Iε
1 + Iε

2 ,

where we let

Iε
1 =

1
4π2

∫
r(x,y)≤εL

rσ (x,y) |1−WL(x,y)|2 |F f (x,y)|2 d(x,y), (11)

Iε
2 =

1
4π2

∫
r(x,y)>εL

rσ (x,y) |1−WL(x,y)|2 |F f (x,y)|2 d(x,y). (12)

For γ ≥ 0, we define the function

Φγ,W,ε(L) = esssup
S∈[−ε,ε]

(1−W (S))2

(1+L2S2)γ
for L > 0,

so that we can bound the integral Iε
1 in (11) from above by

Iε
1 ≤

(
esssup

r(x,y)≤εL

(1−WL(x,y))2

rα−σ (x,y)

)
‖ f‖2

α = Φα−σ ,W,ε(L)‖ f‖2
α .

In addition, for 0≤ σ ≤ α , we can bound the integral Iε
2 in (12) by

Iε
2 ≤ (εL)2(σ−α)

(
esssup

r(x,y)>εL
(1−WL(x,y))2

)
‖ f‖2

α = ε
2(σ−α)‖1−W‖2

L∞([ε,∞)) L2(σ−α) ‖ f‖2
α .

Combining the estimates for Iε
1 and Iε

2 , we finally obtain

‖eL‖2
σ ≤

(
Φα−σ ,W,ε(L)+ ε

σ−α‖1−W‖2
L∞([ε,∞)) L2(σ−α)

)
‖ f‖2

α ,

so that we can summarize the discussion of this subsection as follows.



Saturation Rates of Filtered Back Projection Approximations 11

Theorem 1 (Hσ -error estimate) Let f ∈ L1(R2)∩Hα(R2) with α > 0 and let W ∈ L∞(R)
be even with | · |W (·)∈ L2(R). Then, for 0≤ σ ≤ α and any ε > 0, the Hσ -norm of the FBP
reconstruction error eL = f − fL is bounded above by

‖eL‖σ ≤
(

Φ
1/2
α−σ ,W,ε(L)+ ε

σ−α‖1−W‖L∞([ε,∞)) Lσ−α

)
‖ f‖α , (13)

where

Φα−σ ,W,ε(L) = esssup
S∈[−ε,ε]

(1−W (S))2

(1+L2S2)α−σ
for L > 0.

We now prove that, under suitable assumptions on the window W , the approximate FBP
reconstruction fL converges to the target function f as the bandwidth L goes to infinity.

In [1, Corollary 1] we have seen that for band-limited low-pass filters and functions
f ∈ L1(R2)∩Hα(R2) with α > 0 the Hσ -norm of the FBP reconstruction error eL = f − fL
converges to 0 for L→ ∞, as long as 0 ≤ σ < α . Additionally, we had to assume that the
even window function W is continuous on the interval [−1,1] and satisfies W (0) = 1. In the
following, we relax these assumptions and proof convergence for the Hσ -norm of eL for all
0 ≤ σ ≤ α , where especially the case σ = α is included. However, the proof technique is
not suitable for determining the rate of convergence.

Theorem 2 (Convergence in the Hσ -norm) Let f ∈ L1(R2)∩Hα(R2) with α ≥ 0 and let
W ∈ L∞(R) be even with | · |W (·)∈ L2(R). Further, let W be continuous at 0 with W (0) = 1.
Then, for 0 ≤ σ ≤ α , the Hσ -norm of the FBP reconstruction error eL = f − fL converges
to 0 as L goes to ∞, i.e.,

‖eL‖σ = o(1) for L→ ∞.

Proof For f ∈ L1(R2)∩Hα(R2) with α ≥ 0 and W ∈ L∞(R) with | · |W (·)∈ L2(R) we have
seen that the FBP approximation fL belongs to the Sobolev space Hσ (R2) for all 0≤ σ ≤ α

and that the Hσ -norm of the FBP reconstruction error eL = f − fL is given by

‖eL‖2
σ =

1
4π2

∫
R2

rσ (x,y) |1−WL(x,y)|2 |F f (x,y)|2 d(x,y).

For all L > 0 and almost all (x,y) ∈ R2 holds that

rσ (x,y) |1−WL(x,y)|2 |F f (x,y)|2 ≤ 2
(
1+‖W‖2

L∞(R)
)

rα(x,y) |F f (x,y)|2,

where ∫
R2

rα(x,y) |F f (x,y)|2 d(x,y) = 4π
2 ‖ f‖2

α < ∞.

Furthermore, for all (x,y) ∈ R2 holds that

|1−WL(x,y)|2 =

∣∣∣∣∣1−W
(√

x2 + y2

L

)∣∣∣∣∣
2

−→ 0 for L→ ∞,

since the window W is continuous at 0 and satisfies W (0) = 1. Therefore, we can apply
Lebesgue’s theorem on dominated convergence and obtain

‖eL‖2
σ =

1
4π2

∫
R2

rσ (x,y) |1−WL(x,y)|2 |F f (x,y)|2 d(x,y)−→ 0 for L→ ∞

i.e., the FBP approximation fL converges to f in the Hσ -norm for all 0≤ σ ≤ α . ut
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As a corollary we obtain the convergence of the FBP reconstruction fL in L2(R2), which
is also stated in [16, Theorem 2.2] under stronger assumptions.

Corollary 3 (Convergence in the L2-norm) Let f ∈ L1(R2)∩L2(R2) and W ∈ L∞(R) be
even with | · |W (·) ∈ L2(R). Further, let W be continuous at 0 with W (0) = 1. Then, the
approximate FBP reconstruction fL converges to f in L2-sense as L goes to ∞, i.e.,

‖ f − fL‖L2(R2) −→ 0 for L→ ∞.

4 Convergence rates for approximate FBP reconstructions

In this section, we analyse the rate of convergence of the reconstruction error eL = f − fL in
the Hσ -norm for 0≤ σ ≤ α as the bandwidth L goes to ∞. To this end, let S∗

γ,W,ε(L) ∈ [0,ε],
for γ ≥ 0 and ε > 0, denote the smallest maximizer in [0,ε] of the even function

Ψγ,W,L(S) =
(1−W (S))2

(1+L2S2)γ
for S ∈ R,

i.e.,

S∗γ,W,ε(L) = sup
{

S ∈ [0,ε]
∣∣ ‖Ψγ,W,L‖L∞([0,S]) < ‖Ψγ,W,L‖L∞([0,ε]) = Φγ,W,ε(L)

}
.

To determine the rate of convergence for ‖eL‖σ , we assume that S∗
α−σ ,W,ε(L) is uniformly

bounded away from 0 for 0≤ σ ≤ α , i.e., there exists a constant cα−σ ,W,ε > 0 such that

S∗α−σ ,W,ε(L)≥ cα−σ ,W,ε for all L > 0. (A)

Then, the error term Φα−σ ,W,ε(L) is bounded above by

Φα−σ ,W,ε(L)≤
‖1−W‖2

L∞([0,ε])

(1+L2S∗
α−σ ,W,ε(L)2)α−σ

≤ c2(σ−α)
α−σ ,W,ε‖1−W‖2

L∞([0,ε]) L2(σ−α).

Consequently, under Assumption (A) we obtain

‖eL‖σ ≤
(

cσ−α

α−σ ,W,ε‖1−W‖L∞([0,ε])+ ε
σ−α‖1−W‖L∞([ε,∞))

)
Lσ−α ‖ f‖α ,

i.e.,
‖eL‖σ = O

(
Lσ−α

)
for L→ ∞.

In summary, this yields the following result.

Theorem 3 (Rate of convergence in Hσ ) Let f ∈ L1(R2)∩Hα(R2) for α > 0 and let
W ∈ L∞(R) be even with | · |W (·) ∈ L2(R). Further, let Assumption (A) be satisfied. Then,
for 0≤ σ ≤ α and any ε > 0, the Hσ -norm of the FBP reconstruction error eL = f − fL is
bounded above by

‖eL‖σ ≤
(

cσ−α

α−σ ,W,ε‖1−W‖L∞([0,ε])+ ε
σ−α‖1−W‖L∞([ε,∞))

)
L−(α−σ) ‖ f‖α . (14)

In particular,
‖eL‖σ = O

(
L−(α−σ)

)
for L→ ∞.

Note that the decay rate in (14) is determined by the difference between the smoothness
α of the target function and the order σ of the Sobolev norm in which the error is measured.
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Moreover, we remark that Assumption (A) is fulfilled for a large class of windows. For
instance, let W ∈ L∞(R) satisfy

W (S) = 1 for all S ∈ (−η ,η)

with η ∈ (0,ε]. Then, Assumption (A) is fulfilled with cα−σ ,W,ε = η for all 0≤ σ ≤ α and
the Hσ -error estimate (14) reads

‖ f − fL‖σ ≤
(

η
σ−α‖1−W‖L∞([η ,ε])+ ε

σ−α‖1−W‖L∞([ε,∞))

)
L−(α−σ) ‖ f‖α .

For ε = η , this reduces to

‖ f − fL‖σ ≤ η
σ−α‖1−W‖L∞([η ,∞)) L−(α−σ) ‖ f‖α .

In particular, Assumption (A) is satisfied for the classical Ram-Lak filter, see Table 1, in
which case we obtain

‖ f − fL‖σ ≤ L−(α−σ) ‖ f‖α

and the decay rate of the FBP reconstruction error is determined by the difference between
the smoothness α of the target function and the order σ of the considered Sobolev norm.
However, Assumption (A) is not always satisfied for the other commonly used low-pass
filters listed in Table 1 and, as we will see, the decay rate of the error can saturate depending
on smoothness properties of the filter’s window function at the origin.

Error estimates for A C -windows with Lp-derivatives

In the following, we consider the special case of even window functions W ∈ L∞(R) with
| · |W (·) ∈ L2(R) that are absolutely continuous on [−ε,ε] for ε > 0, i.e. W ∈A C ([−ε,ε]).
Then, W is pointwise differentiable almost everywhere on [−ε,ε] with W ′ ∈ L1([−ε,ε]) and
the Fundamental Theorem of Calculus for A C -functions yields

W (S) =W (0)+
∫ S

0
W ′(t)dt ∀S ∈ [0,ε].

Further, for some k ∈N we assume that W satisfies W ( j) ∈A C ([−ε,ε]) for all 1≤ j≤ k−1
with

W (0) = 1, W ( j)(0) = 0 ∀1≤ j ≤ k−1

and W (k) ∈ Lp([−ε,ε]) for some 1 < p ≤ ∞. Under these assumptions, we will prove that,
for 0≤ σ ≤ α , the Hσ -norm of the FBP reconstruction error eL = f − fL now behaves like

‖eL‖σ = O
(
L−min(k−1/p,α−σ)

)
for L→ ∞.

According to the Hσ -error estimate (13) from Theorem 1 it suffices to analyse the error term

Φγ,W,ε(L) = esssup
S∈[−ε,ε]

(1−W (S))2

(1+L2S2)γ
for L > 0,

where the parameter γ ≥ 0 has to be chosen as γ = α−σ . To this end, for ν > 0 we consider
the auxiliary function

φγ,L,ν(S) =
S2ν

(1+L2S2)γ
for S ∈ R. (15)
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Lemma 4 Let ε > 0. The maximum of the function φγ,L,ν in (15) on [0,ε] is bounded above
by

max
S∈[0,ε]

φγ,L,ν(S)≤

{
ε2(ν−γ) L−2γ for 0≤ γ ≤ ν ∨ (γ > ν ∧L < L∗ε)
c2

γ,ν L−2ν for γ > ν ∧L≥ L∗ε

with the critical bandwidth L∗ε =
√

ν

ε
√

γ−ν
and the strictly monotonically decreasing constant

cγ,ν =
(

ν

γ−ν

)ν/2( γ−ν

γ

)γ/2
for γ > ν .

Proof The even and continuous function φγ,L,ν in (15) attains its maximum on [0,ε] in the
half-open interval (0,ε], since we have

φγ,L,ν(S)≥ 0 ∀S ∈ R and φγ,L,ν(S) = 0 ⇐⇒ S = 0.

The first derivative of φγ,L,ν(S) is given by

φ
′
γ,L,ν(S) =

2S2ν−1(ν +(ν− γ)L2S2)

(1+L2S2)γ+1 ∀S 6= 0

so that the necessary condition for a maximum of φγ,L,ν in (0,ε) reads

φ
′
γ,L,ν(S) = 0 S>0⇐⇒ (γ−ν)L2 S2 = ν . (16)

Case 1: For 0≤ γ ≤ ν , equation (16) has no solution in (0,ε] and, actually,

φ
′
γ,L,ν(S)> 0 ∀S ∈ (0,ε].

This shows that φγ,L,ν is strictly monotonically increasing in (0,ε] and, thus,

max
S∈[0,ε]

φγ,L,ν(S) = φγ,L,ν(ε) =
ε2ν

(1+ ε2L2)γ
≤ ε

2(ν−γ) L−2γ .

Case 2: For γ > ν , the unique positive solution of equation (16) is given by

S∗ =
√

ν

L
√

γ−ν
∈ [0,ε] ⇐⇒ L≥

√
ν

ε
√

γ−ν
= L∗ε .

Moreover,
φ
′
γ,L,ν(S)< φ

′
γ,L,ν(S

∗) = 0 < φ
′
γ,L,ν(s) ∀0 < s < S∗ < S

so that φγ,L,ν is strictly increasing on (0,S∗) and strictly decreasing on (S∗,∞). Because of

φγ,L,ν(S∗) =
(

ν

γ−ν

)ν ( γ−ν

γ

)γ

L−2ν = c2
γ,ν L−2ν

we get

max
S∈[0,ε]

φγ,L,ν(S) =

{
φγ,L,ν(ε) for L < L∗ε
φγ,L,ν(S∗) for L≥ L∗ε

≤

{
ε2(ν−γ) L−2γ for L < L∗ε
c2

γ,ν L−2ν for L≥ L∗ε .

Let us finally regard the constant cγ,ν as a function cν ≡ cν(γ) of the parameter γ > ν , i.e.,

cν(γ) =
(

ν

γ−ν

)ν/2( γ−ν

γ

)γ/2
for γ > ν .

For the first derivative of cν follows that

c′ν(γ) =
1
2

(
ν

γ−ν

)ν/2( γ−ν

γ

)γ/2
log
(

1− ν

γ

)
< 0 ∀γ > ν

and, consequently, the constant cγ,ν is strictly monotonically decreasing in γ > ν . ut
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We are now prepared to derive Hσ -error estimates for A C -windows with Lp-derivatives
and start with the case p = ∞, i.e., we assume that W (k) ∈ L∞([−ε,ε]).

Theorem 4 (Hσ -error estimate for A C -windows with L∞-derivatives) For α > 0, let
f ∈ L1(R2)∩Hα(R2) and, for k ∈ N and ε > 0, let W satisfy W ( j) ∈ A C ([−ε,ε]) for all
0≤ j ≤ k−1 and W (k) ∈ L∞([−ε,ε]) with

W (0) = 1, W ( j)(0) = 0 ∀1≤ j ≤ k−1.

Then, for 0≤ σ ≤ α , the Hσ -norm of the inherent FBP reconstruction error eL = f − fL is
bounded above by

‖eL‖σ ≤
(

εk+σ−α

k!
‖W (k)‖L∞([0,ε])+ ε

σ−α‖1−W‖L∞([ε,∞))

)
Lσ−α ‖ f‖α

for α−σ ≤ k, and by

‖eL‖σ ≤
(cα−σ ,k

k!
‖W (k)‖L∞([0,ε]) L−k + ε

σ−α‖1−W‖L∞([ε,∞)) Lσ−α

)
‖ f‖α

for α−σ > k and sufficiently large L > 0 with the strictly decreasing constant

cα−σ ,k =
( k

α−σ − k

)k/2(α−σ − k
α−σ

)(α−σ)/2
for α−σ > k.

In particular,
‖eL‖σ = O

(
L−min{k,α−σ}) for L→ ∞.

Proof Based on our assumptions and on the Hσ -error estimate (13) from Theorem 1, i.e.,

‖eL‖σ ≤
(

Φ
1/2
α−σ ,W,ε(L)+ ε

σ−α‖1−W‖L∞([ε,∞)) Lσ−α

)
‖ f‖α ,

it is sufficient to analyse the error term

Φα−σ ,W,ε(L) = max
S∈[0,ε]

(1−W (S))2

(1+L2S2)α−σ
.

Since W ( j) ∈A C ([−ε,ε]) for all 0≤ j ≤ k−1, we have W ( j+1) ∈ L1([−ε,ε]) and

W ( j)(S) =W ( j)(0)+
∫ S

0
W ( j+1)(t)dt ∀S ∈ [0,ε].

If k = 1, for S ∈ [0,ε] follows that

W (S) =W (0)︸ ︷︷ ︸
=1

+
∫ S

0
W ′(t)dt = 1+

∫ S

0
W ′(t)dt

and the assumption W ′ ∈ L∞([−ε,ε]) yields

|1−W (S)|=
∣∣∣∣∫ S

0
W ′(t)dt

∣∣∣∣≤ ‖W ′‖L∞([0,ε]) S ∀S ∈ [0,ε].
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For k ≥ 2, we can apply integration by parts and get, for all S ∈ [0,ε],

W (S) = 1+
∫ S

0
W ′(t)dt = 1+W ′(S)S−

∫ S

0
t W ′′(t)dt

= 1+S
(

W ′(0)︸ ︷︷ ︸
=0

+
∫ S

0
W ′′(t)dt

)
−
∫ S

0
t W ′′(t)dt = 1+

∫ S

0
(S− t)W ′′(t)dt.

By iteratively applying integration by parts we obtain

W (S) = 1+
1

(k−1)!

∫ S

0
(S− t)k−1 W (k)(t)dt.

Consequently, the assumption W (k) ∈ L∞([−ε,ε]) implies for all S ∈ [0,ε] that

|1−W (S)| ≤ 1
(k−1)!

‖W (k)‖L∞([0,ε])

∫ S

0
(S− t)k−1 dt =

1
k!
‖W (k)‖L∞([0,ε]) Sk.

Hence, for any k ∈ N we have

|1−W (S)| ≤ 1
k!
‖W (k)‖L∞([0,ε]) Sk ∀S ∈ [0,ε]

and, thus, the error term Φα−σ ,W,ε(L) can be bounded above by

Φα−σ ,W,ε(L) = max
S∈[0,ε]

(1−W (S))2

(1+L2S2)α−σ
≤ 1

(k!)2 ‖W
(k)‖2

L∞([0,ε]) max
S∈[0,ε]

S2k

(1+L2S2)α−σ
.

Applying Lemma 4 shows

max
S∈[0,ε]

S2k

(1+L2S2)α−σ
≤

{
ε2(k+σ−α) L2(σ−α) for α−σ ≤ k∨ (α−σ > k∧L < L∗ε)
c2

α−σ ,k L−2k for α−σ > k∧L≥ L∗ε

with critical bandwidth L∗ε =
√

k
ε
√

γ−k
and the strictly decreasing constant

cα−σ ,k =
( k

α−σ − k

)k/2(α−σ − k
α−σ

)(α−σ)/2
for α−σ > k.

Combining the estimates completes the proof. ut

Note that the convergence rate of ‖eL‖σ in Theorem 4 is determined by the difference
between the smoothness α of the target function f and the order σ of the Sobolev norm in
which the reconstruction error eL is measured, as long as α−σ ≤ k. But for α−σ > k the
rate of convergence saturates at integer order O(L−k). However, in this case the error bound
still decreases at increasing α , since the constant cα−σ ,k is strictly decreasing in α−σ > k.

Finally, we remark that Theorem 4 shows that our estimates from [1, Theorem 3] and [2,
Corollary 7.2] continue to hold under relaxed assumptions. In [1,2] we have proven these
statements for band-limited filters under the more restrictive assumption W ∈ C k([−1,1]).
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We now come to the case p < ∞, i.e., we assume that W (k) ∈ Lp([−ε,ε]) for 1 < p < ∞.

Theorem 5 (Hσ -error estimate for A C -windows with Lp-derivatives) For α > 0, let
f ∈ L1(R2)∩Hα(R2) and, for k ∈ N and ε > 0, let W satisfy W ( j) ∈ A C ([−ε,ε]) for all
0≤ j ≤ k−1 and W (k) ∈ Lp([−ε,ε]) for some 1 < p < ∞ with

W (0) = 1, W ( j)(0) = 0 ∀1≤ j ≤ k−1.

Then, for 0≤ σ ≤ α , the Hσ -norm of the inherent FBP reconstruction error eL = f − fL is
bounded above by

‖eL‖σ ≤
(

εk−1/p+σ−α

(k−1)!

(1− 1/p

k− 1/p

)1−1/p
‖W (k)‖L∞([0,ε])+ ε

σ−α‖1−W‖L∞([ε,∞))

)
Lσ−α ‖ f‖α

for α−σ ≤ k− 1/p, and by

‖eL‖σ ≤
(cα−σ ,k,p

(k−1)!

(1− 1/p

k− 1/p

)1−1/p
‖W (k)‖L∞([0,ε])L

1/p−k+ε
σ−α‖1−W‖L∞([ε,∞))L

σ−α

)
‖ f‖α

for α−σ > k− 1/p and sufficiently large L > 0 with the strictly decreasing constant

cα−σ ,k,p =
( k− 1/p

α−σ − k+ 1/p

)(k−1/p)/2(α−σ − k+ 1/p

α−σ

)(α−σ)/2
for α−σ > k− 1/p.

In particular,
‖eL‖σ = O

(
L−min{k−1/p,α−σ}) for L→ ∞.

Proof Based on our assumptions and on the Hσ -error estimate (13) from Theorem 1, i.e.,

‖eL‖σ ≤
(

Φ
1/2
α−σ ,W,ε(L)+ ε

σ−α‖1−W‖L∞([ε,∞)) Lσ−α

)
‖ f‖α ,

it is sufficient to analyse the error term

Φα−σ ,W,ε(L) = max
S∈[0,ε]

(1−W (S))2

(1+L2S2)α−σ
.

As in the proof of Theorem 4, we (iteratively) apply integration by parts and obtain

W (S) = 1+
1

(k−1)!

∫ S

0
(S− t)k−1 W (k)(t)dt ∀S ∈ [0,ε]

by using W ( j) ∈A C ([−ε,ε]) for all 0≤ j ≤ k−1 and

W (0) = 1, W ( j)(0) = 0 ∀1≤ j ≤ k−1.

Since W (k) ∈ Lp([−ε,ε]) for some 1 < p < ∞, Hölder’s inequality gives

|1−W (S)| ≤ 1
(k−1)!

(∫ S

0
(S− t)q(k−1) dt

)1/q(∫ S

0
|W (k)(t)|p dt

)1/p

,

where 1 < q < ∞ is the Hölder conjugate of p satisfying

1
p
+

1
q
= 1 ⇐⇒ q =

p
p−1

.
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Further, for S ∈ [0,ε] we have∫ S

0
(S− t)q(k−1) dt =

1
q(k−1)+1

Sq(k−1)+1 =
1− 1/p

k− 1/p
Sq(k−1)+1

and, thus, it follows that

|1−W (S)| ≤ 1
(k−1)!

(1− 1/p

k− 1/p

)1−1/p
‖W (k)‖Lp([0,ε]) Sk−1/p.

Consequently, the error term Φα−σ ,W,ε(L) can be bounded above by

Φα−σ ,W,ε(L)≤
1

((k−1)!)2

(1− 1/p

k− 1/p

)2(1−1/p)
‖W (k)‖2

Lp([0,ε]) max
S∈[0,ε]

S2(k−1/p)

(1+L2S2)α−σ
.

Applying Lemma 4 shows that

max
S∈[0,ε]

S2(k−1/p)

(1+L2S2)α−σ
≤ ε

2(k−1/p+σ−α) L2(σ−α)

for α−σ ≤ k− 1/p and

max
S∈[0,ε]

S2(k−1/p)

(1+L2S2)α−σ
≤

{
ε2(k−1/p+σ−α) L2(σ−α) for L < L∗ε
c2

α−σ ,k−1/p L−2(k−1/p) for L≥ L∗ε

for α−σ > k− 1/p with critical bandwidth L∗ε =
√

k−1/p

ε
√

γ−k+1/p
and strictly decreasing constant

cα−σ ,k−1/p =
( k− 1/p

α−σ − k+ 1/p

)(k−1/p)/2(α−σ − k+ 1/p

α−σ

)(α−σ)/2
for α−σ > k− 1/p.

Combining the estimates completes the proof. ut

We observe that the convergence rate of the error bound in Theorem 5 is determined
by the difference between the smoothness α of the target function and the order σ of the
Sobolev norm in which the reconstruction error eL is measured, as long as α−σ ≤ k− 1/p.
But for α −σ > k− 1/p the rate of convergence saturates at fractional order O(L−(k−1/p)).
However, in this case the error bound still decreases at increasing α , since the involved
constant cα−σ ,k,p is strictly decreasing in α −σ > k− 1/p. Thus, although the decay rate
saturates, a smoother target function still allows for a better approximation, as expected.

We finally remark that the error estimate from Theorem 5 is consistent with the error
estimate from Theorem 4 for windows W with W (k) ∈ L∞([−ε,ε]). Indeed, we have( k− 1/p

α−σ − k+ 1/p

)(k−1/p)/2( γ− k+ 1/p

γ

)(α−σ)/2 p→∞−−−→
( k

α−σ − k

)k/2(α−σ − k
α−σ

)(α−σ)/2

as well as
1

(k−1)!

(1− 1/p

k− 1/p

)1−1/p p→∞−−−→ 1
k!

so that

εk−1/p+σ−α

(k−1)!

(1− 1/p

k− 1/p

)1−1/p p→∞−−−→ εk+σ−α

k!
and

cα−σ ,k,p

(k−1)!

(1− 1/p

k− 1/p

)1−1/p p→∞−−−→
cα−σ ,k

k!
.
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To close this section, we give an example of a window function W that satisfies the
requirements of our error theory with ε = 1.

Example 1 Consider the even window function W ∈ L∞(R) with supp(W ) ⊆ [−1,1] given
by

W (S) = 1− (1−β ) |S|µ for S ∈ [−1,1] (17)

with some parameters µ > 0 and β ∈ [0,1).

Case 1: If 0 < µ ≤ 1, we have W ∈ A C ([−1,1]) and W (0) = 1. Moreover, for µ = 1, we
have W ′ ∈ L∞([−1,1]) with

‖W ′‖L∞([0,1]) = 1−β

and, for 0 < µ < 1, we have W ′ ∈ Lp([−1,1]) for all 1≤ p < 1
1−µ

with

‖W ′‖Lp([0,1]) =
µ(1−β )

p
√

p(µ−1)+1
∀1≤ p <

1
1−µ

.

Case 2: If µ = k+η with k∈N and 0<η ≤ 1, we have W ( j) ∈A C ([−1,1]) for all 0≤ j≤ k
and

W (0) = 1, W ( j)(0) = 0 ∀1≤ j ≤ k.

Moreover, for η = 1, we have W (k+1) ∈ L∞([−1,1]) with

‖W (k+1)‖L∞([0,1]) = (k+1)!(1−β )

and, for 0 < η < 1, we have W (k+1) ∈ Lp([−1,1]) for all 1≤ p < 1
1−η

with

‖W (k+1)‖Lp([0,1]) = (1−β )
µ · . . . · (µ− k)

p
√

p(µ− k−1)+1
∀1≤ p <

1
k+1−µ

. ut

When using the window W from (17) for the low-pass filter AL in the FBP method,
our error theory from Theorems 4 and 5 predicts that, for 0 ≤ σ ≤ α , the Hσ -norm of the
inherent FBP reconstruction error eL = f − fL behaves like

‖eL‖σ ≤
(

Cα−σ ,µ,β L−min{µ,α−σ}+Lσ−α

)
‖ f‖α .

In particular,

‖eL‖σ = O
(
L−min{µ,α−σ}) for L→ ∞

and the rate of convergence saturates at order O(L−µ). For the L2-case, i.e., σ = 0, this
behaviour will be observed numerically in the following section.
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5 Numerical simulations

In this section, we finally present selected numerical examples to evaluate the inherent FBP
reconstruction error numerically and to validate our error theory. In the following, however,
we restrict ourselves to the L2-case and set σ to 0.

First note that the approximate FBP reconstruction formula assumes the data R f (t,θ)
to be available for all (t,θ) ∈ R× [0,π). In practice, however, only finitely many Radon
samples are given. We assume that the target function f is compactly supported with

supp( f )⊆ BR(0) =
{
(x,y) ∈ R2 ∣∣ x2 + y2 ≤ R2} for some R ∈ N

and that the Radon data are given in parallel beam geometry (cf. [13,14]), i.e., the input data
are of the form

(R f ) j,k = R f (t j,θk) (18)
with

t j = j ·d for −M ≤ j ≤M and θk = k · π

N
for 0≤ k ≤ N−1,

where d > 0 is the spacing of 2M+1 parallel lines per angle and N is the number of angles.
The reconstruction of f from discrete Radon data (18) requires a suitable discretization

of the FBP method (9), i.e.,

fL =
1
2
B
(
F−1AL ∗R f

)
.

We follow a standard approach and apply the composite trapezoidal rule to discretize the
convolution ∗ and back projection B. This leads to the discrete reconstruction formula

fD(x,y) =
d

2N

N−1

∑
k=0

M

∑
j=−M

F−1AL(xcos(θk)+ ysin(θk)− t j)R f (t j,θk) for (x,y) ∈ R2,

in short,

fD =
1
2
BD
(
F−1AL ∗D R f

)
.

Note that the evaluation of the discrete reconstruction fD requires the computation of the
values

(F−1AL ∗D R f )(xcos(θk)+ ysin(θk),θk) ∀0≤ k ≤ N−1
for each reconstruction point (x,y)∈R2. To reduce the computational costs, we evaluate the
function

h(t,θk) = (F−1AL ∗D R f )(t,θk) for t ∈ R
only at the points t = tl , l ∈ Z, and interpolate the value h(t,θk) for t = xcos(θk)+ ysin(θk)
using an interpolation method I . This leads us to the discrete FBP reconstruction formula

fFBP =
1
2
BD
(
I [F−1AL ∗D R f ]

)
. (19)

For target functions f of low regularity it is sufficient to use linear spline interpolation. To
exploit a higher regularity of f we use cubic spline interpolation in our simulations. Further,
according to [13, Section V.1] we couple the discretization parameters d > 0 and M,N ∈ N
with the bandwidth L via

d =
π

L
, M =

R
d
, N = 4 ·M

and choose L to be a multiple of π , i.e., L = π ·K for some K ∈ N.
We remark that the different discretization steps introduce additional discretization er-

rors that are not covered by our error theory in §3 and §4. Analysing the discretization errors
is beyond the aims and scopes of this paper and for work in this direction we refer to [5,13].
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(a) Phantom (b) Sinogram

Fig. 1 The Shepp-Logan phantom and its sinogram.

In our numerical experiments, we used the popular Shepp-Logan phantom, cf. [21]. For
this test case, the Radon transform can be calculated analytically, so that no errors occur
during the data acquisition and the observed errors are due to the discretized approximate
reconstruction method. The phantom consists of ten ellipses of constant densities, but dif-
ferent sizes, eccentricities and locations, see Fig. 1(a). Its attenuation function fSL is given
by

fSL =
10

∑
j=1

c j f j,

where each function f j, 1≤ j≤ 10, is of the form of the characteristic function of an ellipse
given by

fe(x,y) = χB1(0)

(
(x−h)cos(ϕ)+(y− k)sin(ϕ)

a
,
−(x−h)sin(ϕ)+(y− k)cos(ϕ)

b

)
.

The parameters of the ellipses used in the Shepp-Logan phantom can be found in [21]. Its
sinogram, i.e., the plot of the phantom’s Radon data in the (t,θ)-plane, is shown in Fig. 1(b).

As explained at the end of §2, the function fSL belongs to the Sobolev space Hα
0 (R2)

with α < 1
2 , which is an upper bound for the decay rate of the inherent FBP reconstruction

error eL = f − fL in the L2-norm. To observe higher rates of convergence and saturation at
the rates given in §4 we need a test case of higher regularity and with analytically computable
Radon transform. To this end, we consider the radially symmetric function pν : R2 −→ R,
given by

pν(x,y) =

{
(1− x2− y2)ν for x2 + y2 ≤ 1
0 for x2 + y2 > 1

with parameter ν ∈ R>0, which is in Hα
0 (R2) for any α < ν + 1

2 . Adapting the approach
in [18], we now define the smooth phantom of order ν via

f ν
smooth = f ν

1 −
3
2

f ν
2 +

3
2

f ν
3 ∈ Hα

0 (R2) ∀α < ν +
1
2
,

where each function f ν
j , 1≤ j ≤ 3, is of the form

fν(x,y) = pν

(
(x−h)cos(ϕ)+(y− k)sin(ϕ)

a
,
−(x−h)sin(ϕ)+(y− k)cos(ϕ)

b

)
.

The parameters used in the definition of the smooth phantom can be found in [18]. For
illustration, Fig. 2 shows f ν

smooth for ν = 3 (see Fig. 2(a)) and its sinogram (see Fig. 2(b)).
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(a) Phantom (b) Sinogram

Fig. 2 The smooth phantom with ν = 3 and its sinogram.

The FBP reconstructions of both phantoms are displayed in Fig. 3, where we used the
Shepp-Logan filter (see Table 1) with L = 40π . This corresponds to M = 40 and N = 160 so
that (2M+1)N = 12960 Radon samples are taken. To measure the reconstruction error, we
used the standard root mean square error, which is defined for images with I× J pixels as

RMSE =

√√√√ 1
I× J

I

∑
i=1

J

∑
j=1

(
fi, j− ( fFBP)i, j

)2
.

In our numerical experiments, we evaluated the phantoms and their FBP reconstructions
with different window functions and bandwidths on a square grid with 1024×1024 pixels.

In our first numerical simulations we have employed four commonly used low-pass
filters:

Name W (S) for |S| ≤ 1 ‖W ′′‖L∞([0,1]) Parameter
Shepp-Logan sinc(πS/2) π2/12 –
Hamming β +(1−β )cos(πS) (1−β )π2 β ∈ [1/2,1]
Gaussian exp(−(πS/β)2) 2π2/β 2 β > 1
Parabola 1− (1−β )S2 2(1−β ) β ∈ [0,1)

Note that each window function W is even and compactly supported with supp(W )= [−1,1].
Further, W is twice continuously differentiable on the interval [−1,1], W ∈C 2([−1,1]), with

W (0) = 1, W ′(0) = 0, W ′′(0) 6= 0.

(a) Shepp-Logan phantom (b) Smooth phantom with ν = 3

Fig. 3 FBP reconstructions of the phantoms with the Shepp-Logan filter and L = 40π .
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Consequently, these windows satisfy the assumptions of Theorem 4 with k = 2 and ε = 1
and our error theory states that, for any function f ∈ L1(R2)∩Hα(R2) with α > 0, the
L2-norm of inherent FBP reconstruction error is bounded above by

‖ f − fL‖L2(R2) ≤
(

Cα‖W ′′‖L∞([0,1]) L−min{2,α}+L−α

)
‖ f‖α . (20)

Fig. 4 shows the RMSE of the FBP reconstruction of the Shepp-Logan phantom fSL
as a function of the bandwidth L in logarithmic scales for different window functions. In
addition to the popular Shepp-Logan filter (Fig. 4(a)), we applied the Hamming filter with
parameter β = 0.92 (Fig. 4(b)), the Gaussian filter with parameter β = 4.9 (Fig. 4(c)) and
the Parabola filter with parameter β = 0.59 (Fig. 4(d)). These parameters were chosen such
that these filters have the same value for ‖W ′′‖L∞([0,1]) as the Shepp-Logan filter. Hence, the
corresponding reconstruction errors should behave similarly due to our error estimate (20).

As expected, we see that the RMSE for the Shepp-Logan filter, Hamming filter with
β = 0.92, Gaussian filter with β = 4.9 and Parabola filter with β = 0.59 are nearly the
same. Moreover, in all four cases we observe a decrease of the RMSE with rate L−0.5.
This is exactly the behaviour we expected due to our L2-error estimate (20), since we have
fSL ∈ Hα(R2) for all α < 1

2 .
Fig. 5 now shows the RMSE of the FBP reconstruction for the smooth phantom f ν

smooth
of order ν = 3, which belongs to Hα(R2) for all α < 7

2 . Hence, according to the estimate (20)
the convergence rate of the RMSE should saturate at order L−2. Indeed, this behaviour can
be observed in our numericals results, see Fig. 5(a)–5(d). Further, the RMSE for the Shepp-
Logan filter again coincides with the RMSE of the Hamming filter with β = 0.92, Gaussian
filter with β = 4.9 and Parabola filter with β = 0.59. Note that this behaviour is more pro-
nounced for the smooth phantom f ν

smooth than for the Shepp-Logan phantom fSL.

In conclusion, our numerical results for C 2-windows totally comply with our L2-error
theory with k = 2 and p = ∞.

In our second set of numerical simulations we used the generalized polynomial filter
with window

W (S) =

{
1− (1−β ) |S|µ for |S| ≤ 1
0 for |S|> 1

of order µ ∈ R>0 and with jump height β ∈ [0,1), see Example 1. Recall that for this filter
our error theory from Theorems 4 and 5 states that, for any function f ∈Hα(R2) with α > 0,
the L2-norm of the inherent FBP reconstruction error is bounded above by

‖ f − fL‖L2(R2) ≤
(

Cα,µ,β L−min{µ,α}+L−α

)
‖ f‖α , (21)

where, for fixed α and µ , the constant Cα,µ,β > 0 decreases with increasing β ∈ [0,1). In
particular, the rate of convergence is predicted to saturate at fractional order L−µ .

The numerical results for the reconstruction of the Shepp-Logan phantom fSL are dis-
played in Fig. 4(e)–4(h) and can be summarized as follows. For µ = 0.2, the convergence
rate of the RMSE saturates at fractional order L−0.2. Moreover, when increasing the param-
eter β from β = 0 to β = 0.2, the RMSE decreases (Fig. 4(e)–4(f)). But for µ ∈ {0.9,2.7},
the RMSE behaves like L−0.5, see Fig. 4(g)–4(h), where we always chose the jump height
β = 0.8. Since fSL ∈Hα(R2) for all α < 1

2 , this is exactly the behaviour we expected due to
our L2-error estimate (21). In particular, for µ ∈ {0.9,2.7} the rate of convergence is given
by the smoothness of the target function fSL.
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Fig. 4 Decay rate of the discrete L2-error for the Shepp-Logan phantom and different low-pass filters.
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Fig. 5 Decay rate of the discrete L2-error for the smooth phantom with ν = 3 and different low-pass filters.
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In contrast to that, our numerical results for the reconstruction of the smooth phantom
f ν
smooth of order ν = 3 show that the rate of convergence saturates for all our choices of µ ,

see Fig. 5(e)–5(h). Indeed, for µ = 0.2, the convergence rate of the RMSE again saturates
at fractional order L−0.2 and, further, increasing the parameter β from β = 0 to β = 0.2
decreases the RMSE (Fig. 5(e)–5(f)). Also for µ ∈ {0.9,2.7}, the RMSE behaves like L−µ ,
see Fig. 5(g)–5(h). But this was expected, since we have f ν

smooth ∈Hα(R2) for all α < ν + 1
2 .

Consequently, our numerical results again totally comply with our L2-error theory and
especially the saturation of the convergence rate at fractional order is observable.

In our final set of numerical simulations we considered the generalized ramp filter with
window

W (S) =


1 for |S| ≤ β

1−βγ

1−β
− 1−γ

1−β
|S| for β < |S| ≤ 1

0 for |S|> 1

of width β ∈ (0,1) and jump height γ ∈ [0,1]. Note that choosing γ = 1 gives the classical
Ram-Lak filter (see Table 1). Furthermore, these filters satisfy Assumption (A) and our error
theory from Theorem 3 (with ε = 1) states that, for any function f ∈ Hα(R2) with α > 0,
the L2-norm of the inherent FBP reconstruction error eL = f − fL is bounded above by

‖ f − fL‖L2(R2) ≤
(
(1− γ)β−α +1

)
L−α ‖ f‖α . (22)

In particular, the rate of convergence is always determined by the smoothness α of the target
function f . Furthermore, for fixed L and f , we see that the L2-error bound decreases when
increasing the window’s width β ∈ (0,1) or jump height γ ∈ [0,1].

In all our simulations for the reconstruction of the Shepp-Logan phantom fSL we ob-
serve that the RMSE behaves like L−0.5, as predicted by the theory, see Fig. 6. Moreover,
increasing the width β of the window W leads to an decrease of the RMSE (Fig. 6(a)–6(b)).
This can also be seen when fixing β and increasing the jump height γ (Fig. 6(c)–6(d)).
Consequently, we exactly observe the behaviour predicted by the L2-error estimate (22).

When considering the FBP reconstruction of the smooth phantom f ν
smooth of order ν = 3,

we see that for all choices of the parameters β and γ the RMSE behaves like L−3.5, see Fig. 7.
Thus, the rate of convergence is determined by the smoothness of the target function and the
numerical observations comply with our L2-error estimate (22). Further, as for the Shepp-
Logan phantom, increasing the width β results in a decrease of the RMSE (Fig. 7(a)–7(b)).
The same holds true when fixing β and increasing the jump height γ (Fig. 7(c)–7(d)).

In conclusion, our numerical results totally comply with our L2-error theory. In particu-
lar, we observe that the decay rate of the L2-error is indeed determined by the smoothness α

of the target function f if Assumption (A) is satisfied. Finally, we remark that for both phan-
toms the RMSE is minimal for the Ram-Lak filter. This also complies with our error theory
for band-limited low-pass filters with supp(W )⊆ [−1,1], since in the L2-error estimate

‖ f − fL‖L2(R2) ≤
(

Φ
1/2
α,W (L)+L−α

)
‖ f‖α

from Theorem 1 (with σ = 0 and ε = 1) the error term

Φα,W (L) = sup
S∈[−1,1]

(1−W (S))2

(1+L2S2)α
for L > 0

only vanishes if W ≡ 1 on [−1,1], i.e., when choosing the Ram-Lak filter.
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Fig. 6 Decay rate of the discrete L2-error for the Shepp-Logan phantom and generalized ramp filters.
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Fig. 7 Decay rate of the discrete L2-error for the smooth phantom with ν = 3 and generalized ramp filters.
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6 Conclusion

We have proven Sobolev error estimates and convergence rates for the method of filtered
back projection to approximate bivariate functions from fractional Sobolev spaces, where we
required W ∈ L∞(R) and | · |W (·) ∈ L2(R) for the window W instead of supp(W )⊆ [−1,1].

For target functions f ∈ L1(R2)∩Hα(R2) of smoothness α > 0 we proved Hσ -error
estimates for all 0≤σ ≤α , where we, in particular, considered the following special case. If,
for ε > 0, W satisfies W ∈C k−1([−ε,ε]) with W (0)= 1 and W ( j)(0)= 0 for all 1≤ j≤ k−1
as well as W (k) ∈ Lp([−ε,ε]) for 1 < p ≤ ∞, the Hσ -norm of the FBP reconstruction error
satisfies

‖ f − fL‖σ = O
(
L−min{k−1/p,α−σ}) for L→ ∞

and, thus, the decay rate saturates at fractional order L−(k−1/p). This generalizes our results
in [3], where we considered windows W with supp(W )⊆ [−1,1] and assumed regularity of
W on [−1,1] instead of [−ε,ε] for ε > 0. Hence, our results substantiate the conclusion that
the flatness of W at zero determines the decay rate of the inherent FBP reconstruction error.

Finally, we remark that our theoretical error estimates provide upper bounds on the in-
herent FBP approximation error which is incurred by filtering the Radon data. However, the
numerical simulations demonstrate that the predicted saturation of the decay rate depending
on the flatness of the filter’s window at 0 is indeed intrinsic and not an artefact of the proof.
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