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Abstract—We discuss theoretical aspects of sparse represen-
tations for videos by linear splines over anisotropic tetrahedra-
lizations. In previous work, we have proposed a locally adaptive
algorithm, adaptive thinning, for sparse approximation of images.
Moreover, we have analyzed the asymptotic behaviour of N -term
image approximations by linear splines over anisotropic Delaunay
triangulations. In this paper, we generalize our previous results
from image approximation to video approximation, i.e., from the
approximation of bivariate to trivariate target functions.

I. INTRODUCTION

During the last few years, there has been an increasing
demand in sparse representations of signals. This, in particular,
requires the construction of suitable dictionaries A = {ϕj}j∈N
to obtain efficient representations of signals f by N -term
approximations of the form

fN =
∑
j∈IN

αjϕj , (1)

where N = |IN | ∈ N is the size of the index set IN ⊂ N. The
quality of an N -term approximation (1) is often measured by
rate-distortion curves, reflecting the required amount of data
(measured e.g. in file size of stored information) versus the
approximation quality (measured e.g. in peak signal-to-noise
ratio (PSNR) or in structural similarity index (SSIM)).

From a viewpoint of approximation theory, one important
quality indicator is the decay rate of asymptotic N -term
approximations {fN}N∈N in (1) that are obtained from the
chosen dictionary A. Popular methods for N -term image
approximations can be found in [1], [6], [7], [11], [12].

In previous work [3], [10], we proposed N -term image
approximations with optimal decay rates for relevant classes of
target functions f , including bivariate horizon functions across
α-Hölder smooth horizon boundaries. The decay rates in [3]
were obtained from error estimates of the form

‖f − fN‖2L2([0,1]2) = O(N
−α) for N →∞, (2)

where fN is a (bivariate) linear spline over an anisotropic
triangulation. In this case, the dictionary A is generated by
all possible linear spline spaces over conformal triangulations
that are covering the image domain. Therefore, the dictionary
A is very large. But in [2], [4] we proposed an efficient image
approximation algorithm of complexity O(N log(N)), termed
adaptive thinning (AT), to compute a suitable sequence of
spline spaces {SN}N∈N over anisotropic Delaunay triangula-
tions which are locally adapted to the geometry of the image.

Our constructive approach in [2], [4] outputs a sequence of
image approximations fN ∈ SN that are well-adapted to the
local regularity of the target function f .

In this paper, we generalize the approximation method
of [3], [10] from image to video approximation, i.e., from
the approximation of bivariate functions to the approximation
of trivariate functions. To this end, we introduce a class of
piecewise affine-linear trivariate horizon functions, with singu-
larities along α Hölder smooth surfaces. We approximate these
prototypical test functions by linear splines over anisotropic
tetrahedralizations. Moreover, we show how to maintain the
decay rates of the asymptotic N -term approximations in (2).

The outline of this paper is as follows. In Section II, we
briefly introduce linear splines over (conformal) tetrahedra-
lizations. Then, in Section III, we turn to the approximation
of trivariate horizon functions by trivariate linear splines. For
the purpose of illustration, numerical simulations for a popular
test case of video approximation are presented in Section IV.

II. LINEAR SPLINES OVER TETRAHEDRALIZATIONS

For a finite point set Y ⊂ R3, a (conformal) tetrahedral-
ization T ≡ T (Y ) is a finite set T = {T}T∈T of tetrahedra
satisfying the following properties.

(a) the vertex set of T is Y ;
(b) two distinct tetrahedra in T intersect at most at one

common vertex, common edge or common triangle;
(c) the convex hull conv(Y ) of Y coincides with the area

covered by the union of the tetrahedra in T .

A tetrahedralization T of Y is called Delaunay tetrahedral-
ization of Y , iff no circumsphere of a tetrahedron T ∈ T
contains any point from Y in its interior. We recall that the
Delaunay tetrahedralization T of Y is unique, provided that
no five points in Y are co-spherical.

We remark that there are efficient algorithms for computing
the Delaunay tetrahedralization (or its dual Voronoi diagram)
for a given point set Y of size N = |Y |, where the expected
combinatorial complexity is O(N) on average [8], although
the worst case complexity is O(N2) [9], [13].

In the following of this paper, we assume that Y ⊂ R3

is a set of pixel positions, where we require that the convex
hull conv(Y ) of Y coincides with the video domain, which,
for simplicity, we assume to be the unit cube [0, 1]3, i.e.,
conv(Y ) = [0, 1]3. Moreover, we associate with any tetra-



hedralization T of Y the finite dimensional linear function
space of linear splines over T ,

ST =
{
g ∈ C ([0, 1]3) : g|T ∈ P1 for all T ∈ T

}
,

consisting of all continuous functions on [0, 1]3 whose restric-
tion to any tetrahedron T ∈ T is a linear polynomial in P1.

Note that for any function f ∈ C ([0, 1]3), there is a unique
linear spline interpolant s ∈ ST to f over the vertices Y of T
satisfying s|Y = f |Y . In particular, any linear spline s ∈ ST
is uniquely determined by its values at the vertices Y of T .

III. N -TERM APPROXIMATION OF HORIZON FUNCTIONS

In this section, we discuss asymptotic N -term approxima-
tions (1) by linear splines fN ∈ S(TN ) over anisotropic
tetrahedralizations TN , for N ∈ N. To this end, we explain
how to construct sequences of tetrahedralizations {TN}N∈N,
for vertex sets YN , such that there are constants C,M > 0
(independent of N ) satisfying the following two properties.
(a) The size |YN | of YN is bounded by |YN | ≤M ×N ;
(b) the L2-approximation error can be bounded above by

‖f − fN‖2L2([0,1]3) ≤ CN
−α,

where fN ∈ S(TN ) is the unique linear interpolant to f
at YN , and where α > 0 is related to the regularity of f .

Horizon functions [7] are popular prototypes for piecewise
smooth images with discontinuities along Hölder smooth
curves, exemplifying edges. In order to extend the model
problem of horizon functions [7] from bivariate functions (i.e.,
images) to trivariate functions (i.e., videos), we first recall that
a bivariate function g : [0, 1]2 → R is said to be Hölder
continuous of order β ∈ (0, 1], g ∈ C β([0, 1]2), iff it satisfies

|g(x)− g(y)| ≤ C‖x− y‖β for all x, y ∈ [0, 1]2

for some C > 0. Moreover, for α = r + β, with r ∈ N0 and
β ∈ (0, 1], a function g ∈ C r([0, 1]2) is said to be α-Hölder
smooth, iff ∂γg ∈ C β([0, 1]2) for all γ ∈ N2

0 with |γ| = r.
Moreover, the linear space C α([0, 1]2) of all α-Hölder smooth
functions over [0, 1]2 is equipped with the usual semi-norm

|g|α = inf{C : |∂γg(x)−∂γg(y)| ≤ C‖x−y‖β ∀x, y ∈ [0, 1]2}.

In the following, we only require α ∈ (1, 2], i.e., α = 1+β
for β = α− 1 ∈ (0, 1]. In this case, ∂γg ∈ C α−1([0, 1]2), for
all γ ∈ N2

0 with |γ| = 1, where we let

|∂γg|α−1 = |g|α for g ∈ C α([0, 1]2) and |γ| = 1.

Now the class of α-horizon functions contains all piece-
wise affine-linear trivariate functions across α-Hölder smooth
horizon surfaces, according to the following definition.

Definition 1: For any α ∈ (1, 2], a function f : [0, 1]3 → R
is said to be an α-horizon function, iff it has the form

f(x, y, z) =

{
p(x, y, z) for z ≤ g(x, y),
q(x, y, z) otherwise,

for affine-linear functions p, q : R3 → R and g ∈ C α([0, 1]2)
satisfying g([0, 1]2) ⊂ (0, 1). The α-Hölder smooth surface
g ∈ C α([0, 1]2) is called horizon boundary of f . �

For the sake of brevity we decided to restrict ourselves to the
approximation of horizon functions, although our approxima-
tion scheme can also be applied to piecewise smooth functions
with one-dimensional singularities or with point singularities.

A. Approximation over Conformal Tetrahedralizations

We start with the approximation of horizon functions f over
conformal tetrahedralizations TN . Our goal is to construct a
sequence {TN}N∈N of tetrahedralizations TN in such a way,
that the horizon boundary g is surrounded by an εN -corridor
KεN ⊂ [0, 1]3. To this end, we interpolate the horizon boun-
dary g by a second order B-spline surface PN : [0, 1]2 → R,

PN (x) =

n∑
i=0

n∑
j=0

Di,jNi,1(x)Nj,1(y) for x = (x, y), (3)

where the samples Di,j = (xi,j , g(xi,j)), 0 ≤ i, j ≤ n are
taken over a regular grid in [0, 1]2 containing n2 = N cells.

We recall the following result from spline approximation.
Lemma 1: The L∞-error between g and its interpolating

surface PN (g) is bounded by

‖g − PN (g)‖2L∞([0,1]2) ≤ CN
−α.

�
In the following, it will be convenient to let εN = N−α,

for N ∈ N. Next we turn to the construction of an εN -
corridor KεN ⊂ [0, 1]3 containing the horizon boundary g.
To this end, consider some x′ ∈ [xi, xi+1]× [yj , yj+1]. Then,
the spline interpolant PN in (3) is locally given by a convex
combination over the adjacent grid points. In this case, we
have the inclusion

PN (x′) ∈ conv{Di,j , Di+1,j , Di,j+1, Di+1,j+1},

where the convex hull conv{Di,j , Di+1,j , Di,j+1, Di+1,j+1}
is a non-degenerate tetrahedron, provided that the points
Di,j , Di+1,j , Di,j+1, Di+1,j+1 are not co-planar.

Due to Lemma 1, the maximum distance between PN and
g is (up to a constant independent of N ) less than εN . This
allows us to construct an εN -corridor KεN surrounding the
surface g by offsetting each tetrahedron along the z-coordinate
about offset εN . In this case, we have

g(x′) ∈ conv{Dk,`±(0, 0, εN ) : k ∈ {i, i+1}, ` ∈ {j, j+1}}.

In the following discussion, it will be convenient to let

AN,i,j = conv{Dk,`±(0, 0, εN ) : k ∈ {i, i+1}, ` ∈ {j, j+1}}

for the convex hull of the (i, j)-th tetrahedron’s offset. By
the union of the convex pieces AN,i,j ⊂ [0, 1]3 we obtain an
εN -corridor AN = KεN with the required properties, i.e.,

g
(
[0, 1]2

)
⊂ AN :=

⋃
0≤i,j≤n−1

AN,i,j .

Now the video domain [0, 1]3 is split into three parts, made
up by AN and the two subdomains A±N ⊂ [0, 1]3 lying above
and below AN , respectively. The construction of the point set



YN is now a rather straightforward task: For the grid points
xi,j ∈ [0, 1]2, 0 ≤ i, j ≤ n, we take for YN the union

YN =
⋃

0≤i,j≤n

{(xi,j , 0), Di,j ± (0, 0, εN ), (xi,j , 1)} .

Therefore, we have |YN | ≤ 8 × N as required. For the
construction of the tetrahedralization TYN

of YN we split the
grid cells individually, such that each tetrahedron in TYN

is
either entirely contained in AN or otherwise outside of AN .

Now we are in a position where we can prove the following
L2-error estimate for conformal tetrahedralizations.

Proposition 1: For α ∈ (1, 2], let f : [0, 1]3 → R be
an α-horizon function. Then there exist constants C,M > 0
(independent of N ), such that for any N ∈ N there exists a
tetrahedralization TN with |TN | ≤M ×N vertices satisfying

‖f − fN‖2L2([0,1]3) ≤ CN
−α,

where fN ∈ STN interpolates f at the vertices in TN .
Proof: We approximate f by functions fN of the form

fN (x) =

 p(x) for x ∈ A−N
q(x) for x ∈ A+

N

gN (x) for x ∈ AN
for x ∈ [0, 1]3,

where gN is the interpolating linear spline to f at the vertices
of the εN -corridor AN . Note that fN coincides with f outside
of AN , so that

‖f − fN‖2L2([0,1]3) = ‖f − fN‖
2
L2(AN ) (4)

=
∑

0≤i,j≤n−1

‖f − fN‖2L2(AN,i,j)

=
∑

0≤i,j≤n−1

∑
T∈AN,i,j

‖f − fN‖2L2(T ),

where we tetrahedralized the corridor AN . Hence, it remains
to consider the L2-error over each tetrahedron T in AN .

Now note that the restriction fN |T of fN to a tetrahedron T
interpolates f at the four vertices of T . Moreover, since both
f and fN are affine-linear functions outside the εN -corridor
AN , we can bound the L2-error on tetrahedron T by

‖f − fN‖2L2(T ) ≤ C · |T | · ‖f‖
2
L2(T ),

where |T | is the volume of T in R3, and where the constant
C is independent of N . Therefore, the L2-error in (4) can be
bounded above by

‖f − fN‖2L2([0,1]3) ≤
∑

0≤i,j≤n−1

∑
T∈Ai,j,N

C · |T | · ‖f‖2L2(T )

≤ C
∑

0≤i,j≤n−1

|Ai,j,N | · ‖f‖2L2(Ai,j,N ).

By our construction of AN,i,j , and since g ∈ C α([0, 1]2)
with α ∈ (1, 2], we can bound the volume of each AN,i,j by

|AN,i,j | ≤ CN−α.

This allows us to refine our estimate on the L2-error (4) by

‖f − fN‖2L2([0,1]3) ≤ C
∑

0≤i,j≤n−1

|Ai,j,N | · ‖f‖2L2(Ai,j,N )

≤ C
∑

0≤i,j≤n−1

N−α · ‖f‖2L2(Ai,j,N )

≤ CN−α‖f‖2L2(AN )

≤ CN−α‖f‖2L2([0,1]3),

which completes our proof.

B. Approximation over Delaunay Tetrahedralizations

Now we turn to the construction of Delaunay tetrahedra-
lizations, where we wish to maintain the asymptotic L2 error
estimate of Proposition 1. To this end, recall that in our
construction of conformal tetrahedralizations, any tetrahedron
T ∈ TN is either fully contained in AN or outside of AN , i.e.,

T ∩AN 6= ∅ =⇒ T ⊂ AN for all T ∈ TN . (5)

For the construction of the (more restrictive) Delaunay tetra-
hedralizations of YN , we can no longer maintain property (5).

Therefore, we consider refining the point set YN as follows.
Lemma 2: Let f : [0, 1]3 → R be an α-horizon function,

where α ∈ (1, 2]. Then there exists a refinement ZN of the
point set YN , where |ZN | ≤M ×N (with M independent of
N ), such that any tetrahedron T in the Delaunay tetrahedra-
lization D(ZN ) of ZN satisfies property (5).

Proof: We can only give a short sketch of the proof. Our
complete proof is contained in [14].

Recall that the Delaunay tetrahedralization of YN is the dual
to its Voronoi diagram (see [13] for details). Therefore, any
edge connecting yi,yj ∈ YN satisfies the Delaunay property
if there exists some x ∈ R3 satisfying
(i) ‖x− yi‖ = ‖x− yj‖

(ii) ‖x− yi‖ < ‖x− yk‖ for all k 6= i, j.
Now let T be a tetrahedron which does not satisfy (5), so

that T ∩AN 6= ∅ and T ∩ ([0, 1]3 \AN ) 6= ∅. Then, there is at
least one edge e in T passing through the boundary of AN ,
and so there is one point x ∈ e satisfying properties (i), (ii).

To exclude edges e satisfying (i) and (ii), we refine the grid
in such a way, that the new points are close enough to e and,
moreover, split the edge e in two pieces.

Tetrahedra violating (5) are still possible, if the slope
of g exhibits large local variations. In this case, we can
refine YN accordingly to satisfy (5). To further explain
this, we can select parameters a, v, u ∈ N (independent of
N ), where a depends on |g|α and where v, u depend on
maxx∈[0,1]3 ‖∂xig‖∞,([0,1]2), i ∈ {1, 2}, respectively.

Now we finally refine each cell of the regular grid by av
cells along the x-coordinate and by au cells along the y-
coordinate to construct ZN over this new grid. Then, any
tetrahedron in D(ZN ) satisfies (5) and, moreover, we have

|ZN | ≤ av × au× |YN | ≤ av × au× 8×N.



We can summarize the discussion of this section as follows.
Theorem 1: Let f : [0, 1]3 → R be an α-horizon function,

where α ∈ (1, 2]. Then there exist constants C,M > 0 inde-
pendent of N , such that there is a Delaunay tetrahedralization
DN = D(ZN ), with |ZN | ≤M×N for all N ∈ N, satisfying

‖f − fN‖2L2[0,1]3 ≤ CN
−α,

where fN ∈ SDN
is the spline interpolant to f over ZN . �

IV. NUMERICAL SIMULATION BY ADAPTIVE THINNING

For the purpose of illustration, we present one numerical
example, relying on the popular test video called Suzie,
comprising 30 image frames. Figure 1 shows a sequence of
five image frames, each of size 264 × 264, along with the
approximation by adaptive thinning (AT), as obtained in [5].

frame 0000 708 pixels 34.58 dB

frame 0007 460 pixels 34.92 dB

frame 0014 364 pixels 35.49 dB

frame 0021 293 pixels 36.02 dB

frame 0029 669 pixels 35.00 dB

Fig. 1: Video approximation by adaptive thinning [5]. First
column: original image frame; second column: signi-
ficant pixels; third column: approximation by adaptive
thinning, along with the PSNR value (measured in dB).

A more detailed description on the numerical results is
contained in [5], where the entire set of image frames is shown.
Note that adaptive thinning achieves to reconstruct the test
data very well, especially the geometric features of the video.

Moreover, note that the representation of the video data by the
significant pixels is very sparse. This is due to a well-adapted
distribution of the significant pixels, shown in Figs. 1-2. Their
corresponding Delaunay tetrahedralization is in Fig. 2, where
for three frames their intersecting tetrahedra are displayed.

We can conclude that adaptive thinning is quite competitive,
as this is further supported by our numerical results in [5].

frame 0000: 708 pixels Delaunay tetrahedralization

frame 0015: 311 pixels Delaunay tetrahedralization

frame 0020: 292 pixels Delaunay tetrahedralization

Fig. 2: Video approximation by adaptive thinning (AT) [5].
Significant pixels and Delaunay tetrahedralization.
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