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Abstract—Many relevant applications of signal processing rely
on the separation of sources from a mixture of signals without
a prior knowledge about the mixing process. Given a mixture of
signals f = 3 . f;, the task of signal separation is to estimate
the components f; by using specific assumptions on their time-
frequency behaviour or statistical characteristics. Time-frequency
data is often very high-dimensional which affects the performance
of signal separation methods quite significantly. Therefore, the
embedding dimension of the time-frequency representation of f
should be reduced prior to the application of a decomposition
strategy, such as independent component analysis (ICA) or non-
negative matrix factorization (NNMF). In other words, a suitable
dimensionality reduction method should be applied, before the
data is decomposed and then back-projected. But the choice of
the dimensionality reduction method requires particular care,
especially in combination with ICA and NNMF, since non-
negative input data are required. In this paper, we introduce
a generic concept for the construction of suitable non-negative
dimensionality reduction methods. Furthermore, we discuss the
two different decomposition strategies NNMF and ICA for single
channel signal separation in combination with non-negative
principal component analysis (NNPCA), where our main interest
is in acoustic signals with transitory components.

I. INTRODUCTION

In many relevant applications of signal processing there
is an increasing demand for effective methods to estimate
the components from a mixture of acoustic signals. In recent
years, different decomposition techniques were developed to
do so, including independent subspace analysis (ISA), based
on independent component analysis (ICA), see [1], [3], [18],
and non-negative matrix factorization (NNMF), see [5], [17],
[19]. The computational complexity of these methods, how-
ever, may be prohibitively large, in particular for real-time
computations on audio signals, which is one application class
that we wish to address in this paper. In our previous work [6],
we have combined dimensionality reduction techniques with
decomposition methods to reduce the large complexity in
signal detection from acoustic signals.

In recent years, several different projection methods were
used for dimensionality reduction, among them the classical
linear principal component analysis (PCA) and multidimen-
sional scaling (MDS), as well as nonlinear methods, such
as isomap and local linear embedding (LLE). For a more
comprehensive account to nonlinear dimensionality reduction
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methods we refer to [13]. In applications of signal separation,
dimensionality reduction methods are used to first reduce
the dimension of the data obtained from a time-frequency
transform (e.g., STFT), before the reduced data is decomposed
into different components, each assigned to one of the source
signals. This combination was shown to be a promising tool
in various applications of signal separation.

However, for the application of dimensionality reduction in
combination with NNMF and ICA, respectively, non-negative
dimensionality reduction methods are essentially required to
guarantee non-negative output data from non-negative input
data. Therefore, the construction of non-negative dimension-
ality reduction methods is of particular interest.

In this paper we introduce a novel concept for the con-
struction of non-negative dimensionality reduction (NNDR)
methods, to be used in combination with signal separation.
We remark that dimensionality reduction for signal separation
has been studied in previous work [4], [6], [18], but without
any non-negativity constraints on the dimenionality reduction
method. Therefore, the idea to apply NNDR methods in
the context of signal seperation is new. For the construction
of suitable NNDR methods we first consider dimensionality
reduction methods which can be written as an optimization
problem with a suitable cost functional. Then, in order to
generate NNDR methods, we reformulate that optimization
problem by adding a non-negativity constraint. This refor-
mulation allows us to split the problem of NNDR into two
decoupled subproblems: (a) the problem of dimensionality re-
duction without non-negativity constraint; (b) the construction
of a rotation for mapping the reduced data to the positive
orthant. Details on problems (a) and (b) and their solutions
are explained later in this paper. Moreover, for the purpose of
illustration, we compare the two decomposition methods ICA
and NNMF in combination with a suitable NNDR method,
whose construction relies on PCA projections (see also [11]).

Our concept of non-negative dimensionality reduction is
explained in Section II, and its coupling with NNMF and ICA
is subject of Section III. Numerical examples comparing both
decomposition methods are finally presented in Section IV.

II. NON-NEGATIVE DIMENSIONALITY REDUCTION

On given data

X = {x;}_, CRP,



and for large dimension D, dimensionality reduction aims to
find a representation Y of X, so that Y can be embedded in a
Euclidean space of much smaller dimension d, i.e., Y C R4,
For convenience, we will from now use the matrix notation

X = (21, .., z,) € RPX™,

More precisely, with assuming the data X to lie on a
(smooth) manifold M C RP, we wish to compute a low-
dimensional representation 1 of M, where Q@ C R? is
embedded in RY, for d < D. This way we obtain Y C )
representing X C M, as illustrated in the following diagram.

X ¢ M c RP

lr s

Y ¢ Q c R4

In this paper, we consider dimensionality reduction methods

which can be written as an optimization problem

min (P) 2)
with U C {f: X — R?} and cost functional g: U — R,
where g is a measure for the distance between the projection
P and the homeomorphism B in (1). Note that the pair (i, g)
entirely determines the dimensionality reduction method. We
remark that most dimensionality reduction methods, including
PCA, MDS, isomap and LLE, can be formulated as (2) and,
moreover, efficient algorithms for solving their corresponding
optimization problem (2) are available (see [13]).

In many relevant applications, dimensionality reduction is
applied in a preprocessing step to reduce the data complexity
for making subsequent applications of signal analysis tools
feasible. Quite often, subsequent operations essentially require
non-negative input data. This motivates us to construct non-
negative dimensionality reduction (NNDR) methods. To this
end, it is straightforward to add a non-negativity constraint
P(X) > 0to (2), and so we obtain a constrained optimization
problem

min  g(P). 3)
P(X)>0
Note that the non-negativity constraint makes the optimization
problem (3) rather difficult to solve. This is in contrast to the
unconstrained optimization problem (2), for whose solution
standard algorithms are readily available.

Now the idea is to split the optimization problem (3)
into two steps: In the first step the dimensionality reduction
problem (2) is solved, before in the second step the reduced
data is rotated into the positive orthant of RY. To be more
precise, in the second step we compute a rotation matrix
W € SO(d) satisfying WP(X) > 0, where P is a solution
of (2).

We remark, however, that the splitting does not work for all
dimensionality reduction methods. But it turns out, that, when-
ever such a rotation W exists, the rotational invariance of cost
functional g, i.e., WP € U with g(W P) = g(P), guarantees

the solution of the splitted problem to also solve problem (3).
For more details on this, we refer to our work [11]. But it
can be shown that PCA, and also MDS, fit in this framework
(cf. [11]). In particular, the existence of the rotation matrix
W is guaranteed, if the high-dimensional data is non-negative.

A. Non-Negative PCA (NNPCA)

Classical PCA is a linear dimensionality reduction method,
whose construction relies on the singular value decomposition
(SVD). Here, the mapping P is an orthogonal projection,
satisfying Y = P(X) = UTX, with U € RP*4 The
projection matrix U is obtained by solving the minimization

problem

min
UTU=17

H{L‘k—UUT‘TkH. (4)
1

We remark that the solution of this minimization problem is
given by the maximizer of the variance var(Y’) of Y, which
in turn is given by the trace of YY7T. This allows us to
reformulate the minimization problem in (4) as an equivalent
maximization problem,
max tr(UTXXTU), (5)
UTUu=1
where the maximizer U of var(Y') is given by a matrix U
whose d columns contain the eigenvectors of the d largest
eigenvalues of the covariance matrix X X7,
In this context, the pair (U, g) in problem (2) is given by

U={U" cR™P | UTU =1}

and
gU") = —tr(UTXXTU).

According to (3), we reformulate the maximization problem
in (5) by adding a non-negativity constraint:
max tr(UTXXTU). (6)

vTu=1
uT x>0

Note that this additional restriction transforms the simple
PCA problem in (5) into a much more difficult non-convex
optimization problem (6) with many local solutions, for which
(in general) none of the solutions is known analytically.

Let us further discuss this special case of PCA in more
detail. First note that the cost functional g is rotational
invariant, due to the cyclic invariance of the trace. Indeed,
for W € SO(d) we have

gwu?) = —te(WUTXxXTuwT)
= —tr(WTWUTXXTU) = g(UT).

Furthermore, the orthogonal projection U7 solving (5) is an
angle preserving mapping from M to R?, i.e., data lying in
the positive orthant of R” is mapped into a pointed linear
cone of angle 90° in R, Thus, it is obvious that the splitting
ansatz as described above can be applied: Clearly, there exists
a matrix W € SO(d) rotating the reduced data set into the
positive orthant of the low-dimensional space R?. The value
of the cost functional g in (6) is not changed by this rotation.



The crucial point, however, is to compute such a rotation
matrix W. To do so, we consider solving an auxiliary opti-
mization problem on the set of orthogonal matrices SO(d) for
the cost functional

J(W) = %Z [(WUTX)_T , %

— ij
4,7

where [Y_].. = Yij if 4ij <0
t 0  otherwise

as this was proposed in [16] in the context of ICA. Note that
the cost functional J penalizes negative entries in the low-
dimensional representation WU? X and attains its minimal
value zero for a suitable rotation.

However, the minimization of (7) can not be solved directly
by an additive update algorithm, since the set of rotation ma-
trices SO(d) is not invariant under summation, i.e., updating
with a AW does not necessarily imply W + AW € SO(d).
There are several possibilities to overcome this difficulty. After
each update, a projection to the space of orthogonal matrices
SO(d) as in [15] would ensure the desired. However, one
drawback of the approach in [15] is that the determination of
the decent direction and the orthogonalization are performed
separately in each step. Therefore, it is not clear if the
combination of both yields indeed a decent step. Another
approach to solve the optimization problem is to include a
relaxation term and to consider an unconstrained optimization
problem, see [21].

But the most elegant way to minimize the cost functional
J in (7) uses the Lie-group structure of SO(d) to transfer
the optimization into an optimization on the associated Lie-
algebra of skew-symmetric matrices so(d). In the set of
skew-symmetric matrices an additive update is computed and
mapped to the group of special orthogonal matrices via the
matrix exponential. In this way a multiplicative update in
SO(d) is induced and the orthogonality of the updated matrix
is guaranteed in a natural way. Due to the vector space property
of s0(d), standard methods, such as line search, can be applied
to find the minimum (see [7], [10], [11], [16]).

We finally remark that the NNPCA, as specified in [21] and
used in several papers (e.g. [8], [14], [20]), essentially differs
from the one introduced here, since they require U > 0 rather
than UT X > 0, which is a more restrictive constraint.

IIT. APPLICATION OF NNDR TO SIGNAL SEPARATION

Non-negative dimensionality reduction (NNDR) has several
applications to signal processing. NNDR can e.g. be used for
signal detection as well as for blind source separation. In
recent years, blind source separation techniques as independent
component analysis (ICA) or independent subspace analysis
(ISA) were coupled with different dimensionality reduction
methods such as PCA, LLE or isomap, to mention just a few
(see e.g. [1], [6], [18]). But the required non-negativity of the
input data for the separation algorithm has not been discussed.
On the other hand, non-negative matrix factorization (NNMF)
has gained enormous interest in signal separation (see [9], [17],

[19]), but has not been used in combination with dimension-
ality reduction tools so far.

Let us briefly introduce the basic concept of signal separa-
tion, with focussing on the interaction between dimensionality
reduction and decomposition techniques. For a band-limited
signal f € L*([0,7]) and a segmentation of its domain [0, 7]
into small patches, we can analyze f on each of these patches,
as this is usually done by short-time Fourier-transform (STFT)
or wavelet analysis. In this way, we obtain a dataset X of
vectors in R” by drawing n samples from f:

X = {z;};_, CR.

With using the matrix notation X = (1, ...,2,) € RP*", the
output of the time-frequency analysis is a high-dimensional
and (componentwise) non-negative matrix X, called the spec-
trogram of signal f. The columns of X represent frequencies
which are present in f at a certain time. Now, a suitable
dimensionality reduction method is applied to the data matrix
X to then decompose the reduced data, being represented by
a matrix Y of smaller dimension, into different components,
each of which is to be assigned to one of the source signals.
The basic steps of this procedure are shown in Fig. 1.

signal f signals f1, fa
STET ISTFT
spectrograms
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ICA, NNMF

decomposed data

Fig. 1: Signal separation with dimensionality reduction.

Recall that we assume the data points in X to lie on a
smooth manifold (see the diagram (1)). The dimensionality
reduction map P which maps X on Y is non-negativity pre-
serving in the sense of (3). Furthermore, for the reconstruction
of the source signals we need a suitable inverse mapping P!,
where P! is an approximation of B~! in diagram (1). This
assumption is in general very restrictive, but in the special case
of PCA it is fulfilled by P~1(y) = Uy.

There are different methods for the decomposition of the
(reduced) spectrogram Y. Among them, ICA and NNMF are
commonly used. In either case, for the application of ICA or
NNME, we assume the input data Y to be a linear mixture of
source terms s;, i.e.,

Y = AS, (®)



where A € R?? and S € R " are unknown. We assume
that S C Q as it is the case for PCA. For the estimation of A
and S we need specific additional assumptions to balance the
disproportion of equations and unknowns in the factorization
problem (8).

1. Independent Component Analysis (ICA). The basic as-
sumption of ICA is that the source signals are statistically
independent. Furthermore, the data matrix Y is assumed to
result from n realizations of a d-dimensional random vector.
In order to estimate S, a random variable S is constructed,
whose n realizations yield the columns of the source matrix
S. The components of S are chosen to be as stochastically
independent as possible, where the stochastical independence
can be measured by the Kullback-Leibler distance (for details
see [2]).

In practice, the number of sources is usually not known.
In consequence, we may detect more independent compo-
nents than the true number of sources. In this case, two
or more of the separated components belong to the same
source. Thus, the sources are combinations of the independent
components. In a subsequent step, the sources are grouped
(partitioned) into independent subspaces, each corresponding
to one source. Finally, the sources are reconstructed from these
multi-component subspaces (see [1]). This procedure is called
independent subspace analysis (ISA). The main difficulty of
ISA is - beside the ICA - to identify components belonging to
the same multi-component subspace. This problem, however,
is far beyond the aims and scopes of this work.

2. Non-negative Matrix Factorization (NNMF). Note that the
factorization of the given data set Y into a mixing matrix A
and the source signals (source components) S, i.e., Y = AS,
could also be done by a matrix factorization. The data we
use for signal separation are obtained by taking the modulus
of the signal’s STFT, and so the input data is non-negative.
Since the source components are assumed to be spectrograms,
too, we assume them to be non-negative as well. Therefore,
non-negative matrix factorizations (NNMF) are suitable tools
for decomposition.

There are different NNMF algorithms available, all of
which are relying on the non-negativity Y, A, S > 0, where
different measures d(Y, AS) for the reconstruction error were
proposed (see e.g. [S], [17], [19]). Here, we consider using the
generalized Kullback-Leibler divergence

d(Y, AS) = ZY;jlog AS —Y;
U

as proposed by Lee and Seung in [12] and used for the
decomposition of signal data in [19].

+ (AS);;

IV. NUMERICAL RESULTS

For the purpose of illustration, we present one numeri-
cal example, where we compare the different decomposition
strategies by ICA and NNMF. To this end, we consider a
mixture f = f; + fo of acoustic transient signals, where f; is
a sequence of castanets and fy a cymbal signal, see Fig. 2.
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Fig. 2: Two acoustic signals: (a) castanets f1, (b) cymbal
fa; their spectrograms: (c) for f; and (d) for fs.

The combination f = f; + fo of the castanets and the
cymbal is shown in Fig. 3. Their spectrograms were generated
by a STFT using a Hamm-window. Since f2 is a high-energy
signal, f has a complex frequency characteristic. Therefore,
the task of extracting the castanets signal fi, being active only
at a few time steps, is quite challenging.
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Fig. 3: Signal f = f; + fo and its spectrogram X.

The separations obtained from NNPCA and the decomposi-
tion methods, NNMF and ICA, are shown in Fig. 4. Note that
either method, NNMF or ICA, reproduces the characteristic
peaks of the castanets quite well. But for the seperation by
NNMEF, a few artefacts are visible in the cymbal signal, in
contrast to the separation by ICA (see Fig. 4). Merely at time
steps, where a high amplitude of the cymbal exactly matches
the peaks of the castanets, a correct separation is not quite
achieved.

For the reconstruction of the reduced signal, either method,
NNMF or ICA, provides an almost complete reconstruction
of the input signal f. In fact, their reconstructions are nearly
identical (cf. Fig. 5).

We finally remark that for signal separation without di-
mensionality reduction, NNMF is competitive to ICA [19].
This suggests that the separation by NNPCA-NNMF could be
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Fig. 4: Left col.: Signal separation by NNPCA-NNMF;
Right column: separation by NNPCA-ICA.

improved. In fact, this could be achieved by more sophisti-
cated (nonlinear) dimensionality reduction methods, which,
however, would lead to a much more complicated back-
projection of the data. We defer these points to future research.
Nevertheless, although NNPCA is only a linear projection
method, our numerical results show that its performance in
combination with ICA is already quite promising.
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