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Abstract—Anisotropic triangulations provide efficient meth-
ods for sparse image representations. In previous work, we
have proposed a locally adaptive algorithm for sparse image
approximation, adaptive thinning, which relies on linear splines
over anisotropic Delaunay triangulations. In this contribution,
we address theoretical and practical aspects concerning image
approximation by linear splines over anisotropic conformal
triangulations. Our discussion includes asymptotically optimal
N -term approximations on relevant classes of target functions,
such as horizon functions across α Hölder smooth boundaries and
regular functions of Wα,p regularity, for α > 2/p−1. Moreover,
we demonstrate the good performance of our adaptive thinning
algorithm by numerical examples and comparisons.

I. INTRODUCTION

During the last few years, there has been an increasing de-
mand in sparse representations of images, which requires con-
structions of suitable dictionaries A = {ϕj}j∈N ⊂ L2([0, 1]2)
to obtain asymptotically optimal N -term approximations

‖f − fN‖2L2([0,1]2) = O(N−α) for N →∞, (1)

where fN is a linear combination of N (suitably chosen)
elements from A and f is assumed to lie in a function class
Fα ⊂ L2([0, 1]2) of (piecewise) regular bivariate functions,
whose regularity is reflected by the parameter α > 0.

Tensor product wavelets are well-known to provide (mildly)
nonlinear approximation schemes for image approximation.
In this approach, for a given wavelet orthonormal basis of
L2([0, 1]2), the N -term approximation operator WN associates
any f ∈ L2([0, 1]2) with the L2-function fN = WNf
obtained by the N largest wavelet coefficients of f . If the
chosen wavelet basis satisfies sufficient regularity and decay
conditions, then the resulting decay rate of the N -term approx-
imation (1) is related to the Besov regularity of f (see [8]).

In cases where f ∈ L2([0, 1]2) is only piecewise smooth
with singularities along (smooth) curves, N -term approxima-
tions by tensor product wavelets are of the form (cf. [9])

‖f −WNf‖2L2([0,1]2) = O(N−1) for N →∞. (2)

But the decay rate in (2) is only suboptimal [16]. For piecewise
Hölder continuous functions f of second order with singulari-
ties along C 2-curves, decay rates of the form

‖f − fN‖2L2([0,1]2) = O(N−2 (log2N)3) for N →∞ (3)

were proven for curvelets by Candès and Donoho [3]. Up
to the (log2N)3 factor, the curvelet N -term approximation
rate is asymptotically optimal (see [3]). But curvelets are not
adaptive to the assumed regularity of the target f . Therefore,
the curvelet N -term approximation rate in (3) does not apply
to functions f of less regularity, e.g., piecewise C α functions
f with singularities along C α-curves, for α < 2.

For piecewise regular images, locally adaptive approxima-
tion methods are of increasing interest. To this end, several
concepts were developed [1], [4], [10], [11], [13], [15], [17],
[18], [19], [20], [21], where the approximation schemes are
essentially adapted to the (local) image geometry, rather than
fixing a basis or a function frame beforehand to approximate f .

In previous work, we have developed a locally adaptive
approximation method, adaptive thinning, which works with
linear splines over anisotropic Delaunay triangulations, and
which is locally adaptive to the geometric regularity of the
image. As demonstrated in [5], [7], adaptive thinning leads
to an efficient and competitive image compression method at
computational complexity O(N log(N)).

In [6], we have proven asymptotically optimal N -term
decay rates of the form (1) for linear spline approximation
over locally adaptive anisotropic Delaunay triangulations for
relevant classes of target functions f , including

• horizon functions across α Hölder smooth boundaries,
• functions of Wα,p regularity, where α > 2/p− 1,
• piecewise regular horizon functions of Wα,2 regularity.

Our constructive approach in [6] essentially depends on the
local regularity of the target function f , where the resulting
adaptive approximation method applies in particular to piece-
wise Hölder continuous horizon functions f of order α ∈ (1, 2]
with singularities along α Hölder smooth boundaries.

The outline of this paper is as follows. In the following Sec-
tion II, we briefly introduce linear splines over (conformal) tri-
angulations, before we discuss nonlinear image approximation
by adaptive thinning in Section III. Then, in Section IV, we
explain how linear splines over locally adaptive triangulations
lead to asymptotically optimal N -term approximations of the
form (1) for the classes of target functions mentioned above.
For the purpose of illustration we finally present in Section V
numerical examples and comparisons between adaptive thin-
ning and other relevant image approximation methods.



II. LINEAR SPLINES OVER TRIANGULATIONS

For a finite planar point set Y , a (conformal) triangulation
T ≡ T (Y ) is a finite set T = {T}T∈T of triangles satisfying
the following properties.
(a) the vertex set of T is Y ;
(b) any pair of two distinct triangles in T intersect at most

at one common vertex or along one common edge;
(c) the convex hull conv(Y ) of Y coincides with the area

covered by the union of the triangles in T .
A triangulation T of Y is said to be a Delaunay triangulation
of Y , iff no circumcircle of a triangle T ∈ T contains any
point from Y in its interior. We recall that the Delaunay
triangulation T of Y is unique, provided that no four points in
Y are co-circular. Moreover, there are efficient algorithms for
computing the Delaunay triangulation of Y in O(N log(N))
steps, where N = |Y | is the size of Y .

In the following of this paper, we assume that Y is a
set of pixel positions, where we require that the convex hull
conv(Y ) of Y coincides with the square image domain [0, 1]2,
i.e., conv(Y ) = [0, 1]2. Moreover, we associate with any
triangulation T of Y the finite dimensional linear function
space of linear splines over T ,

ST :=
{
g ∈ C ([0, 1]2) : g|T ∈ P1 for all T ∈ T

}
,

containing all globally continuous functions on [0, 1]2 whose
restriction to any triangle T ∈ T is a linear polynomial in P1.

Note that for any function f ∈ C ([0, 1]2), there is a unique
linear spline interpolant s ∈ ST to f over the vertices Y of T
satisfying s|Y = f |Y . In particular, any linear spline s ∈ ST
is uniquely determined by its values at the vertices Y of T .

III. IMAGE APPROXIMATION BY ADAPTIVE THINNING

Adaptive thinning (AT) is a greedy pixel removal scheme,
which selects a small subset Y of significant pixels from
the superset of pixels in a given image. The recursive pixel
removal of AT is done according to some specific removal
criterion, being based on the anticipated L2 error incurred by
the removal of a vertex from a current triangulation T . The
selection of significant pixels Y by AT determines a (unique)
Delaunay triangulation T of Y , which in turn gives a spline
space ST . For the sake of brevitiy, we omit further details
concerning the greedy point removal scheme AT, but rather
refer to our papers [5], [7].

For the purpose of illustration, we present one numerical
example, relying on the popular test image cameraman con-
taining 256 × 256 pixels, see Figure 1 (a). In our numerical
example of Figure 1, AT is used to select a set of 2, 535
significant pixels from the original image, i.e., not even 3.86 %
from the 65, 536 given pixels. The set Y of 2, 535 significant
pixels are shown in Figure 1 (b) and their corresponding
Delaunay triangulation T (Y ) is in Figure 1 (c). Note that
the anisotropic Delaunay triangulation T (Y ) adapts the local
geometry of the image, in particular the sharp edges therein,
very well. The resulting image approximation in Figure 1 (d) is
finally obtained from the evaluation of the best approximating
spline from ST (Y ) w.r.t. the least squares error.

(a) Cameraman (256× 256) (b) 2535 significant pixels

(c) Delaunay Triangulation (d) Image Approximation by AT

Fig. 1: Image approximation by adaptive thinning.

IV. OPTIMAL N -TERM APPROXIMATIONS

In this section, we discuss asymptotically optimal N -term
approximation rates of the form (1) by linear splines over
anisotropic triangulations. To this end, we explain how to
construct sequences of triangulations {TN}N∈N, with vertex
set YN , such that there are constants C,M > 0 (independent
of N ) satisfying the following two properties.
(a) The size |YN | of YN is bounded by |YN | ≤M ×N ;
(b) the L2-approximation error can be bounded above by

‖f − fN‖2L2([0,1]2) ≤ CN
−α,

where fN ∈ S(TN ) is the unique linear interpolant to f
at YN , and where α > 0 is related to the regularity of f .

A. Approximation of Horizon Functions

Horizon functions [11] are popular prototypes for piece-
wise smooth images with discontinuities along Hölder smooth
curves. To introduce the class of horizon functions, first recall
that a univariate function g : [0, 1] → R is said to be Hölder
continuous of order β ∈ (0, 1], g ∈ C β([0, 1]), iff it satisfies

|g(x)− g(y)| ≤ C|x− y|β for all x, y ∈ [0, 1]

for some C > 0. Moreover, for α = r + β, with r ∈ N0

and β ∈ (0, 1], a function g ∈ C r([0, 1]) is said to be α-
Hölder smooth, iff g(r) ∈ C β([0, 1]). Finally, the linear space
C α([0, 1]) of all α-Hölder smooth functions over [0, 1] is by

|g|α = inf{C : |g(r)(x)−g(r)(y)| ≤ C|x−y|β ∀x, y ∈ [0, 1]}

equipped with the usual semi-norm.



In the following, we only require α ∈ (1, 2], i.e., α = 1+β
for β = α− 1 ∈ (0, 1]. In this case, g′ ∈ C α−1([0, 1]), where

|g′|α−1 = |g|α for all g ∈ C α([0, 1]).

Now the class of α-horizon functions comprises all piece-
wise affine-linear functions across α-Hölder smooth horizons.

Definition 1: For any α ∈ (1, 2], a function f : [0, 1]2 → R
is said to be an α-horizon function, iff it has the form

f(x, y) =

{
p(x, y) for y ≤ g(x),
q(x, y) otherwise,

for affine-linear functions p, q : R2 → R and g ∈ C α([0, 1])
satisfying g([0, 1]) ⊂ (0, 1). The α-Hölder smooth function
g ∈ C α([0, 1]) is called horizon boundary of f . �

We can apply classical univariate spline theory to obtain
a first result concerning the asymptotic decay rate for the
approximation of α-horizon functions by linear splines over
triangulations.

Proposition 1: For α ∈ (1, 2], let f be an α-horizon
function. Then, there exist constants C,M > 0 (independent
of N ), such that for any N ∈ N there is a triangulation TN
with |TN | ≤M ×N vertices satisfying

‖f − fN‖2L2[0,1]2 ≤ CN
−α, (4)

where fN ∈ STN interpolates f at the vertices in TN .
Proof: Let us first remark that the asymptotic N -term

approximation (4) can also be found in our previous work [6].
Nevertheless, it is quite instructive to recall the construction
of TN from [6]. This is done in three steps as follows.

Step 1. We apply univariate spline interpolation to approxi-
mate the horizon boundary g ∈ C α[0, 1]. To this end, let
SN (g) be the unique linear spline interpolant to g at uniform
knots, xi = i/N , i = 0, . . . , N , of mesh width h = 1/N .
Then, the approximation error between g and SN (g) can, over
any interval [xi, xi+1], be represented as

|g(x)− (SNg)(x)| =
∣∣∣∣g(x)− gi −

gi+1 − gi
h

(x− xi)
∣∣∣∣ , (5)

where we let gi = g(xi). Since g′ ∈ C α−1([0, 1]), we have∣∣∣∣gi+1 − gi
h

− g′i
∣∣∣∣ ≤ Chα−1 for some C > 0,

where we let g′i = g′(xi). But this in turn implies

|g(x)−(SNg)(x)| =
∣∣g(x)− gi −

(
g′i +O(hα−1)

)
(x− xi)

∣∣ .
On the other hand, by Taylor series expansion, we have

g(x) = gi + g′i(x− xi) +O(|x− xi|α),

so that (5) can further be rewritten as

|g(x)− (SNg)(x)| = O(|x− xi|α) +O(hα) = O(hα).

This yields the uniform bound

‖g − SN (g)‖L∞([0,1]) ≤ Chα = CN−α

for some constant C > 0 independent of N .

Step 2. We approximate f by functions fN of the form

fN (x, y) =

 p(x, y) for y ≤ (SNg)(x)− εN ,
q(x, y) for y ≥ (SNg)(x) + εN ,
gN (x, y) otherwise,

for sufficiently small constants εN > 0 (specified in step 3),
such that the functions fN are uniformly bounded on [0, 1]2,

‖fN‖L∞([0,1]2) ≤ ‖f‖L∞([0,1]2) for all N ∈ N.

Note that fN coincides with f outside the εN -corridor

KεN =
{

(x, y) ∈ [0, 1]2 : |y − (SNg)(x)| ≤ εN
}
,

so that

‖f − fN‖2L2([0,1]2) =

∫
KεN

|f(x, y)− fN (x, y)|2 dx dy

≤ 4‖f‖2L∞([0,1]2)

∫
KεN

dx dy

= 8‖f‖2L∞([0,1]2)εN .

Step 3. Now it is rather straightforward to construct a
triangulation TN , whose associated linear spline interpolant
to f is a function of the form fN . Indeed, we can triangulate
the union YN = IN ∪ BN of the 2(N + 1) interior points

IN = {(xi, (SNg)(xi)± εN ) : i = 0, . . . , N} ⊂ [0, 1]2

and the 2(N + 1) (horizontal) boundary points

BN = {(xi, 0), (xi, 1) : i = 0, . . . , N} ⊂ [0, 1]2

to obtain the desired triangulation TN (see [6]), which in turn
yields the unique linear spline interpolant fN ∈ STN to f with

‖f − fN‖2L2([0,1]2) ≤ 8‖f‖2L∞([0,1]2)εN .

Now we finally let εN = hα = N−α, which then yields the
stated error estimate in (4) for C = 8‖f‖2L∞([0,1]2).

We remark that the decay rate O(N−α/2) in (4) is optimal,
i.e., no polynomial depth search dictionary can achieve better
decay rates for the class of α-horizon functions. This result is
proven in [14] by using arguments from estimation theory.

B. Approximation of Regular Functions

Now we turn to the approximation of regular functions from
Sobolev spaces Wα,p([0, 1]2), for α ∈ (0, 2] and p ≥ 1,
where we assume α > 2/p − 1. In this case, Wα,p([0, 1]2)
is embedded in L2([0, 1]2) (see e.g. [12, Subsection 2.5.1]),
but does not lie on the L2([0, 1]2) embedding line. For the
sake of brevity, we then say that Wα,p([0, 1]2) lies above the
L2-embedding line.

We will essentially adapt our approximation scheme to
the regularity of f . Note that regular functions are isotropic
and, moreover, they can be characterised by the asymptotic
behaviour of their wavelet coefficients. We remark that the
class of regular functions form a rather large subset in the
linear space of all functions which can be approximated by
classical nonlinear (tensor product) wavelet approximations at
a decay rate O

(
N−α/2

)
, for N →∞.



In the following error analysis of this section, we rely on a
classical result by Birman-Solomjak [2] concerning approxi-
mation of regular functions by piecewise-affine functions over
quadtree partitions of [0, 1]2.

Theorem 1 (Birman-Solomjak): Let f ∈ Wα,p([0, 1]2) for
α ∈ (0, 2] and p ≥ 1 satisfying α > 2/p − 1. Then there
exists a constant C > 0 (independent of N ), such that for
any N ∈ N there is a quadtree partition QN of [0, 1]2 with
|QN | ≤ N leaves satisfying

‖f − fN‖2L2([0,1]2) ≤ CN
−α, (6)

where fN = ΠQN
f is the orthogonal L2-projection of f

onto the space of piecewise affine-linear (but not necessarily
continuous) functions over the quadtree partition QN . �

We remark that the proof of Birman-Solomjak is construc-
tive. In particular, an explicit algorithmic construction of a
quadtree partition QN satisfying the error estimate (6) is
provided in [2]. But QN does not necessarily minimize the
approximation error in (6) among all quadtree partitions Q of
size |Q| ≤ N . This may affect the size of the constant C but
not the asymptotic decay rate in (6).

Now we turn to the approximation of regular functions
by adaptive linear splines over anisotropic triangulations. We
can construct a sequence of triangulations TN , such that the
corresponding sequence of orthogonal L2-projections ΠTN f of
f onto the space STN of linear splines over TN achieves the
same approximation rate as the sequence of functions ΠQN

f
from the Birman-Solomjak theorem.

Corollary 1: Suppose f ∈Wα,p([0, 1]2) for α ∈ (0, 2] and
p ≥ 1 satisfying α > 2/p − 1. Then there exist constants
C,M > 0 (independent of N ), such that for any N ∈ N there
is a triangulation TN of size |TN | ≤M ×N satisfying

‖f −ΠTN f‖2L2([0,1]2) ≤ CN
−α,

where ΠTN f is the orthogonal L2-projection of f onto STN .
Proof: We split the proof into three steps.

Step 1. Let {QN}N denote the sequence of quadtree par-
titions from the Birman-Solomjak theorem, satisfying (6). By
VQN

= {(xm, ym)}m=1,...,M we denote, for any N ∈ N,
the vertex set of QN , comprising all M vertices from the
|QN | ≤ N quadtree leaves, so that M ≤ 4×N .

Next we associate, for some (sufficiently small) ε > 0, the
vertex set VQN

with the perturbed planar point set

VM,ε =
(
{(xm ± ε, ym ± ε) : m = 1, . . . ,M} ∩ [0, 1]2

)
∪ V

unioned with the vertex set V = {(0, 0), (0, 1), (1, 0), (1, 1)}.
Step 2. Now we construct a triangulation T (VM,ε) of the

perturbed point set VM,ε. To this end, we partition the domain
[0, 1]2 into a set of disjoint areas, M small subsquares sm, N
large subsquares Sn, and K anisotropic rectangles Rk, such
that their union is [0, 1]2. The small subsquares are

sm = conv{(xm ± ε, ym ± ε)} ∩ [0, 1]2 for m = 1, . . . ,M,

the large subsquares are, for i, j = 0, . . . , 2k − 1 of the form

Sn =

[
i

2k
+ ε,

i+ 1

2k
− ε
]
×
[
j

2k
+ ε,

j + 1

2k
− ε
]

for n = 1, . . . , N , and the anisotropic rectangles Rk are given
by the complement [0, 1]2 \

((⋃M
m=1 sm

)⋃(⋃N
n=1 Sn

))
.

To obtain a triangulation T (VM,ε) of VM,ε, it is straight-
forward to triangulate the subsquares sm and Sn and the
rectangles Rk, by splitting each subdomain, sm, Sn, or Rk,
across any of its two diagonals.

Step 3. Finally, let fN ∈ STN , TN = T (VM,ε), be the
unique linear spline function which interpolates the piecewise
affine-linear Birman-Solomjak function ΠQN

f in (6) at the
vertices VM,ε. Note that fN coincides with ΠQN

f on each
large subsquare Sn, and therefore

‖fN −ΠQN
f‖2L2([0,1]2) =

M∑
m=1

‖fN −ΠQN
f‖2L2(sm)

+

K∑
k=1

‖fN −ΠQN
f‖2L2(Rk)

.

Now we can bound the L2-error over any small square sm by

‖fN −ΠQN
f‖2L2(sm) ≤ C‖ΠQN

f‖2∞4ε2

for some constant C > 0 independent of N . Likewise, we can
bound the L2-error over any rectangle Rk by

‖fN −ΠQN
f‖2L2(Rk)

≤ C‖ΠQN
f‖2∞2ε

for some constant C > 0 independent of N . This then yields

‖f −ΠTN f‖2L2([0,1]2)

≤ ‖f − fN‖2L2([0,1]2)

≤ ‖f −ΠQN
f‖2L2([0,1]2) + ‖fN −ΠQN

f‖2L2([0,1]2)

≤ CN−α + Cε,

for arbitrarily small ε. We let ε = N−α to complete our proof.

In conclusion, we wish to make two final remarks.
Firstly, by Corollary 1, any regular f ∈ Wα,p([0, 1]2),

α > 2/p − 1, can be approximated by linear splines over
triangulations at an N -term decay rate of O(N−α/2). But this
approximation rate is optimal, since it is at least as good as that
of nonlinear wavelet approximation. In fact, the asymptotic
decay rate O(N−α/2) of wavelet representations is optimal
for the Sobolev spaces Wα,p([0, 1]2) in Corollary 1 (see [11]).

Secondly, although the proof the Birman-Solomjak theorem
in [2] is constructive, it does not provide a sequence of optimal
quadtree partitions, {Q∗N}, satisfying

‖f −ΠQ∗N f‖L2([0,1]2) = inf
QN

‖f −ΠQN
f‖L2([0,1]2).

As we rely on the Birman-Solomjak quadtree partitions QN ,
the triangulations TN in Corollary 1 are not optimal either.

But our greedy approximation algorithm, adaptive thinning,
achieves to construct a sequence of anisotropic Delaunay trian-
gulations {T ∗N}N whose corresponding spline approximations
f∗N ∈ T ∗N improve the approximation quality of the approxi-
mations ΠTN f output by Corollary 1 quite significantly. This
is supported by our extensive numerical results, two of which
we briefly present in the following Section V.



V. NUMERICAL RESULTS

(a) Wavelet approximation (b) Curvelet approximation

(c) Approximation by AT (d) Delaunay triangulation of AT

Fig. 2: Approximation to a piecewise regular function.

(a) Wavelet approximation (b) Curvelet approximation

(c) Approximation by AT (d) Delaunay triangulation of AT

Fig. 3: Approximation to a natural image.

TABLE I: Approximation to a piecewise regular function (left
columns) and to a natural image (right columns).

Method # terms PSNR # terms PSNR
Wavelets 655 coeffs 34.26 dB 6553 coeffs 33.61 dB
Curvelets 1478 coeffs 29.78 dB 14780 coeffs 30.32 dB

AT 400 vertices 50.00 dB 6000 vertices 36.58 dB

For the purpose of illustration, we consider presenting two
numerical examples. Our numerical results are reflected by
Table I and Figures 2,3. We can conclude that approximation
by adaptive thinning (AT) is quite competitive. Given the page
limits, we need to finish here. Further explanations on our
numerical results could be provided during the conference.
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