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On the error behaviour of the filtered back projection
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The filtered back projection (FBP) formula allows us to reconstruct bivariate functions from given Radon samples. How-
ever, the FBP formula is numerically unstable and low-pass filters with finite bandwidth and a compactly supported window
function are employed to make the reconstruction by FBP less sensitive to noise. In this paper we analyse the inherent recon-
struction error which is incurred by the application of a low-pass filter with finite bandwidth. We present L2-error estimates
on Sobolev spaces of fractional order along with asymptotic convergence rates, where the filter’s bandwidth goes to infinity.

1 Filtered back projection

The term filtered back projection (FBP) refers to a well-known
and commonly used reconstruction technique in computerized
tomography (CT). The classical CT reconstruction problem
can be formulated as follows.

Problem 1.1 Let Q C R? be bounded. Reconstruct a bi-

variate function f with compact support supp(f) C € from
its given Radon data

{Rf(t,0)[t€R, 0€[0,m)},

where the Radon transform R f of f € L'(R?) is defined as

RF(1.0) = / fla,y) dzdy

{z cos(0)+ysin(0)=t}

for (¢,6) € R x [0, 7).

Thus, the CT reconstruction problem seeks for the inver-
sion of the Radon transform R. For a comprehensive mathe-
matical treatment of R and its inversion, we refer to [5,11].

The inversion of R is well understood and given by the
classical filtered back projection formula ([4, Theorem 6.2.])

Fley) = L BEISIFRNES.O)@y), O

which holds for f € L*(R?) N C(R?), and where the back
projection Bh of h € LY(R x [0, 7)) is defined as

Bh(z,y) = 71T/07rh(x cos(8) + ysin(6),0) do

for (z,y) € R?. Note that 3 is the adjoint operator of R.

We remark that the FBP formula (1) is highly sensitive with
respect to noise and, consequently, numerically unstable. To
stabilize it, we follow a standard approach and replace the
factor |.S| in (1) by a low-pass filter Ay, of the form

AL(S) = [SIW(5/r)

with finite bandwidth L > 0 and an even window function
W € L*°(R) with compact support supp(W) C [—1,1].
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By applying the low-pass filter Ay, (S), the reconstruction
of f is no longer exact, but the resulting approximate FBP
reconstruction fr, can be rewritten as

fo= 1

3 B(F'AL«Rf) = f = Ky,
where we define the convolution kernel K, : R? — R via

Ki(z,y) = %B(}'*IAL)(CE,y)‘

2 Error analysis

In the following, we analyse the intrinsic FBP reconstruction
error e, = f — fr which is incurred by the application of
the low-pass filter Az. We remark at this point that pointwise
and L°°-error estimates on ey, were proven by Munshi et al.
in [7, 8], supported by numerical experiments in [9]. Error
bounds on the LP-norm of ey, in terms of an L?-modulus of
continuity of f, were proven by Madych in [6].

Our goal is to proof L2-error estimates on ez, for the rele-
vant case of target functions f from Sobolev spaces of frac-
tional order (cf. [10]), i.e., we assume

feH R ={ge€S' R ||glla < oo}

where

for a > 0,

1
ol = 5 [ [ a4 5 Fte ) dody,

The presented results are refinements and extensions of our
results in [2,3]. More details and proofs, along with numerical
simulations, can be found in [1].

Theorem 2.1 Let f € L'(R?) N H*(R?), for a > 0,
K € LY(R?) and W € C([—1,1]) with W(0) = 1. Then,
the L2-norm of the FBP reconstruction error ey, = f — fr is
bounded above by

ezl < (@3 (L) +L7) I fllas

where
(1-W(S))*
S, w(l) = -_ L .
wi(L) sgfﬁf{,l] (15 1252) — 0 for — 00
In particular,

lellizgey — 0 for L — oco.
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3 Rate of convergence

We now analyse the convergence rate of the FBP reconstruc-
tion error |ler ||r,2(r2) as L goes to co. To this end, let S7; -,
denote the smallest maximizer in [0, 1] of the even function

(1-W(s))?
(14 L252)"

Our further analysis relies on the following assumption.

(I)a,W,L(S) = for S € [71, 1]

Assumption 3.1 57 1, is uniformly bounded away from
zero, i.e., there exists a constant ¢, > 0 such that

S;W,L > Ca,W VL>O0.
Under this assumption, we can proof L2-error estimates for

the FBP reconstruction with convergence rates as follows.

Theorem 3.2 Under Assumption 3.1 and the assumptions
of Theorem 2.1, the L2-norm of ey, is bounded above by

ez < (cafy 11 = Wlhse 1 +1) L7 | la-

In particular,
lerllLzmey = O(L™%) for L — oco.

Note that the decay rate of the L2-error in Theorem 3.2 is
determined by the smoothness « of the target function f.

We remark that Assumption 3.1 is satisfied for a large class
of window functions. For example, let W € C([—1, 1]) satisfy

W(S)=1 VS e€][—-e,¢

Then, Assumption 3.1 is fulfilled with ¢, w = €.

But Assumption 3.1 is not satisfied for all commonly used
choices of W. In fact, in [1] we investigated the behaviour
of S;)W, ;, and @,y numerically for the following window

for some ¢ € (0,1).

functions of the filter A (S) = |S| W (S/L):
Name | W(S)for|S| <1 | Parameter
Shepp-Logan sinc(75/2) -
Cosine cos(mS/2) -
Hamming B+ (1—pB)cos(nS) | B€E[/2,1]
Gaussian exp(—(75/8)?) B8>1

We summarize our numerical results from [1] as follows.

For a0 < 2, we found that Assumption 3.1 is fulfilled and
O, w(L)=0O(L2) for L — oc.

For o > 2, Assumption 3.1 is not fulfilled, since
s:

wr — 0 for L — o0,

and the convergence rate of ®,, yy stagnates at

Oy w(L)=0L"*) for L— co.
To show the observed behaviour of @, y (L), we note that
all above windows W are in C2([—1, 1]) with W(0) = 1 and

W’(0) = 0. With assuming W € Ck([
can proof the following estimate on ®,, W(

Theorem 3.3 Let W € C*([—1,1)), for k > 2, with
W) =1 wW@0)=0 V1<j<k-1
Moreover, let o > 0. Then, ®,, w (L) is bounded above by

, 1)), for k > 2, we
)-

and

L‘Qk fora >k

Po,w (L) < (W WO -
’ - 1] L*20‘ fora <k

(kg)z W) Hio,[_

for sufficiently large L > 0 and with the constant

Ca,k:( kk)kh(a_k)w/2 for o > k.

o — (0%

In particular,
B (L) = O(L‘Qmi“{k’a}) for L —s o

The theoretical results of Theorem 3.3 comply with the
above observations, where k = 2, as well as with the nu-
merical results for arbitrary £ > 2 in [1]. In particular, the
saturation of the convergence rate at O(L~2F) was observed.
Therefore, our numerical experiments show that the proven
convergence rate of ®,, /(L) is optimal for C*-windows.

Combining Theorems 2.1 and 3.3, we finally obtain the
following result for the FBP reconstruction with C¥-windows.

Corollary 3.4 Let the assumptions of Theorems 2.1 and
3.3 be satisfied. Then, the L2-norm of ey, is bounded above by

1 ¢ —«
lewlioge < ( 19 lcov + 1) 2 1l
for a < k, and by

ezl < (5 S L L) [

for o > k and sujﬁczently large L > Q. In particular,

Ca,k

lerllags) = O(L7 0 H)  for L — oc.

Note that in Corollary 3.4 the decay rate of ||er[|r2(r2) is
for o < k determined by the smoothness « of the target func-
tion f, whereas for o > k the decay rate saturates at O(L~*).
Here, k denotes the differentiability order of the window W,
whose first £ — 1 derivatives are required to vanish at zero.
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