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On the error behaviour of the filtered back projection
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The filtered back projection (FBP) formula allows us to reconstruct bivariate functions from given Radon samples. How-
ever, the FBP formula is numerically unstable and low-pass filters with finite bandwidth and a compactly supported window
function are employed to make the reconstruction by FBP less sensitive to noise. In this paper we analyse the inherent recon-
struction error which is incurred by the application of a low-pass filter with finite bandwidth. We present L2-error estimates
on Sobolev spaces of fractional order along with asymptotic convergence rates, where the filter’s bandwidth goes to infinity.
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1 Filtered back projection

The term filtered back projection (FBP) refers to a well-known
and commonly used reconstruction technique in computerized
tomography (CT). The classical CT reconstruction problem
can be formulated as follows.

Problem 1.1 Let Ω ⊂ R2 be bounded. Reconstruct a bi-
variate function f with compact support supp(f) ⊆ Ω from
its given Radon data

{Rf(t, θ) | t ∈ R, θ ∈ [0, π)} ,

where the Radon transformRf of f ∈ L1(R2) is defined as

Rf(t, θ) =

∫
{x cos(θ)+y sin(θ)=t}

f(x, y) dxdy

for (t, θ) ∈ R× [0, π).

Thus, the CT reconstruction problem seeks for the inver-
sion of the Radon transform R. For a comprehensive mathe-
matical treatment ofR and its inversion, we refer to [5, 11].

The inversion of R is well understood and given by the
classical filtered back projection formula ([4, Theorem 6.2.])

f(x, y) =
1

2
B
(
F−1[|S|F(Rf)(S, θ)]

)
(x, y), (1)

which holds for f ∈ L1(R2) ∩ C(R2), and where the back
projection Bh of h ∈ L1(R× [0, π)) is defined as

Bh(x, y) =
1

π

∫ π

0

h(x cos(θ) + y sin(θ), θ) dθ

for (x, y) ∈ R2. Note that B is the adjoint operator ofR.
We remark that the FBP formula (1) is highly sensitive with

respect to noise and, consequently, numerically unstable. To
stabilize it, we follow a standard approach and replace the
factor |S| in (1) by a low-pass filter AL of the form

AL(S) = |S|W (S/L)

with finite bandwidth L > 0 and an even window function
W ∈ L∞(R) with compact support supp(W ) ⊆ [−1, 1].

By applying the low-pass filter AL(S), the reconstruction
of f is no longer exact, but the resulting approximate FBP
reconstruction fL can be rewritten as

fL =
1

2
B
(
F−1AL ∗ Rf

)
= f ∗KL,

where we define the convolution kernel KL : R2 −→ R via

KL(x, y) =
1

2
B
(
F−1AL

)
(x, y).

2 Error analysis

In the following, we analyse the intrinsic FBP reconstruction
error eL = f − fL which is incurred by the application of
the low-pass filter AL. We remark at this point that pointwise
and L∞-error estimates on eL were proven by Munshi et al.
in [7, 8], supported by numerical experiments in [9]. Error
bounds on the Lp-norm of eL, in terms of an Lp-modulus of
continuity of f , were proven by Madych in [6].

Our goal is to proof L2-error estimates on eL for the rele-
vant case of target functions f from Sobolev spaces of frac-
tional order (cf. [10]), i.e., we assume

f ∈ Hα(R2) =
{
g ∈ S ′(R2) | ‖g‖α <∞

}
for α > 0,

where

‖g‖2α =
1

2π

∫
R

∫
R

(1 + x2 + y2)α |Fg(x, y)|2 dxdy.

The presented results are refinements and extensions of our
results in [2,3]. More details and proofs, along with numerical
simulations, can be found in [1].

Theorem 2.1 Let f ∈ L1(R2) ∩ Hα(R2), for α > 0,
KL ∈ L1(R2) and W ∈ C([−1, 1]) with W (0) = 1. Then,
the L2-norm of the FBP reconstruction error eL = f − fL is
bounded above by

‖eL‖L2(R2) ≤
(

Φ
1/2
α,W (L) + L−α

)
‖f‖α,

where

Φα,W (L) = max
S∈[−1,1]

(1−W (S))2

(1 + L2S2)
α −→ 0 for L −→∞.

In particular,

‖eL‖L2(R2) −→ 0 for L −→∞.
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3 Rate of convergence

We now analyse the convergence rate of the FBP reconstruc-
tion error ‖eL‖L2(R2) as L goes to∞. To this end, let S∗α,W,L
denote the smallest maximizer in [0, 1] of the even function

Φα,W,L(S) =
(1−W (S))2

(1 + L2S2)
α for S ∈ [−1, 1].

Our further analysis relies on the following assumption.
Assumption 3.1 S∗α,W,L is uniformly bounded away from

zero, i.e., there exists a constant cα,W > 0 such that

S∗α,W,L ≥ cα,W ∀L > 0.

Under this assumption, we can proof L2-error estimates for
the FBP reconstruction with convergence rates as follows.

Theorem 3.2 Under Assumption 3.1 and the assumptions
of Theorem 2.1, the L2-norm of eL is bounded above by

‖eL‖L2(R2) ≤
(
c−αα,W ‖1−W‖∞,[−1,1] + 1

)
L−α ‖f‖α.

In particular,

‖eL‖L2(R2) = O(L−α) for L −→∞.

Note that the decay rate of the L2-error in Theorem 3.2 is
determined by the smoothness α of the target function f .

We remark that Assumption 3.1 is satisfied for a large class
of window functions. For example, letW ∈ C([−1, 1]) satisfy

W (S) = 1 ∀S ∈ [−ε, ε] for some ε ∈ (0, 1).

Then, Assumption 3.1 is fulfilled with cα,W = ε.
But Assumption 3.1 is not satisfied for all commonly used

choices of W . In fact, in [1] we investigated the behaviour
of S∗α,W,L and Φα,W numerically for the following window
functions of the filter AL(S) = |S|W (S/L):

Name W (S) for |S| ≤ 1 Parameter
Shepp–Logan sinc(πS/2) -
Cosine cos(πS/2) -
Hamming β + (1− β) cos(πS) β ∈ [1/2, 1]
Gaussian exp

(
−(πS/β)2

)
β > 1

We summarize our numerical results from [1] as follows.
For α < 2, we found that Assumption 3.1 is fulfilled and

Φα,W (L) = O(L−2α) for L −→∞.

For α ≥ 2, Assumption 3.1 is not fulfilled, since

S∗α,W,L −→ 0 for L −→∞,

and the convergence rate of Φα,W stagnates at

Φα,W (L) = O(L−4) for L −→∞.

To show the observed behaviour of Φα,W (L), we note that
all above windows W are in C2([−1, 1]) with W (0) = 1 and
W ′(0) = 0. With assuming W ∈ Ck([−1, 1]), for k ≥ 2, we
can proof the following estimate on Φα,W (L).

Theorem 3.3 Let W ∈ Ck([−1, 1]), for k ≥ 2, with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Moreover, let α > 0. Then, Φα,W (L) is bounded above by

Φα,W (L) ≤

{
c2α,k
(k!)2 ‖W

(k)‖2∞,[−1,1] L
−2k for α > k

1
(k!)2 ‖W

(k)‖2∞,[−1,1] L
−2α for α ≤ k

for sufficiently large L > 0 and with the constant

cα,k =
( k

α− k

)k/2(α− k
α

)α/2
for α > k.

In particular,

Φα,W (L) = O
(
L−2min{k,α}

)
for L −→∞.

The theoretical results of Theorem 3.3 comply with the
above observations, where k = 2, as well as with the nu-
merical results for arbitrary k ≥ 2 in [1]. In particular, the
saturation of the convergence rate at O(L−2k) was observed.
Therefore, our numerical experiments show that the proven
convergence rate of Φα,W (L) is optimal for Ck-windows.

Combining Theorems 2.1 and 3.3, we finally obtain the
following result for the FBP reconstruction with Ck-windows.

Corollary 3.4 Let the assumptions of Theorems 2.1 and
3.3 be satisfied. Then, the L2-norm of eL is bounded above by

‖eL‖L2(R2) ≤
(

1

k!
‖W (k)‖∞,[−1,1] + 1

)
L−α ‖f‖α

for α ≤ k, and by

‖eL‖L2(R2) ≤
(cα,k
k!
‖W (k)‖∞,[−1,1] L−k + L−α

)
‖f‖α

for α > k and sufficiently large L > 0. In particular,

‖eL‖L2(R2) = O
(
L−min{k,α}

)
for L −→∞.

Note that in Corollary 3.4 the decay rate of ‖eL‖L2(R2) is
for α ≤ k determined by the smoothness α of the target func-
tion f , whereas for α > k the decay rate saturates atO(L−k).
Here, k denotes the differentiability order of the window W ,
whose first k − 1 derivatives are required to vanish at zero.
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