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Multiscale Flow Simulation by Adaptive Finite Volume Particle Methods
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! Department of Mathematics, University of Leicester, Leicester LE1, AR

We report on recent developments concerning adaptive finite partitieonls, which are used for the numerical simulation
of multiscale phenomena in time-dependent evolution processes. dpesgd concept relies on a finite volume approach,
which we combine with WENO reconstruction from particle average vallrethis method, polyharmonic splines are key

tools for both the optimal recovery from scattered particle averagetharmbnstruction of customized adaption rules.
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1 Introduction

Many physical phenomena in fluid dynamics are modelled bg4ilependent scalar hyperbolic conservation laws of thre for
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— 1
5+ V) =0, @
where for some domaift C R¢, d > 1, and a time interval = [0, T, T > 0, the unknown functiom : I x Q} — R measures

the density of some conserved quantity, such as mass, momgenit energy. In nonlinear conservation laws, i.e., forlimear

flux function f(u) = (f1(u), ..., fa(u)), the solutionu of (1) can easily develop discontinuities (shocks) spagtasly, even
from smooth initial data
u(0,x) = uo(x), forz € Q. (2)

This typical behaviour reflects problem-inherenultiscale phenomenonavhich must be dealt with mathematically and
computationally, wheradaptivesimulation methods are essentially needed for solving tnec@y problem (1),(2).

Moreover, due to irrevocable laws of physics, a numericahoe for the solution of (1) is required to be conservative.
Finite volume (FV) discretizations are classical conserganethods for hyperbolic problems [9]. In the generahfatation
of FV, the computational domaif is partitioned into disjoint grid cells, control volumesoWever, as shown by Junk in [7],
FV methods can also be formulated without using a grid. I, facery flexible and robudtnite volume particle method
(FVPM) is developed in [3] by Hietel, Steiner and Struckmgighere the control volumes in the FV method are replaced by
influence areasf moving particles. To this end, a partition of unity is usethich also allows overlapping influence areas.

In this short contribution, we adopt only some of the basaa&lof FVPM (see Section 2), which we combine with both
weighted essentially non-oscillatofytENO) reconstruction (Section 4) and a customized adagtiategy for the particles’
local refinement and coarsening (Section 5). This altogsfileéds a novel concept for multiscale flow simulation by piilee
particle methods, which relies on scattered data recartgiruby using polyharmonic splines (Section 3).

We remark that the good performance of related multiscatécpea simulation methods is already demonstrated in our
previous work concerning two-phase flow in porous media. réfoee, for the (required) sake of brevity, we refrain from
including numerical examples, but refer to the numericalitts and comparisons in our previous work [5] and [6, Chalitg

2 Finite Volume Particle Method

In order to briefly explain the main ingredients of the uglizfinite volume particle method (FVPM), IEt= {{};c= C Q
denote a finite set of nodes, each of which correspondingtiatest € I, to one flow particle. Moreover, we denote for any
¢ € Eby Ve C Qtheinfluence areaf particle, with particle average

o
w6 =17 /.

According to the classical concept of FV [9], for each = its particle average, (t) is at time steg — ¢ + 7 updated by an
explicit numerical method of the form

u(t, z) dz, for{ e Zandt € 1.

_ _ T
Ug(t+7) = e(t) — 1A > Fe,

whereF; , denotes theumerical fluxbetween particl¢ and a neighbouring particle € =\ £. The required exchange of
information between neighbouring patrticles is modelledaszgeneric numerical flux function, which may be implemergd
using any suitable FV flux evaluation scheme, such as ADER]irHor details on further features of FVPM, see [3, 7].
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3 Optimal Recovery from Particle Aver ages by Polyharmonic Splines

On given particle averag@#E = {u¢ }eec=, and for specifistencils(see Section 4), WENO reconstruction requires computing
for each stenciS C = a recovery functions : R? — R satisfyingu = 5¢ for all ¢ € S. Commonly used WENO schemes
work with polynomial reconstruction, which, however, magd to severe numerical instabilities, especially whepértcles

are heterogeneously distributed, see [1]. Our recommgmdiatto rather work with polyharmonic splines, in which eas

s(@) =) et (|l —[) +pl),  pePh, 3)
ges

whereP¢ are thed-variate polynomials of order at most, and where, fo2m > d, the polyharmonic spline™¢ is given
by ¢"%(r) = r2m~4log(r) for even dimensior, and by¢™ % (r) = 2™~ for odd dimension.

We remark that polyharmonic splines, discovered by DucBgrafe powerful tools for multivariate interpolation frasoat-
tered Lagrange data. As shown in [4], polyharmonic spliierpolation can be generalized to reconstruction fromteied
Hermite-Birkhoff data, which includes reconstructionrfrgarticle averages. Moreover, polyharmonic spline rettaoson
is optimalin theBeppo Levi spacBL™ (R?) = {u : D*u € L*(R?) for all |o| = m} , being equipped with the semi-norm

m
D Dl 4 [ A
|a]=m

so thats in (3) minimizes the Beppo Levi energy|gr.~ among all recovery functionsin BL™ (R%), i.e.,|s|pr= < |u|ppm.

4 WENO Reconstruction

WENO reconstruction requires first selecting, for any pltjcc =, a small number of stencils; C =,1 < i < k, each given
by a small set of particles in the neighbourhood ofor each stencib;, we compute a polyharmonic spline reconstruction
Si satisfyingﬁ|s_ =3 |S_, so that the approximationto v in the influence ared; of particle¢ is given by a weighted sum of
the form ' '

k k
s(z) = wisi(x), with ) " w; =1,
=1 i=1
where the weights; = &; / >-5_, &;, with @; = (e+Z(s;))~* for ¢, p > 0, are determined by using tiescillation indicator

m a m
T(w) = Juldpe = 3 (a>”D wlZ.,  forue BL™(RY).

|a]=m

5 Adaption Rules
In order to construct customized adaption rules, we emphosreor indicatorn : = — [0, co) of the form
n(&) = |tg — 3¢l for & e =,

wheres denotes the polyharmonic spline reconstruction satigfng = 5]8, forastencilS C =\¢ of particles surrounding.
We letn* = max¢cz n(€), and we determine relative threshold valdgs, Orer, 0 < 8ers < brer < 1, SO that a particl€ € =
is to be refinediff (&) > 0. x n*, wherast is to be coarsenedff n(£) < 6.5 x n*. It is sufficient for the purpose of
this short contribution to say that a partiglec = is coarsened by its removal froB) whereag is refined by the insertion of
further particles in its neighbourhood. For further detaibncerning computational aspects of the utilized adaptites and
their construction, we refer to our previous papers [5, 8].
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