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Multiscale Flow Simulation by Adaptive Finite Volume Particle Methods

Armin Iske∗1
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We report on recent developments concerning adaptive finite particle methods, which are used for the numerical simulation
of multiscale phenomena in time-dependent evolution processes. The proposed concept relies on a finite volume approach,
which we combine with WENO reconstruction from particle average values.In this method, polyharmonic splines are key
tools for both the optimal recovery from scattered particle averages andthe construction of customized adaption rules.
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1 Introduction

Many physical phenomena in fluid dynamics are modelled by time-dependent scalar hyperbolic conservation laws of the form

∂u

∂t
+ ∇f(u) = 0, (1)

where for some domainΩ ⊂ R
d, d ≥ 1, and a time intervalI = [0, T ], T > 0, the unknown functionu : I×Ω → R measures

the density of some conserved quantity, such as mass, momentum, or energy. In nonlinear conservation laws, i.e., for nonlinear
flux functionf(u) = (f1(u), . . . , fd(u)), the solutionu of (1) can easily develop discontinuities (shocks) spontaneously, even
from smooth initial data

u(0, x) = u0(x), for x ∈ Ω. (2)

This typical behaviour reflects problem-inherentmultiscale phenomenona, which must be dealt with mathematically and
computationally, whereadaptivesimulation methods are essentially needed for solving the Cauchy problem (1),(2).

Moreover, due to irrevocable laws of physics, a numerical method for the solution of (1) is required to be conservative.
Finite volume (FV) discretizations are classical conservative methods for hyperbolic problems [9]. In the general formulation
of FV, the computational domainΩ is partitioned into disjoint grid cells, control volumes. However, as shown by Junk in [7],
FV methods can also be formulated without using a grid. In fact, a very flexible and robustfinite volume particle method
(FVPM) is developed in [3] by Hietel, Steiner and Struckmeier, where the control volumes in the FV method are replaced by
influence areasof moving particles. To this end, a partition of unity is used, which also allows overlapping influence areas.

In this short contribution, we adopt only some of the basic ideas of FVPM (see Section 2), which we combine with both
weighted essentially non-oscillatory(WENO) reconstruction (Section 4) and a customized adaptionstrategy for the particles’
local refinement and coarsening (Section 5). This altogether yields a novel concept for multiscale flow simulation by adaptive
particle methods, which relies on scattered data reconstruction by using polyharmonic splines (Section 3).

We remark that the good performance of related multiscale particle simulation methods is already demonstrated in our
previous work concerning two-phase flow in porous media. Therefore, for the (required) sake of brevity, we refrain from
including numerical examples, but refer to the numerical results and comparisons in our previous work [5] and [6, Chapter 11].

2 Finite Volume Particle Method

In order to briefly explain the main ingredients of the utilized finite volume particle method (FVPM), letΞ = {ξ}ξ∈Ξ ⊂ Ω
denote a finite set of nodes, each of which corresponding, at atime t ∈ I, to one flow particle. Moreover, we denote for any
ξ ∈ Ξ by Vξ ⊂ Ω the influence areaof particleξ, with particle average

ūξ(t) =
1

|Vξ|

∫

Vξ

u(t, x) dx, for ξ ∈ Ξ andt ∈ I.

According to the classical concept of FV [9], for eachξ ∈ Ξ its particle averagēuξ(t) is at time stept → t + τ updated by an
explicit numerical method of the form

ūξ(t + τ) = ūξ(t) −
τ

|Vξ|

∑

ν

Fξ,ν ,

whereFξ,ν denotes thenumerical fluxbetween particleξ and a neighbouring particleν ∈ Ξ \ ξ. The required exchange of
information between neighbouring particles is modelled via a generic numerical flux function, which may be implementedby
using any suitable FV flux evaluation scheme, such as ADER in [8]. For details on further features of FVPM, see [3, 7].
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3 Optimal Recovery from Particle Averages by Polyharmonic Splines

On given particle averages̄u
∣

∣

Ξ
= {ūξ}ξ∈Ξ, and for specificstencils(see Section 4), WENO reconstruction requires computing

for each stencilS ⊂ Ξ a recovery functions : R
d → R satisfyingūξ = s̄ξ for all ξ ∈ S. Commonly used WENO schemes

work with polynomial reconstruction, which, however, may lead to severe numerical instabilities, especially when theparticles
are heterogeneously distributed, see [1]. Our recommendation is to rather work with polyharmonic splines, in which case

s(x) =
∑

ξ∈Ξ

cξφ̄
m,d
ξ (‖x − ·‖) + p(x), p ∈ Pd

m, (3)

wherePd
m are thed-variate polynomials of order at mostm, and where, for2m > d, thepolyharmonic splineφm,d is given

by φm,d(r) = r2m−d log(r) for even dimensiond, and byφm,d(r) = r2m−d for odd dimensiond.
We remark that polyharmonic splines, discovered by Duchon [2], are powerful tools for multivariate interpolation fromscat-

tered Lagrange data. As shown in [4], polyharmonic spline interpolation can be generalized to reconstruction from scattered
Hermite-Birkhoff data, which includes reconstruction from particle averages. Moreover, polyharmonic spline reconstruction
is optimal in theBeppo Levi spaceBLm(Rd) =

{

u : Dαu ∈ L2(Rd) for all |α| = m
}

, being equipped with the semi-norm

|u|2BLm =
∑

|α|=m

(

m

α

)

‖Dαu‖2
L2(Rd),

so thats in (3) minimizes the Beppo Levi energy| · |BLm among all recovery functionsu in BLm(Rd), i.e.,|s|BLm ≤ |u|BLm .

4 WENO Reconstruction

WENO reconstruction requires first selecting, for any particle ξ ∈ Ξ, a small number of stencilsSi ⊂ Ξ, 1 ≤ i ≤ k, each given
by a small set of particles in the neighbourhood ofξ. For each stencilSi, we compute a polyharmonic spline reconstruction
si satisfyingū

∣

∣

Si
= s̄i

∣

∣

Si
, so that the approximations to u in the influence areaVξ of particleξ is given by a weighted sum of

the form

s(x) =

k
∑

i=1

ωisi(x), with
k

∑

i=1

ωi = 1,

where the weightsωi = ω̃i

/
∑k

j=1 ω̃j , with ω̃i = (ε+I(si))
−ρ for ε, ρ > 0, are determined by using theoscillation indicator

I(u) = |u|2BLm =
∑

|α|=m

(

m

α

)

‖Dαu‖2
L2 , for u ∈ BLm(Rd).

5 Adaption Rules

In order to construct customized adaption rules, we employ an error indicatorη : Ξ → [0,∞) of the form

η(ξ) = |ūξ − s̄ξ|, for ξ ∈ Ξ,

wheres denotes the polyharmonic spline reconstruction satisfying ū
∣

∣

S
= s̄

∣

∣

S
, for a stencilS ⊂ Ξ\ξ of particles surroundingξ.

We letη∗ = maxξ∈Ξ η(ξ), and we determine relative threshold valuesθcrs, θref , 0 < θcrs < θref < 1, so that a particleξ ∈ Ξ
is to be refined, iff η(ξ) > θref × η∗, wherasξ is to be coarsened, iff η(ξ) < θcrs × η∗. It is sufficient for the purpose of
this short contribution to say that a particleξ ∈ Ξ is coarsened by its removal fromΞ, whereasξ is refined by the insertion of
further particles in its neighbourhood. For further details concerning computational aspects of the utilized adaption rules and
their construction, we refer to our previous papers [5, 8].
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