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Abstract Wedevelop supporting arguments in favour of kernel-based reconstruction
methods in the recovery step of particle simulations. We strongly recommend poly-
harmonic spline kernels, whose key features and advantages are briefly explained.

1 Introduction

Particle methods provide flexible discretizations for the numerical simulation of
multiscale phenomena in fluid flows. For time-dependent evolution processes, for
instance, particle models are particularly well-suited to cope with rapid variation
of domain geometries and anisotropic large-scale deformations. To discuss their
governing equation, we remark that fluid flow simulations require the numerical
solution of a hyperbolic conservation law of the form

∂u
∂t
+ ∇ f (u) = 0, (1)

on given computational domainΩ ⊂ Rd , d ≥ 1, compact time interval [0,T], T > 0,
and flux tensor f (u) = ( f1(u), . . . , fd (u))T , where at time t = 0 initial conditions

u(0, x) = u0(x) for x ∈ Ω (2)

are assumed. Nonlinear flux tensors f lead to discontinuous solutions u, shocks,
which may develop spontaneously, even at smooth initial data u0 in (2). Therefore,
nonlinear flow simulation requires flexible computational methods to solve (1), (2).
For an introduction to numerical methods for fluid dynamics we refer to [10, 12, 13].
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2 The basic reconstruction problem of particle flow simulation

To compute the numerical solution u : [0,T]×Ω −→ R of (1), (2), particle methods
are popular tools, especially for their high flexibility. The Eulerian finite volume
particle method (FVPM) [4] and the semi-Lagrangian particle method (SLPM) [8]
are only two prototypes. For a comprehensive discussion on particle-based flow
simulation, we refer to [8] and references therein.

Although Eulerian and Lagrangian particle methods, such as FVPM and SLPM,
are conceptually different, they rely on the solution of a specific reconstruction
problem, which we can describe as follows. To this end, let Ξ = {ξ1, . . . , ξn } ⊂ Ω
be a stencil, i.e., a finite point set of particle positions. For any particle ξ ∈ Ξ, we
assume a scalar value u(ξ) ≡ u(ξ, t) ∈ R, which is used, at time t, to compute the
numerical solution u of (1), (2). In the Eulerian FVPM, for instance, u(ξ, t) is the
particle average for the influence area of particle ξ, cf. [7, 8] for further details.

Now the generic formulation of the basic reconstruction problem is as follows.

Problem 1 Compute from a given stencil Ξ = {ξ1, . . . , ξn } ⊂ Ω of n ∈ N pairwise
distinct particle positions in the domain Ω ⊂ Rd , d ∈ N, and a data vector

uΞ = (u(ξ1), . . . , u(ξn ))T ∈ Rn

a reconstruction s : Ω −→ R satisfying sΞ = uΞ, i.e.,

s(ξ j ) = u(ξ j ) for all 1 ≤ j ≤ n. (3)

Although particle-based simulation methods are so popular for their high flexi-
bility, they may have severe drawbacks. Indeed, especially in relevant situations of
anisotropic stencils Ξ, e.g. in WENO schemes [11], the numerical stability is very
critical, due to the heterogenous distribution of particles in Ξ. In such cases, it
is desirable to work with robust reconstruction schemes in order to better capture
discontinuities (shocks fronts) and preference directions of the flow. Other problems
of particle methods are moving boundaries and highly turbulent flows. Needless
to say that high performance particle simulation methods essentially require high
performance reconstruction schemes. For the solution of Problem 1, accurate, stable,
efficient and flexible reconstruction algorithms are therefore of vital importance.

3 Kernel-based reconstruction vs polynomial reconstruction

Most of the particle-based simulation methods rely on polynomial reconstruction.
However, as documented for WENO methods [1], polynomials may lead to severe
numerical instabilities. Especially in situations of anisotropic stencils Ξ, polynomial
reconstructions are often doomed to fail. In this paper, we propose to avoid polyno-
mial reconstruction methods. We rather give a strong recommendation in favour of
kernel-based reconstructions, where polyharmonic splines are our favourite choice.
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Beforewe start our discussion on kernel-based reconstructions,wewish to provide
only one argument against using polynomials, which should convince the numerical
reader already now: Recalling polynomial interpolation from univariate data, where
d = 1 and Ω ⊂ R, we understand from basic numerical analysis that polynomial
interpolation (a) is numerically unstable, especially for large and unevenly distributed
data; (b) is highly sensitive with respect to noisy input data; (c) may lead to high
oscillations near the boundary of the domain (interval) Ω. On the other hand, we
understand from basic numerical analysis that splines, e.g. cubic splines, are power-
ful tools for univariate interpolation. In fact, spline reconstruction schemes avoid
the well-known shortcomings (a)-(c) of polynomial interpolation. Thereby, spline
reconstruction is far superior to polynomial reconstruction, already in the case of
one dimension, d = 1, and so the following two leading questions are not undue:

(Q1) Should we use polynomial reconstruction for the multivariate case?
(Q2) Is there a generalization of univariate splines to higher dimensions?
Our answer to (Q1) is clearly no, since polynomial reconstruction does not even

work properly for the univariate case. Our answer to (Q2) is yes: polyharmonic
splines extend univariate splines to higher dimensions d > 1, as we explain here.

4 Kernel-based reconstruction in particle fluid flow simulations

To introduce basic ingredients of kernel-based reconstruction, let us first recall the
conditions sΞ = uΞ in Problem 1, for whose solution s : Ω −→ R we now assume
the form

s(x) =
n∑
j=1

cjϕ(x − ξ j ) + p(x) for p ∈ Pd
m (4)

with parameters (coefficients) c = (c1, . . . , cn )T ∈ Rn . Moreover, ϕ : Ω −→ R is an
even kernel function and Pd

m denotes the linear space of all d-variate polynomials
of order m ∈ N0. The order m in (4) is determined by the choice of ϕ as follows.

For the well-posedness of the reconstruction scheme, we require the kernel ϕ
to be conditionally positive definite of order m on Rd (see [14, Chapter 8]), in
short: ϕ ∈ CPD(m,Rd ). For the following discussion, it is sufficient to say that, for
ϕ ∈ CPD(m,Rd ), we obtain under the moment conditions

n∑
j=1

cj p(ξ j ) = 0 for all p ∈ Pd
m (5)

a reconstruction s of the form (4), where s is unique, if the stencilΞ isPd
m-unisolvent,

i.e., any polynomial p ∈ Pd
m can uniquely be reconstructed from its values at Ξ, or,

in other words, pΞ = 0 implies p ≡ 0.
Therefore, the coefficients c = (cj )1≤ j≤n ∈ Rn and d = (dα )T

|α |<m
∈ Rq for s

in (4) are characterized by the solution of the (n + q) × (n + q) linear system
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resulting from the reconstruction conditions (3), under constraints (5), where

Φ =
(
ϕ(ξk − ξ j )

)
1≤ j,k≤n

∈ Rn×n and P =
(
ξαk

)
1≤k≤n; |α |<m

∈ Rn×q,

and where q =
(
m−1+d

d

)
is the dimension of the polynomial space Pd

m .
We can conclude the discussion of this section as follows.

Proposition 1 The system (6) has for any Pd
m-unisolvent stencil Ξ ⊂ Rd a unique

solution, if ϕ is conditionally positive definite of order m on Rd , ϕ ∈ CPD(m,Rd ).

For a more comprehensive account to conditionally positive definite kernels, we
refer to [14], where examples for commonly used kernels ϕ ∈ CPD(m,Rd ) are given.

5 Kernel-based reconstruction by polyharmonic splines

The special case of polyharmonic splines is due to Duchon [3]. Polyharmonic splines
are radial kernels ϕd,m (x) = φd,m (r), with r = ‖x‖ (the Euclidean norm), of the
form

φd,m (r) =
{

r2m−d log(r) for d even
r2m−d for d odd

}
for 2m > d,

where φd,m ∈ CPD(m,Rd ). According to [3], polyharmonic spline reconstruction
is optimal with respect to the Beppo Levi space

BLm (Rd ) =
{
u : Dαu ∈ L2(Rd ) for all |α | = m

}
⊂ C (Rd ) for 2m > d,

which is equipped with the semi-norm

|u|2BLm =
∑
|α |=m

(
m
α

)
‖Dαu‖2

L2 (Rd ) for u ∈ BLm (Rd ).

In other words, the polyharmonic spline reconstruction s in (4), satisfying sΞ = uΞ,
minimizes the energy | · |BLm among all recovery functions u in BLm (Rd ), i.e.,

|s |BLm ≤ |u|BLm for all u ∈ BLm (Rd ) with uΞ = sΞ, (7)

where the semi-norm |s |BLm of the polyharmonic spline reconstruction s is given by
the quadratic form

|s |2BLm =

n∑
j,k=1

cjckφd,m (‖ξk − ξ j ‖), (8)

whose coefficient vector c = (c1, . . . , cn )T ∈ Rn comes with the solution in (6).
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6 Ten good reasons for using polyharmonic spline reconstruction

We summarize the discussion of this contribution by giving ten good reasons in
favour of using polyharmonic spline reconstruction in particle flow simulations.
Reason 1: Well-posedness. Polyharmonic splines yield a well-posed reconstruction
method, which guarantees the existence and uniqueness for a solution of Problem 1,
for arbitrary stencils Ξ ⊂ Rd and values uΞ, and for any dimension d ≥ 1. Indeed,
due to Proposition 1, the system (6) has for φd,m ∈ CPD(m,Rd ) a unique solution.
This is in contrast to polynomial reconstruction. In fact, due to theMairhuber-Curtis
theorem [5, Theorem 5.25] from approximation theory, a reconstruction scheme can,
for d > 1, only be well-posed, if the reconstruction space depends on the stencil Ξ.
Reason 2: Efficient implementation and preconditioning. The implementation
of the polyharmonic spline reconstruction scheme merely requires solving square
linear systems of the form (6), which can be set up very easily. To obtain efficient
and numerically stable solutions of (6), we recommend our recent preconditioner,
relying on hierarchical matrix approximation [6].
Reason 3: Stable and efficient evaluation. Polyharmonic splines allow for stable
and efficient evaluations of their reconstructions. This is due to the scale-invariance
of the reconstruction scheme’s Lagrange basis, see [7, Sections 7.4] for more details.
Reason 4: Stability by orthogonal projection.The polyharmonic spline reconstruc-
tion s, satisfying sΞ = uΞ, is characterized by the (unique) orthogonal projection
of u ∈ BLm (Rd ) onto the linear subspace of reconstructions of the form (4). This
property is covered by approximation theory in Euclidean spaces, cf. [5, Chapter 4],
which further implies that s is the best approximation to u ∈ BLm (Rd ) w.r.t. | · |BLm .
Reason 5: Optimality by energy minimization. Polyharmonic spline reconstruc-
tion by φd,m is optimal in the Beppo-Levi space BLm (Rd ), by the energy minimiza-
tion in (7). The latter already follows from the best approximation property of the
polyharmonic spline reconstruction scheme in BLm (Rd ) w.r.t. | · |BLm (cf. Reason 3).
Reason 6: Polynomial reproduction. If the stencil Ξ is Pd

m-unisolvent and if the
input data uΞ is sampled from a polynomial u ∈ Pd

m , then we have c = 0 for themajor
part of the reconstruction s in (4), satisfying sΞ = uΞ. This implies the polynomial
reproduction property s ≡ u, due the well-posedness of the reconstruction scheme.
Reason 7: Arbitrary local approximation order. Polyharmonic spline reconstruc-
tion by φd,m has local approximation order m with respect to C m functions, i.e.,

|u(hx) − sh (hx) | = O(hm ) for h ↘ 0 for u ∈ C m,

where sh is the (unique) polyharmonic spline reconstruction satisfying shΞ = uhΞ.
This result is due to the reproduction of polynomials from Pd

m , cf. [7, Section 7.5].
Reason 8: Flexible stencil selection. According to the kernel-based reconstruction
scheme of Section 4, we merely require n ≥ q for the number of particles n = |Ξ|,
which allows us to work with variable stencil sizes. This is contrast to polynomial
reconstruction, where the stencil size |Ξ| is fixed a priori by the dimension of the poly-
nomial space. The latter is often viewed as a severe restriction of polynomial WENO
reconstructions (see [2]), where flexible stencils (of variable sizes) are desired.
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Reason 9: Natural oscillation indicator. To avoid oscillations of reconstructions s,
satisfying sΞ = uΞ,WENO schemesworkwith oscillation indicators. To this end, the
polyharmonic spline reconstruction scheme provides a natural choice by the energy
functional | · |BLm . This is further supported by the variational principle, according
to which s minimizes | · |BLm among all recovery functions in BLm (Rd ), see (7).
Moreover, the minimum |s |BLm is readily available by the quadratic form (8).
Reason 10: Meshfree reconstruction and high flexibility in adaptive methods.
The reconstruction scheme of polyharmonic splines is meshfree and therefore very
flexible, especially when it comes tomodifying the set of moving particles adaptively
(cf. [9, Chapter 6]), which is particularly important for problems with solutions of
rapid variation or singularities, or for problems with free or complicated boundaries.

Finally, meshfree reconstruction does obviously not rely on sophisticated algo-
rithms for the generation and maintenance of a computational mesh, unlike in FD,
FV, FE, DG and other mesh-based methods. This gives polyharmonic spline re-
constructions (and other meshfree methods) yet another advantage, in particular for
high-dimensional problems, where mesh generation is prohibitively expensive.

References

1. R. Abgrall: On essentially non-oscillatory schemes on unstructured meshes: analysis and
implementation. Journal of Computational Physics 144, 1994, 45–58.

2. T. Aboiyar, E.H. Georgoulis, A. Iske: Adaptive ADER methods using kernel-based polyhar-
monic spline WENO reconstruction. SIAM J. Scientific Computing 32(6), 2010, 3251–3277.

3. J. Duchon: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Constructive
Theory of Functions of Several Variables, W. Schempp et al. (eds.), Springer, 1977, 85–100.

4. D. Hietel, K. Steiner, and J. Struckmeier: A finite-volume particle method for compressible
flows. Mathematical Models and Methods in Applied Sciences 10(9), 2000, 1363–1382.

5. A. Iske: Approximation Theory and Algorithms for Data Analysis. Texts in Applied Mathe-
matics, vol. 68, Springer, Cham, 2018.

6. A. Iske, S. Le Borne, M. Wende: Hierarchical matrix approximation for kernel-based scattered
data interpolation. SIAM Journal on Scientific Computing 39(5), 2017, A2287-A2316.

7. A. Iske: On the construction of kernel-based adaptive particle methods in numerical flow
simulation. In: Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation,
R. Ansorge, H. Bijl, A. Meister, and T. Sonar (eds.), Springer, Berlin, 2013, 197–221.

8. A. Iske: Polyharmonic spline reconstruction in adaptive particle flow simulation. In:Algorithms
for Approximation, A. Iske and J. Levesley (eds.), Springer, Berlin, 2007, 83–102.

9. A. Iske:Multiresolution Methods in Scattered Data Modelling. LectureNotes in Computational
Science and Engineering, vol. 37, Springer, Berlin, 2004.

10. R.L. LeVeque: Finite Volume Methods for Hyperbolic Problems. Cambridge Univ. Press, 2002.
11. X. Liu, S. Osher, T. Chan: Weighted essentially non-oscillatory schemes. Journal of Compu-

tational Physics 115, 1994, 200–212.
12. K.W. Morton and T. Sonar: Finite volume methods for hyperbolic conservation laws. Acta

Numerica, 2007, 155–238.
13. E.F. Toro: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Intro-

duction. Third Edition. Springer, Berlin, 2009.
14. H. Wendland: Scattered Data Approximation. Cambridge Univ. Press, Cambridge, UK, 2005.


