Conference code: MI101
Title of conference: Physics of Medical Imaging

This work has not been submitted for publication or presentation elsewhere.

Generalized Filtered Back-projection for
Digital Breast Tomosynthesis Reconstruction

Klaus Erhard®, Michael Grass®, Sebastian HitzigerP,
Armin IskeP, and Tim Nielsen®

“Philips Research Europe — Hamburg, Germany
bUniversity of Hamburg, Germany

1 Purpose

Filtered back-projection (FBP) has been commonly used as an efficient and robust reconstruction technique
in tomographic X-ray imaging during the last decades. For limited angle tomography acquisitions such as
digital breast tomosynthesis, however, standard FBP reconstruction algorithms provide poor results and give
rise to image artifacts due to the limited angular range and the coarse angular sampling. Therefore, iterative
algorithms are often used in digital breast tomosynthesis since they potentially yield a reconstructed image that
is in better accordance with the measured data. In this work, a generalized FBP algorithm is presented, which
uses the filtered projection data of all acquired views for back-projection along one direction in order to compute
an image that is similar to an iteratively calculated one. The proposed method requires the computation of
geometry-dependent filter kernels that provide an efficient reconstruction algorithm with an accuracy comparable
to iterative techniques, which will be demonstrated on simulated breast tomosynthesis data.

2 Methods

While FBP algorithms provide fast and accurate image reconstruction in tomographic X-Ray imaging whenever
the source trajectory is complete and sufficiently many projections are acquired [4], they perform worse on
limited angle tomographic data where both the trajectory is incomplete and the sampling is coarse. In digital
breast tomosynthesis, for example, typical examination protocols acquire only 10 - 30 X-ray projections over a
limited angular range of 15° - 60° [2]. Here, a common FBP image reconstruction suffers from severe artefacts
such as the loss of the average value and edge sharpening along the source trajectory. These artefacts can be
weakend with the use of iterative reconstruction techniques since these kind of algorithms succesively update the
reconstructed image in order to reduce the mismatch between measured projection data and the reprojections
generated from the current image.

Motivation of the filter design A similar reconstruction quality as for example with an ART algorithm
cannot be achieved with a view-by-view filtering of the projection data in standard FBP reconstruction since
the update step of ART implicitely involves information from all projection angles prior to back-projecting from
one single view. To mimic this feature of iterative reconstruction algorithms cross-view projection filtering has
to be enabled within the FBP framework. Therefore, a more general filtered backprojection is introduced by

x = BFy, (1)

with image x, measured projection data
T
y=(y1,--yn)" (2)
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Here, y; denotes the measured data for the source position i, i.e. Pz =y with the projection operator
P=(P,....Py)", (5)

defined via the projection operators P; for each view position i. Note, that in contrast to standard FBP
algorithms, the filter matrices Fj;, acting on the measured data y; and contributing to the filtered view ¢ prior
to back-projecting from source position 7, are non-zero for the proposed generalized FBP method.
Computation of an image z' that is consistent with the measured data can be achieved with the knowledge of
the generalized inverse P of the projection operator P via

zt =Pty (6)

However, direct computation of the generalized inverse is not feasible due to the complexity of P and therefore
iterative methods are commonly applied for solving Eq. (6).
Comparing Eq. 1 with the following observation P+ = B(PB)* shows that filtering with

F=(PB)* (7)

in the generalized FBP formula (1) yields the same result 2" as applying the generalized inverse PT to the
measured data y.

Computation of filter kernels The computation of the filter kernels for the generalized filtered back-
projection algorithm given by Eq. (1) and Eq. (7) will be demonstrated in the following for a digital breast
tomosynthesis geometry. The acquisition geometry is definied by a static detector and an X-ray source moving
on a straight line at fixed height above the detector parallel to its columns, see Fig. 1 (a). Therefore, each
detector column consisting of M detector elements can be processed separately. However, the computation of
the filter F for one particular column still requires the evaluation of the generalized inverse (PB)™ of the matrix

PB, ... PBy
PB = : : : , (8)

PyB: ... PnBy

which consists of N x N blocks of matrices of the size M x M. For typical values of M = 2048 and N = 17 in
digital breast tomosynthesis the numerical complexity of a direct calculation of (PB)T is O(N3M?3) and hence
too large for practical purposes.

To overcome this problem, the operator (PB) acting on the projection data is analysed in the Fourier domain.
Each block matrix P;B; describes a convolution on the projection data with a shift-invariant kernel of limited
width depending on the angle between the source positions ¢ and j, see Fig. 1 (b). Hence, the block matrices
P;B; can be described as a diagonal matrix in the frequency domain with diagonal elements given by the
frequency components of the Fourier transformed convolution operator P;B;, i.e.

PzBJ = dlag (PiABj(l), ey PZB](M)) B (9)

and PB can be reordered w.r.t. the frequency components k = 1,..., M, yielding a blockdiagonal shape of M
blocks of size N x N each:

PB = diag (PAB(D, o ,PAB(M)) , (10)
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Figure 1: (a) Acquisition geometry of the simulated DBT system. (b) Illustration of shift-invariant convolution
kernel of operator P;B;. (c) Axial slice through simulated breast phantom with anatomical background noise
and ellipsoidal lesion.
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Now, the calculation of the filter F(*) = (PB) can be performed separately for each frequency component
k=1,...,M, which reduces the complexity from O(N3M?) to O(MN?) and enables the practical implemen-
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tation of the proposed method. The matrices (PB) can be calculated analytically for the given acquisition

geometry.

Breast phantoms For this simulation study a series of breast phantoms have been generated from dynamic
contrast-enhanced MRI images, acquired on a Philips MR Intera Achieva 1.5 T scanner at the University of
Chicago Hospitals, by segmentation into three tissue compartments representing adipose, glandular and skin
tissue and application of a compression model as previously described in [3]. To further refine these software
breast phantoms, anatomic noise background structure has been added with a random signal following a power
law behaviour. To this end, a random white noise signal has been Fourier transformed and multiplied with a
power-law function H(f) = B%°/f% in frequency domain such that the resulting structure noise admits the
power spectrum P(f) = B/f3, see [1]. An examplary breast phantom with an additional ellipsoidal lesion and
a resolution of 200 ym in each direction is depicted in Fig. 1 (c).

3 Results

Simulated projection data have been generated from breast phantoms for a DBT system with a static detector
with 100 pum pixel pitch. The tube is moving parallel to the detector columns at constant height of SID =
665 mm above the detector sampling N = 17 projections at equidistant angles between £16° measured against
the detector normal, see Fig. 1 (a). Fig. 2 (a) - (¢) show a comparison of an axial slice through the reconstructed
volumes for FBP with a ramp filter, the proposed generalized FBP, and ART with 10 iterations. Fig. 2 (d)
shows a profile of the attenuation values along the line indicated in the images. Obviously, standard FBP with
ramp filter yields a loss of the average value and even negative values for the attenuation coefficient can occur.
On the other hand, the generalized FBP and the iteratively computed ART reconstruction exhibit a very similar
appearance and the line profiles shown in Fig. 2 (d) almost coincide.
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Figure 2: Axial slice reconstructions with (a) standard FBP, (b) proposed generalized FBP and (c¢) ART with 10
iterations. (d) shows a profiles of the reconstructed attenuation coefficient along the line indicated in (a) - (c).

4 New work to be presented

The presented filter computation method for a generalized filtered back-projection algorithm for digital breast
tomosynthesis has not been presented before. To the best of our knowledge, comparable methods have not been
applied to digital breast tomosynthesis before.

5 Conclusion

The proposed method yields a computationally efficient generalized FBP algorithm for digital breast tomosyn-
thesis, which provides similar image quality as iterative reconstruction techniques while preserving the ability
for region of interest reconstructions. Both a small number of views and a limited angular range can be handled
with the generalized FBP while common FBP reconstruction yields a severe loss of the average value. More-
over, due to the filter computation as the pseudo-inverse operator, the reconstructed image provides an optimal
solution in the least-squares sense, which minimizes the error between the measured data and the reprojections
of the reconstructed image.
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