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Abstract. Grid-free adaptive semi-Lagrangian advection, as recently sug-
gested in [3], relies on two basic ingredients: scattered data approximation
and a customized strategy for the adaption (coarsening and refinement) of
the scattered nodes. In this paper, effective rules for the node adaption are
proposed. The practicability of the grid-free advection method is illustrated
in our numerical examples by simulation of tracer transportation in the arctic
stratosphere.
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1 Introduction

In a previous paper [3], a new grid-free adaptive advection scheme has been
proposed for the purpose of numerically solving the linear advection equation

∂c

∂t
+

dx

dt
· ∇c = 0

in Ω̄ = I × Ω, where I = [0, T ] ⊂ R, T > 0, is a compact time interval, and
where c : Ω̄ → R models the time-dependent distribution of the concentration

in the computational domain Ω = R
d, d ≥ 1.

The method in [3] is a combination of an adaptive semi-Lagrangian method
(SLM) and the grid-free radial basis function (RBF) interpolation. In con-
trast to the similar but grid-based SLM advection scheme [1, 2], the adaption
in the grid-free approach [3] does merely rely on the insertion (refinement)
and removal (coarsening) of nodes rather than on local modifications of a fi-
nite element mesh. In order to decide where to insert or remove single nodes,
an a posteriori error indicator is used.

With the absence of any connectivities between the nodes, a grid-free
adaption scheme is in general more flexible than a grid-based one, where
e.g. special treatment of hanging nodes is required for maintaining a valid
mesh, cf. [1]. Moreover, grid-based methods are prohibitively expensive in
higher dimensions, giving grid-free methods, often also referred to as mesh-

less methods, an other advantage. But grid-free adaptive advection requires
effective and customized rules for the refinement and coarsening of the nodes.
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Indeed, the selected node adaption strategy does significantly contribute to
the method’s performance in terms of its computational costs and approx-
imation behaviour: At any time step, the current node distribution affects
the quality of (a) the interpolation at upstream points; (b) the a posteriori
error indication; (c) the evaluation of the model.

The node adaption in [3] uses effective rules that are well-motivated by
available error estimates for RBF interpolation. But this important aspect
has widely been omitted in [3]. In this paper, we focus on explaining the
details of the node adaption, being subject of Section 4, including a discus-
sion on the a posteriori error indication. For further details concerning the
implementation of the scheme, we refer to the recent work [11].

In order to make this paper self-contained, we first briefly explain the
grid-free adaptive SLM in the following Section 2. The relevant features of
RBF interpolation are then discussed in Section 3 with special emphasis on
local error estimates. For a more comprehensive overview over RBF, we refer
the reader to the survey papers [5, 7, 12, 14]. The SLM is explained in the
textbook [10], its convergence behaviour is subject of the discussion in [8],
and its application in meteorology is reviewed in [15].

A realistic test case scenario in Section 5 concerning the advection of a
tracer in the arctic stratosphere confirms the applicability of the grid-free
method, and it shows the effectiveness of the proposed adaption rules.

2 Adaptive Semi-Lagrangian Advection

The adaptive advection scheme in [3] is based on a semi-Lagrangian time
discretization. For each node ξ in the current node set Ξ ≡ Ξt (at time t),
an approximation x to its corresponding upstream point is computed, before
the concentration value c(t, x) is approximated by using RBF interpolation
at a specific set N ⊂ Ξ of neighbouring nodes of x. The advection is then
accomplished by letting c(t + ∆t, ξ) = c(t, x).

Having computed all values c(t+∆t, ξ), ξ ∈ Ξ, the node set Ξ is modified
by the removal (coarsening), and the insertion (refinement) of nodes, yielding
a new node set Ξ ≡ Ξt+∆t (at time t + ∆t). The adaption of the nodes, i.e.
the refinement and coarsening, relies on a specific a posteriori error indicator
to be explained in Section 4. Be it sufficient for the moment to say that
the error indicator assigns to each node ξ ∈ Ξ a value η(ξ) reflecting the
local approximation quality of RBF interpolation around ξ. The values η(ξ),
ξ ∈ Ξ, are then used as criteria for the removal and insertion of nodes. A
flowchart of the entire algorithm is shown in Figure 1.
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Figure 1: Flowchart of the grid-free adaptive semi-Lagrangian method.

3 Radial Basis Function Interpolation

In this section, we explain the relevant features of the RBF interpolation
scheme. In particular, the design of the adaption rules is motivated here. To
this end, for any x ∈ Ω let N ≡ N (x) ⊂ Ξ be a set of neighbouring nodes of
x. Since t ∈ I is fixed during the interpolation, we let c ≡ c(t, ·) for the sake
of notational simplicity. Suppose we wish to approximate the value c(x) from
given current concentration values c(ν), ν ∈ N , by solving the interpolation
problem

s(ν) = c(ν), for all ν ∈ N . (1)

According to the RBF interpolation scheme, for a fixed radial function
φ : [0,∞) → R the interpolant s in (1) has the form

s =
∑

ν∈N

λνφ(‖ · −ν‖) +

Q
∑

`=1

µ`p`, (2)

where ‖·‖ is the Euclidean norm on R
d. Moreover, the functions p1, . . . , pQ are

a basis of the linear space Πd
m containing all real-valued d-variate polynomials

of order at most m, i.e. Q =
(

m−1+d
d

)

. The order m of the polynomial part
of s depends on the particular choice of φ. Table 3 gives a list of commonly
used radial basis functions along with their corresponding order m. A more
comprehensive listing can be found in [14].

Hence, when using Thin Plate Splines, the polynomial part in (2) is linear,
for Multiquadrics it is constant, and for Gaussians and Inverse Multiquadrics
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Name φ(r) m F 2
φ(h)

Gaussians φ(r) = e−r2

0 e−δ/h2

, δ > 0

Thin Plate Splines φ(r) = r2 log(r) 2 h2

Multiquadrics φ(r) = (r2 + 1)1/2 1 e−δ/h, δ > 0

Inverse Multiquadrics φ(r) = (r2 + 1)−1/2 0 e−δ/h, δ > 0

Table 1: Radial basis functions.

there is no polynomial to be added in (2). Regarding the above interpolation
problem (1) we obtain N = #N linear equations in N +Q unknown variables
λν , ν ∈ N , and µ`, 1 ≤ ` ≤ Q. The additional degrees of freedom are
eliminated by adding the Q side conditions

∑

ν∈N

λνp(ν) = 0, for all p ∈ Πd
m,

which naturally arise from the properties of φ and the chosen ansatz (2), cf.
[7] for more details.

Now let us turn to local error estimates on |c(x) − s(x)| at x ∈ Ω. For
the abovementioned radial basis functions in Table 3 these estimates are of
the form

|c(x) − s(x)| ≤ C · Pφ,N (x) (3)

where the constant C solely depends on the function c, and the power func-

tion Pφ,N (x), being the norm of the error functional at x, depends only on
φ and N . The power function can further be bounded above by an estimate
of the form

Pφ,N (x) ≤ Fφ(hN ,%(x)),

which leads in combination with (3) to

|c(x) − s(x)| ≤ C · Fφ(hN ,%(x)). (4)

Here, Fφ : [0,∞) → [0,∞) is a monotonic function, with Fφ(0) = 0, which
depends only on φ. Table 3 shows the form of Fφ for the list of choices for
φ. As to the argument of Fφ in (4),

hN ,%(x) = sup
‖y−x‖<%

dN (y)
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is the local fill distance of N around x, with

dN (y) = min
ν∈N

‖y − ν‖

being the Euclidean distance between the point y and the set N . The radius
% in (4) does depend on both the basis function φ and the point set N [14].

4 Adaption Rules

4.1 Error Indication

An effective strategy for the adaptive modification of the nodes requires well-
motivated refinement and coarsening rules as well as a customized error indi-
cator. We understand the error indicator η : Ξ → [0,∞) as a function of the
current node set Ξ which serves to assign a significance value η(ξ) to each
ξ ∈ Ξ. The value η(ξ) is required to reflect the local approximation quality of
the interpolation around ξ ∈ Ξ. The significances η(ξ), ξ ∈ Ξ, are then used
in order to flag single nodes ξ ∈ Ξ as “to be refined” or “to be coarsened”
according to the following criteria.

Definition 1 Let η∗ = maxξ∈Ξ η(ξ), and let θcrs, θref be two tolerance values

satisfying 0 < θcrs < θref < 1. We say that a node ξ ∈ Ξ is to be refined,

if η(ξ) > θref · η
∗, and ξ is to be coarsened, if η(ξ) < θcrs · η

∗.

In our numerical examples typical choices for the relative tolerance values
are θcrs = 0.1 and θref = 0.2. Note that a node ξ cannot be refined and
be coarsened at the same time; in fact, it may neither be refined nor be
coarsened.

Now let us turn to the definition of the error indicator η. We follow along
the lines of [9], where a local scheme for the detection of discontinuities of a
surface from scattered data was developed, and we let

η(ξ) = |c(ξ) − s(ξ)|,

where the RBF interpolant s ≡ sN matches current concentration values of
c at a neighbouring set N ≡ N (ξ) ⊂ Ξ \ {ξ} of nodes, so that (1) holds. In
our numerical examples, we preferred to use Thin Plate Splines, whose corre-
sponding interpolation scheme achieves to reconstruct linear polynomials. In
this case, the value η(ξ) vanishes whenever the local concentration c around
ξ is a linear function. Moreover, the value η(ξ) is small whenever the repro-
duction of c by s around ξ is good. In contrast, a high value of η(ξ) typically
indicates that the concentration c around ξ is subject to strong variation.
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4.2 Coarsening and Refinement

In order to balance the approximation quality of the model against the re-
quired computational complexity we insert new nodes into regions where the
value of η is high (refinement), whereas we remove nodes from Ξ in regions
where the value of η is small (coarsening).

To avoid additional computational overhead and complicated data struc-
tures, effective adaption rules are required to be as simple as possible. In
particular, these rules ought to be given by local operations on the current
node set Ξ. The following coarsening rule is in fact very easy and, in combi-
nation with the refinement, it turned out to be very effective as well.

Definition 2 A node ξ ∈ Ξ is coarsened by its removal from the current

node set Ξ, i.e. Ξ is modified by letting Ξ = Ξ \ {ξ}.

As concerns the refinement of a node ξ ∈ Ξ, the starting point for the
design of a customized refinement rule is the estimate (4). The upper bound
on the local error around ξ motivates us to build the refinement merely on
the local distribution of the nodes around ξ, rather than on any complicated
and costly evaluation scheme involving φ.

Regarding the right hand side of (4), we wish to insert a few new nodes
in a neighbourhood U ≡ U(ξ) ⊂ Ω of ξ such that h%,N is as much as possible
reduced in U . This is done by reducing the distance function dN in U . But
this requires some notational preparation.

Recall that for a fixed node set Ξ ⊂ R
d and any ξ ∈ Ξ, the Voronoi tile

VΞ(ξ) =
{

x ∈ R
d : dΞ(x) = ‖x − ξ‖

}

⊂ R
d

of ξ w.r.t. Ξ contains all points in R
d whose nearest point in Ξ is ξ. The

tile VΞ(ξ) is a convex polytope whose vertices are referred to as the Voronoi

points, forming a finite point set Vξ in the neighbourhood of ξ. Figure 4.2
shows the Voronoi tile VΞ(ξ) of a point ξ along with the set Vξ of its Voronoi
points. For more details on Voronoi diagrams, we refer to [13].

Now observe that for ξ ∈ N the distance function dN is convex on VΞ(ξ).
Moreover, it has local maxima at the Voronoi points in Vξ. As confirmed by
numerical experiments, for any φ in Table 3, the power function Pφ,N does
also attain its local maxima at Voronoi points. Altogether, this gives rise to
define the local refinement of nodes on the basis of these observations.

Definition 3 A node ξ ∈ Ξ is refined by the insertion of its Voronoi points

into the current node set Ξ, i.e. Ξ is modified by letting Ξ = Ξ ∪ Vξ.
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ξ

VΞ(ξ)

Figure 2: Refinement of the node ξ. The Voronoi points (¦) are inserted.

5 Tracer Advection over the Arctic

The proposed grid-free advection method has been applied to a tracer trans-
port problem in the arctic stratosphere. When investigating ozone depletion
over the arctic, one interesting question is whether air masses with low ozone
concentration are advected into southern regions. Our experiments are still
purely academic since no realistic initial tracer concentration is assumed and
no chemical reaction is included in the model. However, with our simplified
advection model, taking realistic wind fields, filamentation of the tracer cloud
can be observed which corresponds to airborne observations [4].

Wind data were taken from the high-resolution regional climate model
(HIRHAM) [6]. HIRHAM resolves the arctic region with a horizontal reso-
lution of 0.5◦. It is forced at the lateral and lower boundaries by ECMWF
reanalysis data. We consider the transport of a passive tracer at 73.4 hPa in
the vortex. This corresponds to an altitude of 18 km. The wind field repro-
duces the situation in January 1990. Because stratospheric motion is thought
to be constrained largely within horizontal layers, we use a two-dimensional
horizontal transport scheme here. Wind data represent the (u, v)-values in
the mentioned layer of the three-dimensional HIRHAM model. The wind field
and the initial tracer distribution for the advection experiment are shown in
Figure 3.

A comparison of the results from a grid-free simulation with a grid-based
version is shown in Figure 4. Note that the grid-free simulation achieves to
capture the features of the tracer well with a very accurate reproduction of
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Figure 3: Wind field and initial situation for tracer advection. The artificial
tracer cloud is positioned in the center of the polar vortex. Continental
outlines are given for orientation (Greenland in the lower left part).

the filamentation. The corresponding node distribution is shown in Figure 5.
Note that the adaptive refinement and coarsening of the nodes essentially
leads to a heterogenous node distribution. This serves to model the finer
details of the tracer effectively at reasonable computational costs.
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Figure 4: Results from a grid-based (left) and the grid-free (right) method for
the stratospheric transport problem. The snapshots show the situation after
15 days of model time. Fine filaments can be observed in both simulations.

Figure 5: Node distribution of the grid-free method after 15 days. Pink
colour indicates nodes with tracer concentration above 0.2.


