
Sparse Representation of Video Data
by Adaptive Tetrahedralizations

Laurent Demaret, Armin Iske, Wahid Khachabi

Abstract Natural videos are composed of a superposition of moving ob-
jects, usually resulting from anisotropic motions into different directions. By
discretization with respect to time, a video may be regarded as a sequence
of consecutive natural still images. Alternatively, when considering time as
one dimension, a video may be viewed as a 3d scalar field. In this case,
customized methods are needed for capturing both the evolution of moving
contours along the time axis and the geometrical distortions of the resulting
sweep surfaces. Moreover, it is desirable to work with sparse representations.
Indeed, already for basic motions (e.g. rotations, translations), customized
methods for the construction of well-adapted sparse video data representa-
tions are required. To this end, we propose a novel adaptive approximation
algorithm for video data. The utilized nonlinear approximation scheme is
based on anisotropic tetrahedralizations of the 3d video domain, whose tetra-
hedra are adapted locally in space (for contour-like singularities) and locally
in time (for anisotropic motions). The key ingredients of our approximation
method, 3AT, are adaptive thinning, a recursive pixel removal scheme, and
least squares approximation by linear splines over anisotropic tetrahedral-
izations. The approximation algorithm 3AT yields a new concept for the
compression of video data. We apply the proposed approximation method
first to prototypical geometrical motions, before numerical simulations con-
cerning one natural video are presented.

Laurent Demaret

HelmholtzZentrum München, Institut für Biomathematik und Biometrie (IBB), D-85764
Neuherberg, Germany, e-mail: laurent.demaret@helmholtz-muenchen.de

Armin Iske

Department of Mathematics, University of Hamburg, D-20146 Hamburg, Germany, e-mail:
iske@math.uni-hamburg.de

Wahid Khachabi
Department of Mathematics, University of Hamburg, D-20146 Hamburg, Germany, e-mail:

khachabi@gmail.com

1

2 L. Demaret, A. Iske, W. Khachabi

1 Introduction

The production of digital video sequences is usually resulting from different
technical processes involving data acquisition, projections of 3d moving ob-
jects on a camera matrix, and spatiotemporal digitalization. Natural videos
typically display a superposition of anisotropic motions of different geomet-
rical objects into different spatial directions. Simultaneous and independent
motions lead to rapidly developing occlusions or disocclusions of background
objects by foreground objects [1]. Therefore, the efficient representation of
digital video data is a very challenging task, which in particular requires cus-
tomized computational methods to cope with the very large data complexity.

When discretizing the 3d data with respect to time, a video may be re-
garded as a sequence of consecutive natural still images, frames. In the case of
still images, relevant information is given by sharp contours between neigh-
bouring objects. Consequently, in natural videos the evolution of such con-
tours between their adjacent objects plays an important role for the human
visual perception. Therefore, it is a crucial task in video processing to perform
accurate representations for the moving contours.

When considering time as one (spatial) dimension, a video may also be
viewed as a 3d scalar field. In this case, sweep surfaces are resulting from mov-
ing contour lines along the time axis. Despite the intrinsic three-dimensional
structure of videos, commonly used video-codecs, including the popular stan-
dard method MPEG4-H264 [18], work with a still image compression method
(for selected intra-frames) coupled with a block-oriented motion compensa-
tion (for the prediction of inter-frames). This strategy, however, often leads
to difficulties in the following relevant situations with videos containing

• rigid motions which are not pure translations;
• object deformations (e.g. non-rigid motions by non-uniform scalings);
• object occlusions/disocclusions.

In such cases, much of the coding energy is spent on information corre-
sponding to the compensation of the prediction error. The required informa-
tion is coded by using a block-based DCT (Discrete Cosine Transform) for
the inter-frames as well as for the predicted error compensation. This leads
(especially at low bitrates) to strong block artefacts, partly due to discon-
tinuities at the block boundaries, and partly due to typical Gibbs effects of
the Fourier analysis method DCT. More recently, alternative wavelet-based
methods were proposed to avoid strong block artefacts [19].

Alternative methods for video coding are using triangular meshes [1, 17] to
handle the underlying motion field. In these more flexible coding methods, an
initial triangulation is designed for the first frame. The initial triangulation
is then dynamically updated according to the changes between two consec-
utive frames. In [1], Altunbasak and Tekalp proposed an occlusion-adaptive
and content-based mesh design in combination with a forward tracking pro-
cedure. This aims at handling occlusions/disocclusions by the insertion of

Sparse Representation of Video Data 3

new triangles or by the removal of old triangles according to the motion es-
timation. However, coding the corresponding motion vectors is a non-trivial
problem. Moreover, in this case additional information are required to indi-
cate covered areas (for occlusions) and uncovered areas (for disocclusions).

In this contribution, we propose a novel concept for adaptive approxima-
tion and sparse representation of video data. To this end, we regard the video
as a 3d scalar field, where time is taken as one (spatial) dimension. Therefore,
we essentially refrain from splitting the video data into separate consecutive
image frames, unlike the above mentioned methods. We remark that our in-
terpretation of the 3d video data does not require any sophisticated methods
for explicit motion compensation, forward tracking or detection of occlusions.
This gives us more flexibility in the data analysis, and moreover it reduces
the computational overhead required for the maintenance of various updates
between consecutive image frames.

In our approach, the video is viewed as a trivariate function, given by its
discrete (greyscale) values taken at the 3d locations of the video pixels. We
approximate the video by a linear spline over an adaptive tetrahedralization
of the video domain. To this end, a sparse set of significant pixels is first
adaptively chosen according to a recursive point removal scheme, adaptive
thinning, such that the significant pixels capture the local motion of geomet-
rical components of the video data. The significant pixels define a unique
Delaunay tetrahedralization of the video domain, whose tetrahedra are well-
adapted locally in space (to capture contour-like singularities) and locally in
time (to capture anisotropic and irregular motions).

The Delaunay tetrahedralization yields a unique linear spline space for
approximation, containing all continuous functions which are piecewise linear
over the Delaunay tetrahedralization. From this spline space, we select the
unique best approximation in the sense of least squares. The approximating
linear spline is a continuous function, which can be evaluated at any point
in the video domain, in particular at the discrete set of pixels. This allows
us to reconstruct the entire video data by evaluation of the approximating
linear spline at the video pixels. Note that our specific representation of the
video (by a continuous function) allows us to display the reconstructed video
at any subset of the (continuous) video domain.

The outline of this article is as follows. In Section 2, we discuss video data
representations and Delaunay tetrahedralizations. Moreover, we show some
selected prototypical motions (generated by rotations) for videos. Then, in
Section 3 our video approximation scheme is explained in detail, before we
discuss important computational aspects concerning its efficient implemen-
tation in Section 4. Numerical simulations are finally presented in Section 5.

4 L. Demaret, A. Iske, W. Khachabi

2 Videos, Prototypical Motions, and Tetrahedralizations

In video sequences, variations in time are due to displacements of 3d objects
projected on the video spatial domain. Many displacements can be described
by elements of the Euclidean motion group. The action of Euclidean motions
on the object contours produces moving surfaces.

In this section, Delaunay tetrahedralizations are introduced. Moreover,
the utility of tetrahedralizations for relevant tasks of object occlusions and
disocclusions, rotations, and zoomings are explained. To this end, selected
prototypical motions, generated by rotations, of different objects are taken as
model problems to demonstrate the enhanced flexibility of tetrahedralizations
in video processing.

2.1 Representation of Video Data

To explain the representation of video data, let us first fix some notations. A
greyscale video is a sequence of T rectangular planar image frames, each of
size W×H pixels, so that the total number of video pixels is N = W×H×T ,
where each video pixel bears a greyscale (luminance) value.

Therefore, a greyscale video may be regarded as a mapping

V : X −→ {0, 1, . . . , 2r − 1}

from the 3d video domain

X = [0, . . . ,W − 1]× [0, . . . ,H − 1]× [0, . . . , T − 1]

of pixel positions to the luminance values of the greyscale video, where usually
2r = 256, i.e., r = 8. In other words, a video can be viewed as an element
V ∈ {0, 1, . . . , 2r − 1}X , where X is the set of pixels and r is the number of
bits in the representation of the luminance values.

We regard a video as a trivariate function over the convex hull [X] ⊂ R3 of
the pixel positions, so that [X] constitutes the (continuous) parallelepipedic
video domain. In this setting, each pixel in X is corresponding to a spatial
grid point in [X] with integer coordinates. In contrast to standard methods
for video processing, our proposed approximation method is based on a pure
three-dimensional interpretation of the given video data.

Sparse Representation of Video Data 5

2.2 Delaunay Tetrahedralizations

This section introduces Delaunay tetrahedralizations, being one important
ingredient of our approximation scheme. Throughout the discussion in this
section, let Y ⊂ R3 denote a fixed finite point set. Recall that a tetrahe-
dralization TY of Y is a collection of tetrahedra, whose vertex set is Y and
whose union is the convex hull [Y]. Moreover, we assume that any pair of two
distinct tetrahedra in TY intersect at most at one common vertex or along
one common edge or across one common triangular face.

Delaunay tetrahedralizations are popular data structures for the efficient
implementation of important 3d geometrical queries, such as nearest neigh-
bour search or localization of closest point pairs. In this subsection, we recall
some relevant properties of Delaunay tetrahedralizations.

It is convenient to introduce Delaunay tetrahedralizations through their
dual Voronoi diagrams. To explain the duality between Voronoi diagrams and
Delaunay tetrahedralizations, denote by

VY (y) =
{
z ∈ R3 : ‖y − z‖ = min

x∈Y
‖x− z‖

}
⊂ R3 for y ∈ Y

the Voronoi tile of y ∈ Y . Note that the Voronoi tile VY (y) contains all points
which are – w.r.t. the Euclidean norm ‖ · ‖ – at least as close to y as to any
other point in Y . The set {VY (y)}y∈Y of all Voronoi tiles is called the Voronoi
diagram of Y , yielding a partitioning of the Euclidean space, i.e.,

R3 =
⋃
y∈X

VY (y).

Note that each Voronoi tile VY (y) is a non-empty, closed and convex polyhe-
dron. Two different Voronoi tiles VY (x) and VY (y) are either disjoint or they
share a vertex, an edge or a triangular face. In the latter case, the points
x ∈ Y and y ∈ Y are said to be Voronoi neighbours.

By connecting all possible Voronoi neighbours, we obtain a graph whose
vertex set is Y . This graph defines a tetrahedral decomposition DY of the
convex hull [Y], provided that no 5 points in X are co-spherical. The latter
means that no 5 points in Y lie on the 2-dimensional surface of a sphere.
For simplicity, we assume this property, the Delaunay property, until further
notice.

The tetrahedral decomposition DY is said to be the Delaunay tetrahe-
dralization of the point set Y . The Delaunay tetrahedralization DX of X is
unique. For any tetrahedron in DY , its circumsphere does not contain any
point from Y in its interior, according to the Delaunay property.

Finally, for any y ∈ Y , the Delaunay tetrahedralization d(Y \ y) can be
computed from DY by a local update. This immediately follows from the
Delaunay property, which implies that only the cell C(y) of y in DY needs to

6 L. Demaret, A. Iske, W. Khachabi

be retetrahedralized. Recall that the cell C(y) of y is the domain consisting
of all tetrahedra in DY which contain y as a vertex. For further details on
Delaunay tetrahedralizations, see the textbook [22].

2.3 Sparse Representations of Prototypical Motions

This section concerns the sparse representation of prototypical motions in
videos by anisotropic tetrahedralizations. For the sake of presentational sim-
plicity and brevity, we decided to restrict ourselves to rotations of basic planar
geometrical objects, ellipses and triangles, with uniform greyscale values.

We can describe the situation as follows. In the first frame, at time t = 0,
the projection of the geometrical object is the characteristic function of a
domain Ω0 with piecewise smooth boundary Γ0. In this particular setting, a
(general) rigid motion can be viewed as a continuous mapping

M : [0, T]→ E+(2)

from time interval [0, T] to the group E+(2) of rigid motions, i.e., the group
generated by translations and rotations.

Now for the special case of rotations, we assume constant angular speed,
i.e., no accelerations or decelerations for further simplicity, in which case the
motion

M(t) = M t ∈ E+(2) for t ∈ [0, . . . , T]

can be rewritten as a planar transformation M(u, θ) ≡ R(θ), where R(θ) is
a (counter-clockwise) rotation about angle θ. In this simple case, the corre-
sponding video sequence is fully described by the parametric surface Σ,

Σ =
⋃

t∈[0,T]

Γt =
⋃

t∈[0,T]

M(t)Γ0. (1)

With assuming sufficiently small rotation angle θ, the surface Σ is piece-
wise smooth. In this case, it is reasonable to work with triangular surface
elements to approximate Σ. Now the quality of the surface approximation
heavily depends on the alignment of the triangular surface elements. Indeed,
their long triangular edges should be aligned with directions of smaller sur-
face curvature of Σ, whereas their short edges should point into directions
with higher curvature.

Now we consider the approximation of rotational motions of two differ-
ent geometrical objects, one ellipse and one equilateral triangle, see Fig-
ure 1 (a),(b). In either case, we let θ = π/6 per time unit (the time be-
tween two consecutive frames). Figure 2(a),(b) shows the resulting surfaces
Σ, respectively, as defined by (1).

Sparse Representation of Video Data 7

θ θ

(a) (b)

Fig. 1 Two prototypical motions. (a) rotating ellipse; (b) rotating triangle. In either case,

the rotation axis is aligned with the vertical (time) axis, and the origin is the center of the
square domain.

−1.5
−1

−0.5
0

0.5
1

1.5
2

−1.5

−1

−0.5

0

0.5

1

1.5

0

0.5

1

1.5

2

−0.5

0

0.5

−0.5

0

0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) (b)

Fig. 2 Two prototypical motions. 3d visualization of the moving contours for the (a)

rotating ellipse; (b) rotating triangle. In either case, the rotation axis is aligned with the
vertical (time) axis, and the origin is the center of the square domain.

For the purpose of approximating the rotational triangle E, a suitable
Delaunay tetrahedralization may be constructed as follows. First select a
time discretization step ts = T/nt, nt ∈ N, then sample the set of vertices
Y ≡ Y (E) defined by

(E,R(tsθ)E,R(2tsθ)E, . . . , R(nttsθ)E).

By their construction, the resulting 3× (nt + 1) vertices represent the trian-
gular shape for each of the corresponding nt + 1 frames exactly. Therefore,
if ts is sufficiently small, then the corresponding Delaunay tetrahedralization
of the 3d vertex set Y recovers the triangular shape throughout all frames.

8 L. Demaret, A. Iske, W. Khachabi

Fig. 3 Rotating triangles. Triangular surface approximation of the moving contour.
Only 12 triangular faces are utilized to represent the entire video sequence, where the

surface triangulation is obtained from the Delaunay tetrahedralization of 36 video pixels.
In this example, we let θ = π/6 per time step.

(a) (b)

Fig. 4 Rotating triangles at time t = 0.75. (a) projection of tetrahedralization (black)

and exact solution triangle (red); (b) the corresponding error area is filled in red.

Although this particular choice of vertices is not necessarily optimal, it leads
to small approximation error of the sweep surface (moving contour).

To make one special case, let [0, 1] denote the time interval, ts = 0.5 and
nt = 2. The corresponding piecewise linear representation of the resulting
sweep surface is shown in Figure 3. Moreover, Figure 4 (a) displays the
projection of the tetrahedralization in the frame plane at intermediate time
t = 0.75, where (for this particular example) the resulting error is maximal.
The resulting error is visualized in Figure 4 (b).

Sparse Representation of Video Data 9

3 Nonlinear Approximation of Video Data

This section explains our video approximation method, 3AT, in detail. The
method 3AT combines a recursive pixel removal scheme, adaptive thinning,
with least squares approximation by trivariate linear splines. In this approxi-
mation method, adaptive thinning is first applied to obtain a sparse set of sig-
nificant video pixels. The set of significant pixels yields a (unique) anisotropic
Delaunay tetrahedralization, where the vertices of the tetrahedralization are
given by the significant pixels. This in turn defines a linear approximation
space of trivariate linear spline functions over the so obtained anisotropic
tetrahedralization. The approximation to the video data is then given by the
best approximating linear spline, in the sense of least squares approximation.
The overall aim of the resulting adaptive approximation algorithm is to con-
struct a suitable linear spline space of small dimension (being represented by
a sparse set of significant pixels), such that the distance between the best
approximating linear spline and the given video data is small, thus yielding a
small reconstruction error. The construction of the spline space can be viewed
as a highly nonlinear approximation process, which generalizes the algorithm
proposed in [7, 8] from 2d image data to 3d video data.

In the remainder of this section, we will first discuss trivariate linear splines
over tetrahedralizations, before adaptive thinning – the key ingredient of the
proposed nonlinear approximation method – is introduced. This includes a
discussion on the utilized significance measure, as this is required for the
adaptive extraction of the significant pixels.

3.1 Linear Splines over Tetrahedralizations

Following our previous paper [8], we work with continuous and piecewise
affine approximations over anisotropic tetrahedralizations. Let Π1 denote the
linear space of all trivariate polynomials of degree at most one, and let DY

be a fixed Delaunay tetrahedralization. For any subset Y ⊂ X, we denote by
SY the linear space of all trivariate continuous functions whose restriction to
any tetrahedron θ ∈ DY is affine, i.e.,

SY = {f ≡ f(x1, x2, x3) ∈ C 0([Y]) : f |θ ∈ Π1 for all θ ∈ DY }.

Any element in SY is referred to as a linear spline over DY . For given
luminance values at the pixels of Y , V

∣∣
Y

= {V (y) : y ∈ Y }, there is a
unique linear spline interpolant L(Y, V) ∈ SY satisfying

L(Y, V)(y) = V (y) for all y ∈ Y.

The interpolant L(Y, V) can be represented as a linear combination

10 L. Demaret, A. Iske, W. Khachabi

L(Y, V) =
∑
y∈Y

V (y)ϕy

of the Courant elements ϕy ∈ SY , for y ∈ Y , being the unique Lagrangian
basis functions in SY satisfying

ϕy(x) =
{

1 for y = x;
0 for y 6= x; for any x ∈ Y.

Now, for fixed Y ⊂ X we can take the spline space SY as an approximation
space for the video data V

∣∣
X

, provided that the eight vertices of X (i.e., the
four corners of the first frame and the four corners of the last frame) lie in Y .

3.2 Sparse Data Selection by Adaptive Thinning

We remark that the approximation quality of the video reconstruction heavily
depends on the selection of the (sparse) pixel set Y . A customized construc-
tion of the sparse video data representation essentially requires an adaptive
selection of the pixels in Y . Therefore, let us first explain how the subset
Y ⊂ X is constructed.

To obtain a suitable sparse set Y = Xn of n significant pixels, for some
n� N , adaptive thinning constructs a sequence of nested subsets of pixels

Xn ⊂ Xn+1 ⊂ · · · ⊂ XN−1 ⊂ XN = X, (2)

where the size |Xp| of any subset Xp in (2) is p, and so N = |X| is the number
of pixels in X.

The utilized adaptive thinning algorithm recursively removes pixels from
X, one after the other, where any removal of one pixel depends on the entire
video data V

∣∣
X

, as given by the luminance values attached to the video
pixels. The pixel removal is done in a greedy way, where at each removal step
the removed pixel is a least significant pixel. The generic formulation of our
recursive pixel removal scheme is as follows.

Algorithm 1 (Adaptive Thinning).

(1) Let XN = X;
(2) For k = 1, . . . , N − n

(2a) Find a least significant pixel x ∈ XN−k+1;
(2b) Let XN−k = XN−k+1 \ x.

To describe a specific thinning strategy, it remains to determine a signifi-
cance measure in order to select a least significant pixel in step (2a). Details
on this important point are discussed in the following subsection.

Sparse Representation of Video Data 11

3.3 Significance Measures for Video Approximation

The quality of video compression schemes is measured in dB (decibel) by the
peak signal to noise ratio,

PSNR = 10 ∗ log10

(
2r × 2r

η̄2(Y,X)

)
,

where the mean square error (MSE) is given by

η̄2(Y,X) =
1
|X|

∑
x∈X
|L(Y, V)(x)− I(x)|2. (3)

Therefore, to approximate the video, we wish to construct a subset Y ⊂ X,
such that the resulting mean square error η̄2(Y,X) is small. The construction
of a suitable subset Y ⊂ X is accomplished by Algorithm 1, where a natu-
ral criterion for a least significant pixel is given by the following definition,
already used in our previous papers [7, 8] for pixel removal from images.

Definition 1. For Y ⊂ X, a pixel y∗ ∈ Y is said to be least significant
in Y , iff

η(y∗) = min
y∈Y

η(y),

where for any y ∈ Y ,
η(y) = η(Y \ y,X)

is the significance of the pixel y in Y .

In [10] we have also considered least significant pixel pairs (in images).
This leads to a somewhat more sophisticated removal criterion that allows a
simultaneous removal of edges (i.e., two-point removals of connected vertices).
As was shown in [8], this additional option has improved the resulting image
approximation quite significantly. This observation gives rise to lift the two-
point removal criterion in [8] from 2d to 3d. We recall the definition of least
significant pixel pairs.

Definition 2. For Y ⊂ X, a pair {y∗1 , y∗2} ⊂ Y of two pixels in Y is said to
be least significant in Y , iff

η(y∗1 , y
∗
2) = min

{y1,y2}⊂Y
η(y1, y2),

where for any pixel pair {y1, y2} ⊂ Y , we denote its significance in Y by

η(y1, y2) = η(Y \ {y1, y2}, X).

A pixel y∗ ∈ Y is said to be least significant in Y , iff it belongs to a
least significant pixel pair in Y , {y∗, y} ⊂ Y , and satisfies η(y∗) ≤ η(y).

12 L. Demaret, A. Iske, W. Khachabi

As supported by our numerical comparisons in Section 5, the significance
measure of Definition 2 (in comparison with that of Definition 1) improves
the resulting video reconstruction considerably. Indeed, the more sophisti-
cated significance measure of Definition 2 allows removals of edges, whose two
vertices may have high individual significances (according to Definition 1),
although their connecting edge may not contribute very much to the approx-
imation to the video data (cf. [8] for more detailed explanations).

3.4 Local Optimization by Exchange

In order to further improve the quality of the significant pixels’ distribution,
we apply the post-processing local optimization procedure proposed in [9].
This local optimization relies on an iterative exchange of pixel pairs. At each
exchange step, one current significant pixel is being swapped with one current
non-significant pixel. Let us recall the definition of exchangeable pixels.

Definition 3. For any Y ⊂ X, let Z = X \ Y . A pixel pair (y, z) ∈ Y × Z
satisfying η((Y ∪ z) \ y;X) < η(Y ;X) is said to be exchangeable. A subset
Y ⊂ X is said to be locally optimal in X, iff there is no exchangeable
pixel pair (y, z) ∈ Y × Z.

By an exchange of any exchangeable pixel pair (y, z) ∈ Y ×Z, the approx-
imation error η(Y ;X) is strictly reduced. This leads to the following local
optimization algorithm which computes a locally optimal subset in X from
any input Y ⊂ X.

Algorithm 2 (Exchange)
INPUT: Y ⊂ X;

(1) Let Z = X \ Y ;
(2) WHILE (Y not locally optimal in X)

(2a) Locate an exchangeable pair (y, z) ∈ Y × Z;
(2b) Let Y = (Y \ y) ∪ z and Z = (Z \ z) ∪ y;

OUTPUT: Y ⊂ X, locally optimal in X.

In our numerical experiments, we observed that the local optimization pro-
cedure helps improve the shape of the tetrahedra, which are better adapted
to the local regularity of the function. Indeed, in areas where the underly-
ing function is smooth and convex, we obtain nearby equilateral tetrahedra,
whereas in areas of smaller regularity, long and thin tetrahedra are aligned
with the preference directions of the target function.

Sparse Representation of Video Data 13

3.5 Minimization of the Mean Square Error

In a post-processing step, we further reduce the mean square error (3) by
least squares approximation [2]. More precisely, we compute from the set
Y ⊂ X of significant pixels, output by Algorithm 1 and Algorithm 2, and
from the luminance values at the pixels in X the unique best approximation
L∗(Y, V) ∈ SY satisfying∑

x∈X
|L∗(Y, V)(x)− V (x)|2 = min

s∈SY

∑
x∈X
|s(x)− V (x)|2.

Such a best approximation exists and is unique, since SY is a finite dimen-
sional linear space. For numerical aspects of least squares approximation we
refer to the textbook [2].

4 Computational Aspects

4.1 Data Structures for Efficient Implementation

An efficient implementation of our proposed approximation method 3AT re-
quires suitable data structures. In the implementation of adaptive thinning,
Algorithm 1, the most critical aspect concerning computational complexity
is the removal of one pixel. Moreover, for the exchange of pixel pairs, by the
local optimization Algorithm 2, also efficient insertions of pixels are needed.
In either case, this requires efficient updates of the utilized Delaunay tetra-
hedralization.

Several methods have been proposed to reduce the complexity for the in-
sertion and removal of vertices in Delaunay tetrahedralization [16, 25]. In [5],
for instance, an adaptive divide-and-conquer method is suggested. Unlike the
popular Guibas-Stolfi algorithm for two dimensions [15], the algorithm in [5]
uses an incremental method in the merging step. Our implementation is based
on the robust incremental flip algorithm of [20].

The flip algorithm in [20] performs an incremental insertion of vertices to
compute the (global) Delaunay tetrahedralization. In this method, each inser-
tion of a new vertex requires localizing a tetrahedron from the current Delau-
nay tetrahedralization which contains the position of that vertex. Therefore,
the ordering of the points to be inserted plays an important role for the
performance of the incremental insertion algorithm.

Many tetrahedralization methods merely use a random ordering of the
point set. To accelerate the point insertion, a preprocessing sorting of the
points is proposed in [3]. The concept in [3] relies on space-filling Hilbert
curves. In our implementation vertex of removals and insertions, we follow
along the lines of the ideas in [3].

14 L. Demaret, A. Iske, W. Khachabi

Finally, we remark that any insertion or removal of a vertex from a Delau-
nay tetrahedralization requires only a local update. This important property
of Delaunay tetrahedralizations reduces the computational comlexity of adap-
tive thinning, and exchange significantly. For the removal of a vertex y, for
instance, only a (local) tetrahedralization of the vertex cell C(y) is required
(see Figure 5), where C(y) is given by the union the surrounding tetrahedra
of vertex y. The computational complexity of Algorithms 1,2 is discussed in
Section 4.3.

Fig. 5 Removal of a vertex from a Delaunay tetrahedralization. The update of the De-

launay tetrahedralization requires only a local retetrahedralization of the vertex cell.

4.2 Simulation of Simplicity

When five close vertices are co-spherical, the Delaunay tetrahedralization is
not unique. Note that this is highly relevant in our particular situation, where
the vertex positions are lying on a Cartesian grid. Moreover, uniqueness of
the Delaunay tetrahedralization is an important property, which we wish to
ensure for many reasons concerning the computational efficiency. In order to
solve this problem, we use a generic method called Simulation of Simplicity,
as proposed in [11]. This method serves to enforce uniqueness, especially in
degenerate cases and for more general situations of co-spherical point distri-
butions.

Unlike in other perturbation methods, the simulation of simplicity method
allows us to work with integer arithmetic rather than with floating point
arithmetic. We have adapted the ideas in [11] to Delaunay tetrahedraliza-
tions: by using an lexicographical order of vertices, we always obtain a unique
Delaunay tetrahedralization for any given set of 3d points.

Sparse Representation of Video Data 15

4.3 Computational Complexity

In this section, we discuss the computational complexity of our nonlinear
approximation method. To this end, we show that the complexity of adap-
tive thinning, Algorithm 1, is O(N log(N)), whereas the performance of one
exchange step, Algorithm 2, requires only O(log(N)) operations.

4.3.1 Computational Complexity of Adaptive Thinning

Let us start with the discussion on adaptive thinning. For the efficient im-
plementation of Algorithm 1, we use two different priority queues, one for
the significances of pixels and one for the significances of edges in DY . Each
priority queue is efficiently implemented by using the data structure heap.

For the significances of pixels, we use the significance measure

eδ(y) = η2(y)− η2(Y,X) for y ∈ Y.

We remark that the significance measure eδ is equivalent to the pixel signifi-
cance measure η of Definition 1, i.e. minimizing η(y) among all pixels in Y is
equivalent to minimizing eδ(y) among all pixels in Y [8]. But the significance
eδ(y) is local, since it measures the anticipated error, being incurred by the
removal of pixel y, on the (local) cell C(y) of y.

As for the significance of pixel pairs, we work with the local significance
measures

eδ(y1, y2) = eδ(y1) + eδ(y2) for [y1, y2] /∈ DY

and
eδ(y1, y2) = η2(y1, y2)− η2(Y,X) for [y1, y2] ∈ DY

which are equivalent to the significance measure η(y1, y2) in Definition 2.
Note that eδ(y1, y2) is a local significance measure, since its compu-

tation is restricted to the union of the two cells C(y1) and C(y2). Due
to the simple representation of eδ, the maintenance of the significances
{eδ(y1, y2) : {y1, y2} ⊂ Y } can be reduced to the maintenance of the signif-
icances {eδ(y1, y2) : [y1, y2] ∈ DY } and {eδ(y) : y ∈ Y }. To this end, we
employ two separate heaps.

By using the local significance measures eδ (rather than η), each pixel
removal (according to Algorithm 1) costs only O(1) operations, for the retri-
angulation of the cell C(y) to obtain DY \y and for the required update of the
neighbouring pixels’ and edges’ significances. The required update for each
of the two heaps costs O(log(N)). This makes up O(N log(N)) operations in
total for the removal of at most N pixels.

Theorem 1. The performance of the adaptive thinning algorithm, Algo-
rithm 1, costs O(N log(N)) operations. ut

16 L. Demaret, A. Iske, W. Khachabi

4.3.2 Computational Complexity of Exchange

Now let us turn to the complexity for one pixel exchange. In the efficient
implementation of exchange we work with the local swapping criterion

eδ(z;Y ∪ z) > eδ(y;Y ∪ z), for (y, z) ∈ Y × Z. (4)

which, for unconnected pixels in DY ∪z, further simplifies to

eδ(z;Y ∪ z) > eδ(y;Y), for [y; z] /∈ DY ∪z. (5)

The above swapping criterion is equivalent to the criterion in Definition 3 for
exchangeable pixel pairs [9].

Moreover, we work with three different heaps: one heap for the pixels in Y ,
heapY, with significances eδ, one heap for the pixels in Z = X\Y , heapZ, with
significances eδ(z;Y ∪ z), for z ∈ Z, and one heap for connected pixel pairs,
with significances eδ, heapE. For details concerning the different significances
eδ (for pixels and edges), we refer to our previous paper [9].

The local swapping criteria (4)-(5) enables us to localize an exchangeable
pixel pair in only O(1) operations. The subsequent update of the utilized data
structures, i.e., for the three heaps heapY, heapZ, heapE, and the Delaunay
tetrahedralization DY costs O(log(N)) operation. For details, we refer to [9].

Theorem 2. The performance of one pixel exchange, Algorithm 2, costs
O(log(N)) operations. ut

5 Numerical Simulations

We have applied our video approximation method 3AT to one popular test
example, called Suzie. The test video comprises 30 frames. The original
video data is shown in Figure 7, whose 30 image frames are displayed in
chronological order, from top left to bottom right.

The corresponding reconstruction of the video data by our approximation
method 3AT is shown in Figure 8. Note that 3AT achieves to reconstruct
the test data very well, especially the geometric features of the video. This
is due to a well-adapted distribution of the significant pixels, as displayed
in Figure 9. Their corresponding tetrahedra are shown in Figure 10, where
for each frame plane only their intersecting tetrahedra are displayed. The
tetrahedra are represented by their edges, where those edges lying in the
frame plane are displayed by bold solid lines. The other (intersecting) edges
are represented by their projections onto the corresponding frame plane, and
displayed by thin solid lines.

Note that the representation of the video data by the significant pixels is
very sparse. In fact, in comparison with the intermediate frames, only the first

Sparse Representation of Video Data 17

and the last frame are containing a larger number of significant pixels, see
Figure 6 (left). This is because their corresponding Delaunay triangulations
(in the image frame plane) are covering the two opposite faces of the video
domain, at time t = 0 (first frame) and at t = 29 (last frame). But the
well-adapted distribution of the significant pixels in the intermediate frames
is very efficient. Moreover, the different motions of the video’s geometrical
features are captured very well by the geometry of the significant pixels. The
good visual quality of the video reconstruction can be evaluated through
Figure 8.

Now we measure the quality of the reconstruction by the resulting PSNR
value. We obtain a sparse representation of the video data by 11,430 signifi-
cant pixels, (i.e., 381 significant pixels in average), yielding a PSNR value of
the video reconstruction by 3AT of 35.45 dB.

In addition, from the video reconstruction by 3AT, 30 image frames were
generated, each corresponding to one image frame of the given video data
Suzie. For each of these image reconstructions, as generated by 3AT, the
corresponding number of significant pixels and the PSNR value was recorded.
The two graphs in Figure 6 show the number of significant pixels (left) and
the PSNR value (right), each regarded as a function of the frame indices.

As regards the evolution of significant pixels, note that the number of
pixels is large between times t = 5 and t = 13. This is due to rapid motions
in the video sequence, which requires more energy (in terms of number of
significant pixels) to capture the relevant geometrical details.

As regards the PSNR values of the individual frames, the minimal PSNR
value of 34.58 dB is attained at frame 0000, whereas the maximal PSNR value
of 36.32 dB is attained at frame 0017. The average PSNR value is 35.49 dB.
The resulting distribution of PSNR values (over the 30 frames) reflect a
very well-balanced approximation to the video data, at remarkably good re-
construction quality and small number of significant pixels. We finally re-
mark that our proposed approximation method features a surface-preserving
smoothing process, with surfaces being understood as moving contours. This
helps to avoid misaligned aliasing artefacts between consecutive frames.

6 Conclusion and Final Remarks

We have proposed a novel adaptive approximation algorithm for sparse rep-
resentations of video data. Our nonlinear approximation method works with
linear splines over anisotropic tetrahedralizations of the 3d video domain,
whose tetrahedra are adapted locally in space and in time. The sparse rep-
resentation of the video data relies on the construction of a small set of least
significant pixels, which are selected by a recursive pixel removal scheme,
termed adaptive thinning. We have applied our resulting video approxima-
tion method, 3AT, to prototypical geometrical motions and to a natural

18 L. Demaret, A. Iske, W. Khachabi

video. The good performance of the proposed video compression method is
supported by our numerical simulations.

We finally remark that alternative approaches to multiscale representa-
tions with local geometry adaptation can be found in the contribution [13] of
Florack. Future research should include investigations concerning the usage of
adaptive smoothing and denoising methods in combination with anisotropic
diffusion and adaptive filtering strategies. Related articles to these relevant
topics can be found in the chapters [4, 6, 12, 14, 21, 23, 24] of this volume.

Acknowledgements The second author was supported by the priority program DFG-

SPP 1324 of the Deutsche Forschungsgemeinschaft (DFG) within the project “Adaptive

Approximation Algorithms for Sparse Data Representation”.

References

1. Y. Altunbasak and M. Tekalp (1997) Occlusion-adaptive content-based mesh design

and forward tracking. IEEE Trans. on Image Processing 6(9), Sep. 1997, 1270–1280.
2. Å. Björck (1996) Numerical Methods for Least Squares Problems. SIAM, Philadelphia.
3. J.-D. Boissonnat, O. Devillers, S. Pion, M. Teillaud, and M. Yvinec (2002) Triangula-

tions in CGAL. Computational Geometry: Theory and Applications 22, 5–19.
4. B. Burgeth, L. Pizarro, S. Didas, and J. Weickert: 3D-coherence-enhancing diffusion

filtering for matrix fields. This volume.
5. P. Cignoni, C. Montani, and R. Scopigno (1998) deWall: a fast divide and conquer

Delaunay triangulation algorithm. Computer-Aided Design 30(5), 333–341.
6. X. Descombes: Interacting adaptive filters for multiple objects detection. This volume.
7. L. Demaret, N. Dyn, M. S. Floater, and A. Iske (2005) Adaptive thinning for terrain

modelling and image compression. In: Advances in Multiresolution for Geometric Mod-
elling, N. A. Dodgson, M. S. Floater, and M. A. Sabin (eds.), Springer, Berlin, 321–340.

8. L. Demaret, N. Dyn, and A. Iske (2006) Image compression by linear splines over
adaptive triangulations. Signal Processing Journal 86(7), July 2006, 1604–1616.

9. L. Demaret, A. Iske (2006) Adaptive image approximation by linear splines over locally
optimal Delaunay triangulations. IEEE Signal Processing Letters 13(5), May 2006,

281–284.
10. N. Dyn, M.S. Floater, and A. Iske (2002) Adaptive thinning for bivariate scattered

data. J. Comput. Appl. Math. 145(2), 505–517.
11. H. Edelsbrunner and E. Mücke (1990) Simulation of Simplicity: A technique to cope

with degenerate cases in geometric algorithms. ACM Transactions on Graphics 9(1),

66–104.
12. M. Felsberg: Adaptive filtering using channel representations. This volume.
13. L.M.J. Florack: Scale space representations locally adapted to the geometry of base

and target manifold. This volume.
14. H. Führ: Continuous diffusion wavelet transforms and scale space over Euclidean spaces

and noncommutative Lie groups. This volume.
15. L. Guibas and J. Stolfi (1985) Primitives for the manipulation of general subdivisions

and the computation of Voronoi diagrams. ACM Transactions on Graphics 4(2),74–123.
16. H. Ledoux, C. Gold, and G. Baciu (2005) Flipping to robustly delete a vertex in a

Delaunay tetrahedralization. Computational Science and its Applications, ICCSA 2005.
17. B. Lehner, G. Umlauf, and B. Hamann (2008) Video compression using data-dependent

triangulations. In: Computer Graphics and Visualization ’08, Y. Xiao and E. ten Thij

(eds.), 244–248.

Sparse Representation of Video Data 19

18. D. Marpe, H. Schwarz, and T. Wiegand (2003) Context-based Adaptive Binary Arith-

metic Coding in the H.264/AVC Video Compression Standard. IEEE Transactions on
Circuits and Systems for Video Technology 13(7), 620–636.

19. N. Mehrseresht and D. Taubman (2006) An efficient content-adaptive motion-

compensated 3-D DWT with enhanced spatial and temporal scalability. IEEE Trans-
actions on Image Processing 15(6), 1397–1412.

20. E. Mücke (1995) A robust implementation for three-dimensional Delaunay triangula-

tions. 1st International Computational Geometry Software Workshop, 1995.
21. J. Polzehl and K. Tabelow: Structural adaptive smoothing: principles and applications

in imaging. This volume.
22. F.P. Preparata and M.I. Shamos (1988) Computational Geometry. Springer, New

York.

23. Yves Rozenholc and Markus Reiß: Preserving time structures while denoising a dy-
namical image. This volume.

24. H. Scharr and K. Krajsek: A short introduction to diffusion-like methods. This volume.

25. J. Shewchuk (2002) Constrained Delaunay tetrahedralizations and provably good
boundary recovery. Eleventh International Meshing Roundtable (Ithaca, New York),

Sandia National Laboratories, September 2002, 193–204.

20 L. Demaret, A. Iske, W. Khachabi

Fig. 6 Suzie. From the video reconstruction by 3AT, 30 image frames were generated,

each corresponding to one image frame of the given video data Suzie. For each of these
image frames, as generated by 3AT, the number of significant pixels and the PSNR value
was recorded. The two graphs show the number of significant pixels (left); the PSNR value
(right), each regarded as a function of the frame indices.

Sparse Representation of Video Data 21

0000 0001 0002 0003 0004

0005 0006 0007 0008 0009

0010 0011 0012 0013 0014

0015 0016 0017 0018 0019

0020 0021 0022 0023 0024

0025 0026 0027 0028 0029

Fig. 7 Suzie. Video comprising 30 consecutive image frames, from top left (frame 0000)
to bottom right (frame 0029).

22 L. Demaret, A. Iske, W. Khachabi

34.58 db 35.15 dB 35.18 dB 34.91 dB 34.98 dB

34.99 dB 34.96 dB 34.92 dB 35.11 dB 34.82 dB

34.89 dB 34.95 dB 35.34 dB 35.30 dB 35.49 dB

35.68 dB 35.82 dB 36.32 dB 36.08 dB 36.25 dB

36.26 dB 36.02 dB 36.06 dB 36.08 dB 36.24 dB

36.16 dB 35.95 dB 35.60 dB 35.48 dB 35.00 dB

Fig. 8 Suzie. Reconstruction of video data by our approximation method 3AT. The
reconstruction is represented by 30 consecutive image frames, displayed from top left to

down right. For each image frame, the corresponding PSNR value is shown.

Sparse Representation of Video Data 23

708 pixels 118 pixels 287 pixels 338 pixels 398 pixels

448 pixels 424 pixels 460 pixels 534 pixels 523 pixels

539 pixels 534 pixels 513 pixels 432 pixels 364 pixels

311 pixels 285 pixels 293 pixels 289 pixels 307 pixels

292 pixels 293 pixels 326 pixels 341 pixels 311 pixels

321 pixels 320 pixels 273 pixels 179 pixels 669 pixels

Fig. 9 Suzie. The significant pixels output by our approximation method 3AT, and the

number of significant pixels per frame.

24 L. Demaret, A. Iske, W. Khachabi

0000 0001 0002 0003 0004

0005 0006 0007 0008 0009

0010 0011 0012 0013 0014

0015 0016 0017 0018 0019

0020 0021 0022 0023 0024

0025 0026 0027 0028 0029

Fig. 10 Suzie. Tetrahedralization of the significant pixels. For each frame, only their

intersecting tetrahedra are displayed. The individual tetrahedra are represented by their
edges. Edges lying in the image frame are displayed by bold solid lines; edges passing

through the image frame are represented by their projections onto the image plane, dis-
played by thin solid lines.

