
Multilevel Scattered Data Approximation

by Adaptive Domain Decomposition

Armin Iske and Jeremy Levesley

Abstract. A new multilevel approximation scheme for scattered data is
proposed. The scheme relies on an adaptive domain decomposition strategy
using quadtree techniques (and their higher-dimensional generalizations). It
is shown in the numerical examples that the new method achieves an im-
provement on the approximation quality of previous well-established multi-
level interpolation schemes.

1 Introduction

Multivariate scattered data approximation requires the recovery of an un-
known function f : R

d → R from given function values f(x1), . . . , f(xN ) ∈ R

sampled at a finite set X = {x1, . . . , xN} ⊂ R
d of pairwise distinct locations.

Especially in situations where the number N is extremely large, and the
points in X are unevenly distributed, multilevel approximation schemes are
appropriate tools [3, 5].

The starting point of the scheme in [3] is a decomposition of the data
into a hierarchy

X1 ⊂ X2 ⊂ · · · ⊂ XL−1 ⊂ XL = X (1)

of nested subsets. The data hierarchy (1) is a priori computed in [3] by using
thinning algorithms, recursive point removal schemes, as discussed in more
detail in [4]. In a subsequent synthesis of the data, a sequence s1, . . . , sL of
approximations to f is then recursively computed by the following multilevel
interpolation scheme.

Let s0 ≡ 0. For j = 1, . . . , L, compute an interpolant ∆sj : R
d → R

to the residual f − sj−1 on Xj . Then let sj = sj−1 + ∆sj . Altogether, the
following L interpolation problems are to be solved one after the other:

f |X1
= ∆s1|X1

; s1 = ∆s1;

(f − s1)|X2
= ∆s2|X2

; s2 = s1 + ∆s2;

...
...

(f − sL−1)|XL
= ∆sL|XL

; sL = sL−1 + ∆sL.

(2)

Note that every function sj in (2) matches f on the subset Xj , i.e.,

sj |Xj
= f |Xj

for all 1 ≤ j ≤ L. (3)
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In the multilevel scheme proposed in [3], and later improved in [5], ra-
dial basis functions were used for solving the interpolation problems in (2).
Radial basis functions are popular tools for multivariate scattered data in-
terpolation and in applications [1, 6, 11, 12].

In (2), we make use of polyharmonic spline interpolation at the coars-
est level in order to compute the initial interpolant s1. In this case, the
interpolant s1 : R

d → R in (2) has the form

s1 =
∑

x∈X1

cxφd,k(‖ · −x‖) + p, (4)

where the polyharmonic spline φd,k : [0,∞) → R is given by

φd,k(r) =

{

r2k−d log(r), for d even,
r2k−d, for d odd.

}

, 2k > d, (5)

and where p : R
d → R is a function in Πd

k−1, the linear space of all d-variate
polynomials of degree at most k − 1. Moreover, the unknown coefficients cx

in (4) annihilate the polynomials in Πd
k−1, i.e.,

∑

x∈X1

cxq(x) = 0, for all q ∈ Πd
k−1.

Application of the interpolation conditions f |X1
= s1|X1

in (2), and using
the above side conditions, give a square system which is uniquely solvable
as long as the points in X1 are unisolvent with respect to Πd

k−1, i.e., there

is no non-trivial polynomial in Πd
k−1 vanishing on all points in X1.

Then, at the levels j = 2, . . . , L, we work with compactly supported radial
basis functions. In this case, for a fixed compactly supported positive definite
radial function φ : [0,∞) → R of support radius r = 1, each interpolant ∆sj ,
2 ≤ j ≤ L, in (2), has the form

∆sj =
∑

x∈Xj

cxφ%j
(‖ · −x‖), 2 ≤ j ≤ L, (6)

where, by putting φ%j
= φ(·/%j), %j > 0, the monotonically decreasing se-

quence of numbers %j are the basis function’s support radii at the L different
levels.

As discussed in [5], the method’s performance relies heavily on the quality
of the data hierarchy (1). In particular, in the selection of the coarsest set
X1, special attention has to be paid to the approximation quality of the
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initial interpolant s1. For the purpose of obtaining good approximation
quality, much of the effort in [5, 7] has been spent on the selection of a
suitable sequence (1). To this end, a recursive filtering scheme has been
designed.

Rather than further tuning the quality of the nested sequence in (1), in
this paper we drop the restriction of requiring the sets in (1) to be subsets
of X. Instead of this, we prefer to work with a data hierarchy of the form

C1 ⊂ C2 ⊂ · · · ⊂ CL−1 ⊂ CL, (7)

where each subset Cj , 1 ≤ j ≤ L, represents a collection of clusters in X.
But, in contrast to the multilevel schemes in [3, 5], the representing sets
Cj in (7) do not necessarily need to be subsets of X. This amounts to
working with multilevel approximation rather than multilevel interpolation.
Therefore, in this new setting, each subset Xj in (2) and (3) is replaced by
a corresponding Cj in (7). The construction of the data hierarchy in (7) is
the subject of the discussion in Sections 2 and 3.

Compared with the results in the previous papers [3, 5], the proposed
multilevel scheme yields significantly better approximation quality. This will
be confirmed in the numerical examples in Section 4 by using a real-world
example from terrain modelling.

2 Adaptive Domain Decomposition

Let Ω ⊂ R
d be a bounding box for X, i.e., Ω is a hypercuboid in R

d containing
the point set X. In what follows, we intend to decompose Ω into a collection
{ω}ω∈L of smaller cells of different sizes and satisfying

Ω =
⋃

ω∈L

ω. (8)

By letting Xω = X ∩ ω, for ω ∈ L, this yields a partition {Xω}ω∈L of X
into accordingly many point clusters. The decomposition of Ω (and thus the
partition of X) will be computed by recursively splitting the cells, with Ω
being the initial cell; see the following Subsection 2.1. The decision on the
splitting of a single cell will be made according to two different customized
splitting criteria, to be explained in Subsections 2.2 and 3.1.

2.1 Generalized Quadtrees

For the purpose of computing and maintaining a decomposition of Ω into
a collection of cells, we make use of the well-known data structure quadtree
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(for the special case of two dimensions, where d = 2) and its generalizations
in higher dimensions, e.g. octtree for d = 3. Recall that a quadtree is a tree,
where each of its nodes has either four children or none. A node with no
children is called a leaf. For a fixed space dimension d ≥ 2, in a generalized
quadtree each node has either 2d children or none. For the sake of simplicity,
we will from now use the expression quadtree throughout this text rather
than generalized quadtree.

The nodes in the quadtree are the cells. Initially, we let (the cell) Ω be
the root of the quadtree. At this stage, Ω is the only cell in the tree and
thus is a leaf. Furthermore, let L denote the set of leaves of the quadtree.
Now a leaf

ω = [x`1 , xr1
] × · · · × [x`d

, xrd
] ⊂ Ω ⊂ R

d (9)

of the quadtree is split by first computing its decomposition into 2d subcells
ωi ⊂ ω, i = (i1, . . . , id) ∈ {0, 1}d, of equal size, each being of the form

ωi = [x`1 + i1∆1, xm1
+ i1∆1] × · · · × [x`d

+ id∆d, xmd
+ id∆d], (10)

where xω = (xm1
, . . . , xmd

)T ∈ R
d is the centre of ω and ∆j = (xrj

−x`j
)/2,

1 ≤ j ≤ d, is half the length of a corresponding edge of ω.
The quadtree is then modified by attaching the new leaves ωi, i ∈ {0, 1}d,

to its parent cell ω, i.e., the cells {ωi} are the 2d children of ω in the quadtree,
and thus ω is no longer a leaf. Finally, the set L is updated by letting

L = (L \ ω)
⋃

i∈{0,1}d

ωi.

Note that each of the leaves ωi has the form (9), so that the splitting of any
ω ∈ L by using (10) is well-defined at any stage of the recursion.

For the special case of two dimensions, by the splitting of one ω ∈ L we
obtain the four subcells

ω00 = [x`, xm] × [y`, ym], ω01 = [x`, xm] × [ym, yr],

ω10 = [xm, xr] × [y`, ym], ω11 = [xm, xr] × [ym, yr],

where xω = (xm, ym) = ((x` + xr)/2, (y` + yr)/2) is the centre of ω, see
Figure 1. Note that one could also consider non-uniform splittings of ω, but
we want to avoid long, thin cells.

2.2 Splitting of Cells at the Coarsest Level

Initially, the cells are split according to the spatial distribution of the points
in X. Our aim is to construct the coarsest set C1 in (7). To this end, a
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Figure 1: The cell ω ⊂ R
2 is split into four subcells ω00, ω01, ω10, ω11 (a),

and the quadtree is updated accordingly (b).

decomposition (8) of Ω is computed, such that the number |Xω| of points in
each resulting point cluster Xω is not greater than a predetermined number
M ¿ |X| = N .

Definition 1 Let M be given. We say that a leaf ω ∈ L is splittable, iff
the size |Xω| of Xω is greater than M , i.e., |Xω| > M .

Having specified the definition for a splittable leaf, the recursive domain
decomposition of Ω is accomplished as follows.

Algorithm 1 (Domain Decomposition) Let the point set X and a bound-
ing box Ω for X ⊂ Ω be given. Then, Ω is decomposed into a collection of
cells as follows.

(1) Let Ω be the root of the quadtree, and let L = {Ω}.

(2) WHILE ( L contains a splittable leaf )

(2a) Locate a splittable leaf ω ∈ L;

(2b) Split ω ∈ L and obtain the 2d new leaves {ωi : i ∈ {0, 1}d};

(2c) Update the quadtree and let L = (L \ ω)
⋃

i∈{0,1}d ωi.

(3) OUTPUT: Cell collection {ω}ω∈L satisfying (8).
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Note that the above Algorithm 1 yields a partition {Xω}ω∈L of X, where
each cluster Xω contains not more than M points. Figure 3 shows an ex-
ample in two dimensions with |X| = 23, 092 data points given, and where
M = 60 was selected. Algorithm 1 computes a decomposition of Ω into 841
cells, shown in Figure 3 (a). This decomposition is used in order to define
the coarsest set C1 in (7). To this end, we let

C1 = {xω : ω ∈ L and Xω not empty} (11)

be the union of all cell centres whose cells are not empty, and so any xω ∈ C1

represents the point cluster Xω ⊂ X. In the situation of our example in
Figure 3, one cell is empty. Therefore, the resulting set C1, displayed in
Figure 3 (b), comprises |C1| = 840 cell centres.

3 Multilevel Approximation

In this section, the details of the proposed multilevel approximation scheme
are explained. The algorithm is a modification of the multilevel interpolation
scheme (2). In contrast to the corresponding schemes in [3, 5], the data
hierarchy (1) is adaptively constructed at run time.

The starting point of our multilevel approximation scheme is the coarsest
point set C1 in (11). But the points in C1 do not have any function values,
yet. To this end, we assign to each xω ∈ C1 a cell average value sω(xω) of f on
ω, where sω is the polyharmonic spline interpolant of the form (4) satisfying
sω|Xω

= f |Xω
. In other words, we consider solving the interpolation problem

sω(ξ) = f(ξ), for all ξ ∈ Xω, (12)

by using polyharmonic splines.
We need to make a few comments concerning the numerical stability of

local polyharmonic spline interpolation. We first remark that the interpola-
tion problem (12) is ill-posed, whenever the point set Xω is not unisolvent
with respect to the polynomials Πd

k−1. In this situation, for the sake of
numerical stability, we prefer to compute the mean value

1

|Xω|

∑

ξ∈Xω

f(ξ)

rather than solving (12) by polyharmonic spline interpolation.
Moreover, we remark that the linear system resulting from (12) may be

ill-conditioned, even if the interpolation problem (12) is itself well-conditioned.
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To be more precise, due to Narcowich and Ward [9], the spectral condition
number of the resulting coefficient matrix is bounded above by a monoton-
ically decreasing function of the interpolation points’ separation distance

qXω = min
ξ,η∈Xω

ξ 6=η

‖ξ − η‖.

This in turn implies that one should, for the sake of numerical stability, avoid
solving the linear system resulting from (12) directly in situations where the
minimal distance qXω between two points in Xω is small. For further details
on this, see [9] and the more general discussion in [10].

The previous paper [8], however, offers a numerically stable algorithm
for the evaluation of the interpolant sω in (12). The algorithm works with
a rescaling of the interpolation points Xω, so that their separation distance
is qXω increased. The evaluation scheme in [8] can be viewed as a simple
way of preconditioning of the linear system resulting from (12). The con-
struction of this particular preconditioner relies on the scale-invariance of
the interpolation scheme’s Lebesgue constant.

The latter leads to further consequences concerning the local approxima-
tion order of polyharmonic spline interpolation, which in turn has impact on
the approximation quality of the interpolant sω in (12). In order to briefly
explain the relevant result from [8], we remark that the approximation or-
der of local polyharmonic spline interpolation, with using φd,k in (5), is k
for Ck-functions. To be more precise, we obtain for any target function f ,
which is in Ck locally around xω, the asymptotic bound

|sh
ω(xω + h(x − xω)) − f(xω + h(x − xω)| = O(hk), h → 0, (13)

where sh
ω denotes for h > 0 the unique polyharmonic spline interpolant

satisfying the (scaled) interpolation conditions

sh
ω(xω + h(ξ − xω)) = f(xω + h(ξ − xω)) for all ξ ∈ Xω.

For further details concerning the analysis for the asymptotic bound in (13),
we refer to the paper [8].

Now let us return to the discussion of multilevel approximation. Having
computed the cell average values sω(xω), the interpolation on C1 by s1 at
the first level of the multilevel scheme (2) is well-defined.

3.1 Adaptive Splitting of Cells at Finer Levels

As to the construction of the subsequent point sets Cj , j > 1, in (7), we
make use of the approximation behaviour of the current approximation sj .
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More precisely, at each level j, we evaluate the local approximation quality
of sj at the current decomposition {ω}ω∈L by computing the error

ηω = max
x∈Xω

|f(x) − sj(x)| (14)

for every cell ω ∈ L. If, however, Xω happens to be the empty set, we let
ηω = 0.

On the basis of the error indicators {ηω}ω∈L, further leaves of the quad-
tree will be split as follows. First, the cells are sorted according to their
errors ηω. Then, for a predetermined number m ≡ mj , we split the m cells
whose errors (at level j) are largest.

Altogether, this leads us to the following recursion for the adaptive cell
splitting at level j > 1, where we initially (i.e. when j = 2) assume that the
subset C1 in (7) and the approximations of f at the cell centres in C1 have
already been computed as explained above. Moreover, the availability of
the initial domain decomposition L1 = {ω}ω∈L, computed by Algorithm 1,
is assumed.

Algorithm 2 (Multilevel Approximation) For level j ≥ 1, let a decom-
position Lj = {ω}ω∈L of Ω, the subset Cj in (7) and the approximation sj

of f in (2) satisfying sj |Cj
= f |Cj

be given. Then, the next subset Cj+1 in

(7), the next finer decomposition Lj+1 of Ω, and the approximation sj+1 in
(2) are computed as follows.

(1) For a predetermined m, split the m cells in Lj whose error ηω in (14)
are largest, and so obtain the new decomposition Lj+1 = {ω}ω∈L of Ω.

(2) Let Cj+1 = Cj ∪ {xω : ω ∈ Lj+1}.

(3) For each ω ∈ Lj+1, assign an approximation ∆sω(xω) to the cell centre
xω by evaluating the polyharmonic spline interpolant ∆sω satisfying
∆sω|Xω

= (f − sj)|Xω
at the cell centre xω.

(4) For some support radius %j+1, compute the interpolant ∆sj+1 of the
form (6) satisfying ∆sj+1|Cj+1

= (f − sj)|Cj+1
.

(5) Let sj+1 = sj + ∆sj+1.

4 Numerical Results

We have implemented the proposed multilevel approximation scheme for
arbitrary space dimension d. For the pupose of illustration, however, this
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section shows numerical results for the special case of two dimensions, where
d = 2, and so we prefer to work with thin plate spline interpolation, i.e.,
k = 2 in (4).

In our numerical examples, we decided to work with one real-world data
set from terrain modelling. This particular data set, called Hurrungane,
is displayed in Figure 2 (a) (2D view), and (b) (3D view). The data is a
sample of height values {f(x)}x∈X taken at |X| = 23, 092 distinct geographic
locations of a Norwegian mountain area, where the rectangular domain is
given by Ω = [437000, 442000] × [6812000, 6817000]. The minimum height
of this data set is minx∈X f(x) = 1100 meters, and the maximum height is
maxx∈X f(x) = 2400 meters above sea-level.

Now we compare the performance of our scheme, QT, against two very
recent ones, [3, 5] (multilevel interpolation using scattered data filtering),
SF, and [2] (multilevel interpolation using adaptive thinning), AT. For the
purpose of illustration, it is sufficient to work with just two levels, and so
L = 2.

(a) (b)

Figure 2: The data set Hurrungane, 2D view (a), and 3D view (b).

Figure 3 (a) shows the initial decomposition of Ω into 841 cells, generated
by using Algorithm 1. This splitting yields the coarsest subset C1 in (7),
displayed in Figure 3 (b). We found that one cell is empty, and so the size
of the subset C1 is n1 = |C1| = 840.

Next, we split leaves in the quadtree according to the magnitude of their
aforementioned cell error in (14). The splitting is done by using Algorithm 2.
We have chosen m = 419 in step (1) of Algorithm 2, so that the splitting
yields 4×419 = 1676 new leaves, and thus 1676 new cell centres. But 21 out
of these 1676 new leaves were empty. The union of the cell centres, belonging
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(a) (b)

Figure 3: Hurrungane: Partition of the domain into 841 cells (a), and the
centres of the leaves (b), yielding the subset C1 in (7) of size |C1| = 840.

to the 1676−21 = 1655 non-empty leaves, and the n1 = |C1| = 840 points in
the initial set C1 yields, according to step (2) in Algorithm 2, the subsequent
subset C2 in (7) of size n2 = |C2| = 840 + 1655 = 2495. The two subsets C1

and C2 are displayed in Figure 4 (a) and (b).
For the purpose of comparison, we have generated two nested subsets

X1, X2 in (1) of the same size, i.e., |X1| = n1 and |X2| = n2, by using the
two alternative methods SF and AT. The two subsets X1 and X2 output
by these two different methods are also displayed in Figure 4, (c) and (d)
(generated by SF), (e) and (f) (generated by AT).

Then, we have used the subsets C1, C2 (generated by QT) and X1, X2

(generated by SF and AT) for computing the two corresponding inter-
polants s1 and s2 in (2) for each of the three different methods. Recall
that s1 in (4) is the polyharmonic spline interpolant of the data on the set
C1, when using the method QT, or on X1, when using SF, AT. Moreover,
s2 = s1 + ∆s2, where ∆s2 in (6) is the interpolant of the resulting resid-
ual f − s1 on the set C2 (or on X2 in (2) when working with either SF
or AT). In either case, we have selected %2 = 250.0 for the support radius
of the compactly supported radial basis function φ%2

in (6), where we let
φ(r) = (1 − r)4+(4r + 1). For details on the construction of compactly sup-
ported radial basis functions, see [13]. In our numerical experiments, we have
also considered using polyharmonic spline interpolation at level j = 2 in (2)
in order to compute ∆s2 of the form (4), satisfying (f − s1)|X2

= ∆s2|X2
.

The approximation quality of the resulting interpolant s2 turned out to
be about as good as when working with compactly supported radial basis
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Method n1 η
(1)
∞ η

(1)
2 n2 %2 η

(2)
∞ η

(2)
2

QT 840 153.410 21.822 2495 250.0 77.682 11.550
SF 840 226.030 31.863 2495 250.0 134.069 16.164
AT 840 341.381 33.998 2495 250.0 229.369 23.156

Table 1: Comparison of the three different methods QT, SF, and AT:
Approximation quality of the interpolants s1 and s2.

functions. For the purpose of making a fair comparison between the three
different methods QT, SF and AT, especially on the basis of the previous
results in [3, 5], we stick to using compactly supported radial basis functions
at level j = 2, as originally suggested in [3].

Now, for evaluating the approximation quality of s1 and s2 we have
recorded both the L∞-error

η(j)
∞ = max

x∈X
|f(x) − sj(x)|, j = 1, 2,

and the (discrete) L2-error

η
(j)
2 =

(

1

|X|

∑

x∈X

|f(x) − sj(x)|2

)1/2

, j = 1, 2,

for each of the three different methods. Table 1 shows our results.

Given the numerical results in Table 1, the method QT is the best, fol-
lowed by SF and AT. We remark that the method SF is very similar to the
one proposed in [3]. Indeed, the method in [3] works with a data hierarchy
(1) of uniformly distributed subsets. This results in the fairly good behaviour
of the initial approximation s1 for SF. In contrast to this, the method AT
works with unevenly distributed subsets, which leads to undesirable over-
shoots of s1 near the clusters in X1 output by AT (corresponding to the
ridges of the mountains; see Figure 4 (e)). This explains why the method

AT is inferior to SF already at level j = 1, with a much larger L∞-error η
(1)
∞

than SF. The poor approximation quality of AT at the initial level cannot
be recovered by the subsequent interpolant s2. This is also supported by
the numerical results in [5].

In conclusion, the performance of multilevel interpolation relies heavily
on the data hierarchy (1). Moreover, as also shown in [5], the approximation
quality of the initial interpolant s1 has a strong effect on the approximation
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quality of subsequent interpolants. Now note that, when compared with SF
and AT, the approximation quality of the method QT is much better at the

initial level. Indeed, the method QT reduces the approximation errors η
(1)
∞

and η
(1)
2 of the method SF by approximately a third. This is due to the well-

balanced distribution of the points in the coarse set C1; see Figure 4 (a).
The distribution of the points in C1 is not as clustered as in the set X1

output by AT; see Figure 4 (e). This helps to avoid the abovementioned
overshoots of the initial interpolant s1. The method QT continues to be
superior to both SF and AT at the coarse level j = 2. This agrees with
our above explanation concerning the corresponding comparison between
SF and AT.

In summary, the adaptive multilevel approximation scheme QT yields
a good alternative to previous multilevel interpolation schemes. The good
performance of the method QT is mainly due to the sophisticated construc-
tion of the subsets C1 and C2. On the one hand, unlike SF, this construction
is data-dependent. On the other hand, in contrast to AT, dense clusters are
avoided, and this helps to damp down possible overshoots of the interpolants
sj , j = 1, 2.
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Figure 4: The subsets C1, C2 generated by the quadtree method, (a),(b);
the subsets X1, X2 output by scattered data filtering, (c),(d), and adaptive
thinning, (e),(f).
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