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Abstract. ADER schemes are recent finite volume methods for hyper-
bolic conservation laws, which can be viewed as generalizations of the classi-
cal first order Godunov method to arbitrary high orders. In the ADER ap-
proach, high order polynomial reconstruction from cell averages is combined
with high order flux evaluation, where the latter is done by solving general-
ized Riemann problems across cell interfaces. Currently available nonlinear
ADER schemes are restricted to Cartesian meshes. This paper proposes an
adaptive nonlinear finite volume ADER method on unstructured triangular
meshes for scalar conservation laws, which works with WENO reconstruc-
tion. To this end, a customized stencil selection scheme is developed, and
the flux evaluation of previous ADER schemes is extended to triangular
meshes. Moreover, an a posteriori error indicator is used to design the re-
quired adaption rules for the dynamic modification of the triangular mesh
during the simulation. The expected convergence orders of the proposed
ADER method are confirmed by numerical experiments for linear and non-
linear scalar conservation laws. Finally, the good performance of the adap-
tive ADER method, in particular its robustness and its enhanced flexibility,
is further supported by numerical results concerning Burgers equation.

1 Introduction

Modern approaches for the construction of conservative, high order numer-
ical methods for hyperbolic conservation laws are based on finite volume
discretizations (FV), combined with essentially non-oscillatory (ENO) or
weighted essentially non-oscillatory (WENO) reconstruction schemes.

The basic idea of ENO schemes is to first select, for each control vol-
ume, a set of stencils comprising neighbouring control volumes. Then, for
each stencil a recovery polynomial is computed, which interpolates given cell
averages over the control volumes in the stencil. Among the different reco-
very polynomials, the smoothest (i.e. least oscillatory) polynomial is finally
selected, which constitutes the numerical solution of the hyperbolic conser-
vation law over its corresponding control volume. In this way, ENO schemes
lead to finite volume discretizations of high order space accuracy, provided



that high order reconstruction polynomials are utilized. Moreover, by the
selection of smoothest polynomials, spurious oscillations can be avoided.

In the more sophisticated WENO approach, the whole stencil set is used
in order to construct, for a corresponding control volume, a weighted sum
of reconstruction polynomials, each belonging to one stencil. Moreover, the
weights are determined by a specific oscillation indicator, which measures
the oscillation behaviour of each reconstruction polynomial. WENO schemes
show, in comparison with ENO schemes, superior convergence to steady-
state solutions and higher order accuracy, especially in smooth regions and
around extrema of the solution.

ENO schemes date back to Harten, Engquist, Osher, and Chakravar-
thy [12], who introduced the concept of ENO schemes for one-dimensional
conservation laws. Later, Harten and Chakravarthy [11], Abgrall [1], and
Sonar [27] extended their finite volume formulation to unstructured trian-
gular meshes. First WENO schemes were proposed by Liu, Osher, and
Chan [19], and by Jiang and Shu [16]. Somewhat later, Friedrich [7], Hu
and Shu [13], constructed WENO schemes on unstructured meshes.

In finite volume discretizations, high order accuracy in time is usually
obtained by using multi-stage Runge-Kutta methods. In order to avoid
oscillatory solutions, the time discretization is required to be total variation
diminishing (TVD), as observed by Shu [25], Shu and Osher [26]. However,
Ruuth and Spiteri [21] showed that the (time) accuracy order of any TVD
Runge-Kutta method is essentially limited, which in turn limits the accuracy
order of the overall finite volume scheme.

Toro, Millington, and Nejad [31] proposed in 2001 an explicit one-step
finite volume scheme, termed ADER, which is of Arbitrary high order,
using high order DERivatives of polynomials. The finite volume discretiza-
tion of [31] combines high order polynomial reconstruction from cell averages
with high order flux evaluation. The latter is done by solving generalized
Riemann problems across the cell interfaces, i.e., boundaries of adjacent
control volumes. Therefore, the finite volume ADER scheme of the semi-
nal work [31] can be viewed as a generalization of the classical first order
Godunov scheme to arbitrary high orders.

ADER schemes have very recently gained considerable popularity in ap-
plications from gas and aerodynamics, see e.g. [22, 23], especially for linear
advection and linear acoustic problems [6, 24]. Moreover, the application
of ADER schemes to nonlinear problems and systems of hyperbolic equa-
tions is subject of lively research. But currently available nonlinear ADER
schemes are restricted to the one-dimensional case [28, 32|, or (for the multi-
dimensional case) to Cartesian meshes [22, 23, 29].



This paper proposes a new adaptive nonlinear ADER scheme on unstruc-
tured triangular meshes for solving Cauchy problems for scalar conservation

laws of the form 5
u
—_— pr— 1
BN +Vf(u)=0, (1)

where for some bounded open domain 2 C R?, and time interval I = [0, T,
T > 0, the function u : I x 2 — R is the unknown solution of (1), and where
f(u) = (f1(u), f2(u))” denotes the flux tensor.

Note that for a nonlinear flux, the solution of the hyperbolic equation
(1) typically develops discontinuities in the solution u, denoted as shocks.
In order to model the propagation of moving discontinuities, it is of primary
importance to work with a higher resolution around the discontinuities. This
essentially requires adaptive methods in order to effectively combine high
order resolution with small computational costs.

The adaptive ADER. scheme, proposed in this paper, works with an un-
structured triangular mesh, which is modified during the simulation. The
required adaption rules are based on a customized a posteriori error indica-
tor, whose construction is based on the ideas in our previous papers [3, 4, 15].
The adaptive ADER scheme of this paper provides an explicit one-step finite
volume discretization, whose enhanced flexibility is due to the effective and
customized adaption of the triangular mesh. Therefore, the ADER scheme
of this paper can be viewed as an extension of previous ADER schemes to
adaptive triangular meshes.

The outline of this paper is as follows. In the following Section 2, the
basic concepts of high order WENO reconstruction of polynomials from cell
averages over triangles is explained. This includes a discussion on an ad-
vanced selection strategy for one-sided stencils by using backward sectors.
Section 3 is then devoted to high order flux evaluation, where the concept
of previous ADER schemes [31, 32, 33] is extended to triangular meshes. In
Section 4, the expected convergence orders of the proposed ADER scheme
are confirmed by numerical experiments concerning linear and nonlinear
scalar conservation laws. The good performance of the adaptive ADER
scheme, in particular its robustness and enhanced flexibility, is further sup-
ported by using a nonlinear model problem concerning Burgers equation. In
order to keep this paper widely self-contained, the required adaption rules,
similar to the ones of our previous papers [3, 4, 15], are developed separately
in the Appendix.



2 High Order WENO Reconstruction

The reconstruction of high order multivariate polynomials from scattered
data is a numerically very critical task. Indeed, already the reconstruction
of bivariate polynomials from scattered data requires solving interpolation
problems, which are typically ill-conditioned, especially when the reconstruc-
tion order is high, or when the scattered data are very unevenly distributed.

This section concerns the reconstruction of high order bivariate poly-
nomials from scattered cell averages on unstructured triangular meshes, as
required in the WENO reconstruction of our ADER scheme. To this end, we
first formulate the reconstruction problem in the following Subsection 2.1,
where critical aspects concerning numerical stability are discussed. Fur-
ther details on WENO reconstruction are then explained in Subsection 2.2.
This is followed by a discussion on the selection of admissible stencils in
Subsection 2.3, which is a crucial task for the performance of WENO recon-
struction. To this end, an improved scheme for the construction of one-sided
stencils by using backward sectors is suggested.

2.1 Reconstruction from Cell Average Values

In order to explain polynomial reconstruction from (scattered) cell averages,
let us first fix some required notation. In what follows, we let a = (a1, ag) €
N2 denote an index pair, and we use the standard notation |a| = a; + az,

la|
z = x{'ay? for x = (x1,72) € R?, and D* = eh:O?IW'
1 2

For any xo € R?, the set {(- — x9)® :|a| < n} of polynomials is a basis
of P,, denoting the bivariate polynomials of degree at most n. Therefore,
any p € P, can uniquely be expressed by a monomial expansion of the form

pa) = 3 aalz —20)°, (2)

laf<n

around xg, with coefficients a, € R, |a| < n. We remark at this point,
that the representation for p in (2) is usually not suitable for numerical
computations (but often quite useful for theoretical purposes). We come
back to this important point later in this subsection.

Next, we assume that the computational domain  C R? in (1) is parti-
tioned by a conforming triangulation. Recall that a conforming triangulation
T = {T'}rer of Q is a triangular mesh, consisting of pairwise distinct closed
nondegenerate triangles, T C Q for T € T, such that the following two
properties are satisfied (see e.g. [20, Section 3.3.1], where the term primary
grid is used).



e the union of the triangles in 7 coincides with the closure Q of the
domain Q, i.e., Q = Jper T.

e two different triangles in 7 are either disjoint, or they share a common
vertex or they share a common edge.

In finite volume methods, each triangle T' € 7, also termed (triangular)
cell or control volume, carries, at any fixed time t € I, a cell average value

1
Arw) = o /T w()de,  for TET, (3)

where |T'| is the area of triangle T" and u = wu(t,-) is the solution of (1) at
time t. Note that the cell average Ap(u) also depends on time ¢, but for
notational simplicity, we omit this here.

Now let us turn to the reconstruction of polynomials in P, from N
given cell average values {ATkZ(U)}lgg N, with Ty, € 7,1 < ¢ < N, where
N = (n+1) x (n+2)/2 is the dimension of P,. This problem requires
finding a polynomial p € P,, which satisfies the interpolation conditions

Ar,, (p) = Ar, (u), for 1 < /¢ < N. (4)

When using the representation (2), e.g. for xy = 0, this reconstruction
problem leads to a linear equation system, with square coefficient matrix,

— o NxN
V= (AT’% (2 ))1§£§N;|a|§n €R ’ (5)
usually referred to as Vandermonde matriz. Hence, the reconstruction prob-
lem (4) has a unique solution, iff the Vandermonde matrix V' in (5) is non-
singular, in which case the set S = {T}, }1<i<n C 7 of triangles is said to
form an admissible stencil for P,, i.e., the stencil S is unisolvent w.r.t. the
polynomial space P,,.

Abgrall shows in [1], that the condition number of the Vandermonde
matrix V' in (5) is O(h™"), where h is a measure for the local mesh width of
the triangles in S, see [1] for details. So for large degree n and small mesh
width A the corresponding linear equation system is ill-conditioned. But the
condition number of the linear system depends on the choice of the basis
for the polynomial expansion. Therefore, for the sake of numerical stability,
Abgrall suggests in [1] to replace the representation in (2) by a polynomial
expansion, of the form (7), based on barycentric coordinates.

In order to briefly explain this standard stabilization technique, let the
set S, = {T1,Ts,....,Tn} C T, N > 3, denote an admissible stencil for P,



n > 1. Then, there is a substencil §; C §,, containing three triangles from
Sp, say S = {T1,T», T3}, such that S; constitutes an admissible stencil
for P1. In this case, there are unique linear polynomials Ai, A, A3 € Py
satisfying

At

3
](Az) = 5ij7 1<4,5 <3, with ZAl(IL’) =1. (6)
i=1
The polynomials Aj, Ag, A3 in (6) are said to be the barycentric coor-
dinates of the stencil S;. Now any polynomial p € P, can uniquely be
expressed as a linear combination of the form

p(x) = Y baA*(z),  where A% = AfTAG2. (7)

laf<n

Due to the scale-invariance of the barycentric coordinates Ay, Ao, Ag, the
condition number of the matrix
B= (ATk (Aa)) e RV*N
¢ 1<U<Njla|<n
is independent of the local mesh width h, see [1]. Therefore, the represen-

tation (7) is, due to its robustness, particularly suited for adaptive mesh
refinement, even for strongly distorted meshes.

2.2 WENO Reconstruction

During the last decade, WENO reconstruction methods have extensively
been used for one-dimensional problems, and they have also gained popu-
larity for problems on multi-dimensional Cartesian meshes, where the latter
basically boils down to solving several one-dimensional problems separately.
The basic idea of truly two-dimensional WENO reconstruction on triangu-
lations is to first select, for each triangular cell T € 7, k admissible stencils
Si, 1 =1,...,k, before a set of reconstruction polynomials p; € P,, each
corresponding to one stencil §;, is computed.

For the reconstruction polynomial p € P, on triangle T, the WENO
method uses a weighted sum

k k
p(z) = Zwipi(x), with Zwi =1, (8)
i=1 i=1

of the reconstruction polynomials p;, where the normalized weights w; are
positive and data-dependent. The weights w; in (8) are determined by using



an oscillation indicator, which measures, for any stencil S; C S,,, the os-
cillation behaviour of the corresponding reconstruction polynomial p; € P,
on triangle 7', 1 < i < k. As supported by numerical results in [7, 13], the
oscillation indicator

Ir(p)= > /T|T||O‘_1|Dap(:z:)|2dx, forpeP,and T €T, (9)

1<[o|<n

is very suitable. Furthermore, the weights w; in (8) are then given by

Wi
Zf:l Wi

The parameter € in (10) is a small positive number to avoid division
by zero. We remark that numerical results are usually not sensitive to the
choice of e. In general, large values € are suitable for smooth problems.
However, a large value ¢ may lead to small (undesired) oscillations near
shocks. Therefore, smaller values € are preferably used for discontinuous
problems. In our numerical examples, we let e = 1075,

The positive integer r in (10) serves to control the sensitivity of the
weights with respect to the oscillation indicator (9). Note that in the limit,
when r tends to infinity, the resulting WENO scheme becomes a classi-
cal ENO scheme, where only one stencil, corresponding to one smoothest
(i.e. least oscillatory) reconstruction polynomial, is taken. In contrast, when
r tends to zero, this leads to a WENO scheme with equal weights w; = 1/k,
1 <4 <k, in which case this “WENQO” reconstruction may become oscilla-
tory or even unstable. In our implementation we let » = 4, which turns out
to be large enough to (essentially) avoid undesired oscillations near discon-
tinuities, but small enough to improve upon the classical ENO scheme.

w; = with @; = (e + Zr(p:)) ™", fori=1,...,k.  (10)

2.3 Stencil Selection

This subsection proposes a customized stencil selection technique for WENO
reconstruction by high order polynomials from scattered cell averages. This
in particular leads to an improvement over previous stencil selection strate-
gies, especially in the construction of one-sided stencils near discontinuities.

Let us first remark that the selection of admissible stencils from unstruc-
tured triangular meshes is a critical task, especially for large polynomial
degree n. In fact, the quality of the utilized stencils, to be selected among
many admissible stencils, has a strong impact on the performance of the
resulting WENO reconstruction. The following aspects are crucial for the
selection of k suitable stencils S;, 7 = 1,..., k, around a “center” cell T € 7T.



e every stencil should be local (relative to its corresponding center T');

e the number of stencils, k, should be small in order to keep the required
computational costs small;

e in smooth regions of the solution the stencils should, for the sake of
good approximation quality, be well-centered (i.e. isotropic);

e in non-smooth (i.e. discontinuous) regions of the solution, one-sided
(i.e. anisotropic) stencils should be preferred in order to avoid inter-
polation across discontinuities, which would lead to undesired oscilla-
tions.

In order to construct suitable (local) stencils on unstructured triangu-
lations, we work with various concepts of triangle neighbourhoods, as some
of these were already utilized in [11, 27]. Let us first recall some relevant
ideas from [11, 27], before we propose an extension for the construction of
one-sided stencils of [11] later in this subsection.

Definition 1 Let 7 be a conforming triangulation. For any triangle T € T
the set } .
NOT) = {T eT\{T}:TNT is an edge ofT}

is called level-0 von Neumann neighbourhood of triangle T. Any triangle
in NO(T) is called a level-0 von Neumann neighbour of T

A straightforward extension to level-1 von Neumann neighbourhoods
(and level-1 von Neumann neighbours) can be accomplished by merging
level-0 von Neumann neighbourhoods, so that the level-1 von Neumann
neighbourhood of any triangle T' € 7 is given by

N(T = |J N@) | AT
TeNO(T)

Figure 1 shows an example for level-i von Neumann neighbourhoods,
i = 0,1, of a triangle (dark-shaded), along with its (light-shaded) level-0
von Neumann neighbours (Figure 1 (a)), and its (light-shaded) level-1 von
Neumann neighbours (Figure 1 (b)).

We further extend von Neumann neighbourhoods to higher level-p von
Neumann neighbourhoods by the recursive definition

= U AN |\ Th e,

TeNP—L(T)



(a) (b)

Figure 1: A triangle (dark-shaded) and its (a) (light-shaded) level-0 von
Neumann neighbours; (b) (light-shaded) level-1 von Neumann neighbours.

in order to obtain a richer set of admissible well-centered (i.e. isotropic)
stencils, which are used in the WENO reconstruction of (higher order) poly-
nomials in smooth regions of the solution.

As to the stencil selection in non-smooth regions of the solution, so-
called one-sided stencils are preferred. One-sided stencils are required to
capture preference directions of the solution, and so the construction of
such anisotropic stencils requires particular care. According to Harten and
Chakravarthy [11], the construction of suitable one-sided stencils can be
accomplished by employing a sectoral search algorithm.

The basic idea in [11] for this sectoral search is to merely include von
Neumann neighbours of a triangle T' € 7, whose barycenters lie in one of the
three forward sectors Fj, j = 1,2,3, of T'. Recall that each forward sector
of T is spanned by a corresponding edge pair of T', such that the resulting
sector contains 7". For the purpose of illustration, Figure 2 (a) shows the
three forward sectors Fi, Fo, F3 of a triangle T' = T).

Here we further improve the construction of one-sided stencils by in-
cluding additional sectors, called backward sectors. For any triangle T, its
three backward sectors Bj, j = 1,2,3, are defined by the three midpoints
m1,ma, ms of the edges of T, where each backward sector has its origin
at one midpoint and its two boundary edges pass through the other two
midpoints. Figure 2 (b) shows the three backward sectors By, Ba, B3 of a
triangle T = Tj.

The basic idea for also including backward sectors is to enlarge the sam-
ple of directions, on which the subsequent construction of one-sided stencils
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(a) the three forward sectors Fi, Fa, F3 of 1y

(b) the three backward sectors By, By, B3 of T}

Figure 2: Forward sectors and backward sectors of a triangle 7.

relies. Note that for any triangle T € 7, each of its three backward sectors,
Bj, corresponds to an opposite forward sector F;, j = 1,2,3. Due to the ge-
ometry of the complementary six sectors, B; and F;, j = 1,2, 3, this allows
us to better capture preference directions of the solution around triangle
T, which in turn improves the quality of the WENO reconstruction at 7.
Indeed, this is supported by our numerical tests.

Let us finally remark that the shape of a stencil depends on the local ge-
ometry of the mesh. Especially for high order reconstruction, and for highly
distorted meshes, this may lead to non-admissible stencils. In the imple-
mentation of our ADER method, such non-admissible stencils are detected
and ignored. This in turn leads to a very robust WENO reconstruction, as
only admissible stencils are considered.
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3 High Order Flux Evaluation on Triangulations

In this section, we explain our extension of the ADER flux evaluation scheme
in [28, 31, 32, 33| to unstructured triangular meshes. To this end, we first
recall some relevant background on finite volume methods in Subsection 3.1,
before details on the required ADER flux evaluation across cell interfaces are
discussed in Subsection 3.2. The latter relies on the solution to generalized
Riemann problems, explained in Subsection 3.3.

In combination with high order WENO reconstruction of Section 2, this
yields an explicit one-step finite volume method on unstructured triangular
meshes, of arbitrary high order m, referred to as ADERm. A corresponding
CFL stability condition for ADERm schemes is developed in Subsection 3.4,
before the algorithmic formulation of the method ADERm is finally provided
in Subsection 3.5.

3.1 Finite Volume Formulation

In order to explain some relevant concepts of finite volume methods, let
us consider the two-dimensional scalar conservation law (1) with solution
u(t,z). According to the finite volume method, discrete values of the so-
lution u are taken as cell averages over a partitioning 7 = {T'}re7 of the
domain €2 into finitely many control volumes. We remark that in the general
formulation of finite volume schemes, the partitioning 7 is not necessarily
required to be a triangular mesh.

In the finite volume method of this paper we work with conforming
Delaunay triangulations (see Section 2), in which case the partitioning 7°
of the domain 2 is a triangular mesh. In order to somewhat simplify our
notation of the previous section, let u’. = Ap(u) denote, for any triangle
T € T, the cell average of u over T' at time ¢ = t", see (3). Moreover, let
7 = "1 — " denote a current time step length, from time ¢" to t"*1.

The formulation of any finite volume scheme (see [18, Chapter 23]) usu-
ally results in an explicit numerical method of the form

3

_ _ T ~

ant! :u%—mZFﬁj, (11)
j=1

where F%] is the numerical fluz across the edge (0T);, j = 1,2, 3, of the tri-
angular cell T during the time interval [t",¢""!]. For a more comprehensive
treatment of finite volume methods, we refer to the textbooks [18, 30].
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3.2 Flux Evaluation Across Triangular Cells

With assuming polynomial representation for the numerical solution u over
the triangular cells T' € 7, the numerical flux F}L ; in (11) can be computed
ezactly by using Gauss quadrature. In this case, the numerical flux is given
by a weighted sum of the form

N Ny
Fpy = al(0D);1 ) BunF (ulty. 6,)) - firy (12)
k=1 h=1

whose weights aj, O, and integration points (tg,,zq,) of its time and
space discretization are determined by the utilized Gaussian quadrature rule.
Moreover, 77 ; in (12) is the outer normal vector of the edge (0T');, whose
length is denoted as |(0T);|, j = 1,2, 3.

To evaluate the flux function F in (12) at the Gaussian integration points
(ta,,zaq,), we essentially need to determine the function values u(tq,,zq, ),
1 <k< Ny 1< h< N, also referred to as the states of the solution at
the cell interface. This is accomplished by solving a generalized Riemann
problem (GRP) at the integration points (tg,,z¢g, ), respectively.

Let us first formulate this GRP, before we discuss further details concer-
ning flux evaluation. In order to extend the previous ADER scheme [28,
29, 32, 33] to triangular meshes, we express the arising multi-dimensional
GRP as a sequence of (simpler) one-dimensional GRPs normal to the cell
interfaces, where each (one-dimensional) GRP corresponds to one Gaussian
integration point. In order to further explain this, let T € 7 denote a
triangular cell, and let g, € T denote a Gaussian integration point in (12),
located at one cell interface of T. Then, the corresponding one-dimensional
GRP across this cell interface at z, has local (spatial) coordinate z = zy,
whose origin is z¢, and whose orientation is along the corresponding outer
normal 1 of T, see Figure 3.

Any such one-dimensional GRP is described by the governing partial
differential equation (PDE) and the initial condition (IC) for u(¢,x) at local
time t = 0 (i.e., corresponding to current time ¢t = t") by

ou

PDE: - +Vf(u) =0, (13)

pin(z), for x<O0,

IC:  wu(0,z) = (14)
Pout(z), for x>0,

12



Pin(X)

‘ X,
Xn=0

Figure 3: Generalized Riemann problem along the outer unit normal with
reconstruction polynomials pi, () and poyy ().

where the polynomial belonging to the triangular cell T is denoted as piy,,
and the polynomial belonging to the adjacent triangle (at this cell interface)
is denoted as pouyt. The solution of the GRP (13),(14) is discussed in the
following subsection.

3.3 Solving the Generalized Riemann Problem

Recalling equation (12), we wish to evaluate the solution u(t,-) of the one-
dimensional GRP (13),(14) at any Gaussian integration point z¢, for in-
termediate time tg, € [t",¢"T!]. This leads us to one of the central ideas
of the ADER approach: the solution u is approximated at m-th order time
accuracy at the cell interface z = 0 by using its Taylor series expansion
around (local) time ¢ = 0, so that

u(t,0) = u(0T,0) + — —u(07,0), (15)

where we let 07 = limy o t.

So on given accuracy order m, this requires solving a sequence of one-
dimensional GRPs, one for each Gaussian integration point, across the cell
interfaces at accuracy order m (for the time discretization). We refer to this
generalized Riemann problem as GRP,,_1 in order to indicate its depen-
dence on m. For order m = 1, for instance, this leads us to the conventional
Riemann Problem (RP), GRPy, where the initial condition is given by two
constant functions, separated by the corresponding cell interface. Therefore,
ADER schemes can be viewed as generalization of the classical first order
Godunov scheme [9] to arbitrary high order.

13



Let us now address the evaluation of the terms on the right hand side
of (15) in detail. Its leading term u(0",0) accounts for the first-instant inter-
action of the left and right data states at the cell interface, corresponding to
a Gaussian quadrature point z¢,. In order to determine the state u(0%,0)
at x¢, , we follow along the lines of Toro and Titarev [32]. According to [32],
the two reconstruction polynomials, pi, and poyt, which are belonging to the
two adjacent cells of the interface at zg,, are first evaluated at zg, in or-
der to obtain boundary extrapolated values, uy and u, (¢ = left; r = right).
The leading term u(07,0) in (15) is then determined by the solution of a
conventional Riemann problem, GRPg, of the form

PDE: % +Vf(u) =0, (16)
Uy = limx_ma pin(x), for x <0,
h
IC:  w(0,z) = (17)

Up = limx_)xg pout(z), for x>0,
h

where the solution is evaluated along the t-axis. For further details, we refer
to [32].
Now let us turn to the evaluation of the remaining m — 1 terms in (15),

which include the time derivatives g—;u(OJF,O) of the solution at the cor-
responding Gaussian integration point xg,. In order to compute these re-
quired time derivatives, we employ the Cauchy-Kowalewski method, being
a recursive procedure to express any time derivative in (15) as a function
of available space derivatives. In fact, by applying the Cauchy-Kowalewski
procedure, any time derivative of u(¢, z) can at any point (¢, z) be expressed

as a function of the form

8k

ﬁu(t,x) = G* (83(60)u(t, z), ..., Ot x)) , 1<k<m-—1, (18)
where we let ug;j ) — %u, 0 < j <k, for the space derivatives.

Now in order to evaluate the required space derivatives oY )u(t, x) in (18)
at the Gaussian integration point z¢,, and at time ¢t = 07, we work with
boundary extrapolated derivatives,

8g(ck)ug = lim_ - 6g(ck)pin(l') ,
h

117—>:EG

6£'k)ur = hmx—»zg agk)pout(x),
h
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given by the derivatives of the two polynomials, piy, and poyut, which are be-
longing to the two adjacent cells of the interface at zg, . These extrapolated
derivatives can be viewed as constant states for further m — 1 conventional
Riemann problems of space derivatives.

According to [32], an evolution equation can be constructed for each
space derivative 89(5] Ju in (18). This is done by differentiation of the govern-
ing equation (13) with respect to z. Indeed, as shown in [32], each space
derivative then satisfies the inhomogeneous evolution equation

%(6&%) + A(u)V(@ék)u) = Sk, (19)

where A\(u) = ag—gf) denotes the characteristic speed of the flux, and where

Sk(t,z) = S (a;%(t, ), s W, x)) (20)

is a source term, being an algebraic function of the spatial derivatives
ag(cj)u(t,:n), 0 < j < k. We remark that the source term S* in (20) vanishes
for the simple (linear) case, where the characteristic speed A is constant.
The solution of the resulting generalized Riemann problem for nonlinear
systems with source term was first treated in [33].

Unlike the more general setting in [33], we are merely interested in first-
instant interactions of left and right states, i.e., at time ¢ = 07. Therefore, it
is reasonable to work with the following simplifications. Firstly, we neglect
the source term in (19). Secondly, we linearize the equation (19) about the
leading term w (0", 0), which is readily available by the solution of the con-
ventional Riemann problem (16), (17). As shown in [32], this linearization
does not affect the accuracy of the utilized flux evaluation scheme.

Therefore, in order to determine the required higher order space deriva-
tives, we solve a set of m — 1 homogeneous and linearized conventional Rie-
mann problems of the form

0

PDE: —
ot

<a§k>u) + A (u(0,0)) V (ag%) =0, (21)

Qg;k)ue, for =<0,
1C: Wu(0,z) = (22)
ag(gk)ur , for x>0,

where the constant A (u(07,0)) in (21) is the same for all m — 1 Riemann
problems (21),(22), and thus it needs to be determined only once beforehand
by using the leading term u (07, 0).
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Altogether, the solution of the generalized Riemann problem, GRP,,_1,
requires solving a set of m conventional Riemann problems, namely the (pos-
sibly nonlinear) Riemann problem (16),(17) for the leading state u(0%,0),
and the m — 1 linear Riemann problems (21),(22) for the higher order space
derivatives 8g(ck)u(0+,0), 1 < k < m — 1. These space derivatives are then
used in the Cauchy-Kowalewski procedure (18) to compute the time deriva-
tives 8t(k)u(0+, 0), 1 <k <m—1, which in turn are required for the evalua-
tion of the Taylor expansion (15). In this way, the value u(¢,0) is computed
via (15) at m-th order time accuracy, at any Gaussian integration point
(te,»xc, ), where tg, € [t "1

3.4 CFL Condition

Recall that explicit finite volume schemes, such as the proposed ADER
scheme, are usually required to satisfy a Courant-Friedrichs-Lewy (CFL)
stability condition, which gives a restriction for the time step size.

In order to derive a corresponding CFL condition for our ADER scheme,
let pr be the radius of the inscribed circle of a triangular cell T € 7.
Moreover, let

denote the maximum normal characteristic speed at the 3N, Gaussian in-
tegration points of the three cell edges (0T');, j = 1,2, 3.

Similar to the CFL condition in [20, Subsection 3.4.1], we decided to
restrict the time step size 7 in the implementation of our ADER scheme on
(unstructured) triangular meshes 7 by the CFL condition

7 < min .
TeT )\(maX)
T

(23)

3.5 Algorithmic Formulation of the Method ADERm

Let us combine the computational steps of the WENO reconstruction in
Section 2 and the ADER flux evaluation scheme of this section in order
provide an algorithmic formulation of the resulting finite volume method
ADERm. Any time step t" — t"*! of ADERm is accomplished by the
following algorithm.
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Algorithm 1 (ADERm).

INPUT: Triangulation T, cell averages {u}. = ur(t"):T € T}, positive
time step size T = t"T1 — " satisfying (23), and order m.

e FOR ceach T € 7T DO

(1) Compute reconstruction polynomial pr of order m satisfying (4)
from given cell averages by using WENO reconstruction (8)—(10).

e FOR ceach T € 7T DO

(2a) Solve the GRPy,_1, given by the RP (16),(17) and the sequence
of linear RPs (21),(22), at each Gaussian integration point xq,, .

(2b) Ewvaluate u(-,zg,) at each Gaussian integration point tg, via (15).
(2¢c) Compute numerical fluzes FTJ, j=1,2,3, via (12).

paate each cell average U =ur Y using .
2d) Update each cell e ") by using (11

OUTPUT: Updated cell averages {uwy = up(t"+): T € T}.

We remark that step (2b) of Algorithm 1 requires the application of the
Cauchy-Kowalewski procedure (18) in order to replace the time derivatives
in (15) by space derivatives.

4 Convergence Order of ADERmM Methods

In this section we show that the proposed ADERm scheme attains the ex-
pected convergence order m. This is done by numerical experiments, where
the schemes ADER2, ADER3, and ADER4 are applied to two different
model problems, one linear and one nonlinear advection problem. The
numerical experiments are performed by using two sequences, A and B,
of non-adaptive triangular meshes, where each mesh sequence consists of
five distorted triangular meshes of decreasing mesh width. The triangular
meshes of sequence A are mildly distorted, whereas the meshes of sequence
B are highly distorted. The first four meshes, Ay—Ag, of the sequence A
are shown in Figure 4, and the corresponding ones of the mesh sequence B,
Bo—Bg3, are shown in Figure 5.
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4.1 Linear Advection

In the first model problem, we consider solving the two-dimensional linear
advection equation
Ut + Upy + Ugy =0, (24)

with initial condition
up(x) = u(0,z) = sin(?w(wl + xg)) , (25)

on the computational domain = [-0.5,0.5]x[—0.5,0.5]. The computations
are carried out for the time interval I = [0,1]. We use periodic boundary
conditions, so that the reference solution @(1, z) at final time ¢ = 1, coincides
with the initial condition (25), i.e., ug(z) = u(1, ).

In order to study the influence of the mesh irregularity on the accuracy,
we compute the solution of (24), (25) on the two mesh sequences A (Figure 4)
and B (Figure 5). The mesh widths h, displayed in Figures 4 and 5, are given
by the (constant) length of the edges along the boundary of 2. Therefore,
h is only a rough indicator for the mesh width. But at each refinement level
i, the number of cells in the mesh A,; coincides with the number of cells in
the corresponding mesh B;, ¢+ =0,...,4.

The computations are performed by using the methods ADER2, ADERS,
and ADER4. We use nine stencils in the WENO reconstruction, namely
three centered stencils, three stencils in forward sectors F;, and three stencils
in backward sectors B;.

For each mesh, A; and B;, 1 =0,...,4, we determine the time step size
7 according to the CFL condition (23). This is done as follows. Due to unit
normal characteristic speed in (24), we have )\Epmax) = 1. Therefore, for any
triangular mesh, the resulting time step 7 is bounded above by the smallest
radius pmin of an inscribed circle of a triangular cell in the mesh, i.e., 7 < pmin
according to (23). This leads us to 7 = 0.025 for the time step size in the
computations on the coarse mesh Ay, and 7 = 0.0125 for the coarse mesh
By. For the next finer meshes, A; and B;, their smallest inscribed circles’
radii, pmin(A;) and pmin(B;), are half the size of their coarser predecessor,
i.e., pmin(Ai) = pmin(Ai—l)/2 and pmin<Bi> = pmin(Bi—l)/Q for i = 1, . e ,4.
Therefore, we halve the time step size 7 for the simulations on A; and B;
accordingly.

We have recorded the errors between the cell averages of the numerical
solution up, output by each method ADERm, and a reference solution ,
which is computed by using a 7-point quadrature rule on triangles, being
exact for polynomials of order up to 6. The numerical results obtained by
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ADER2, ADER3, and ADER4 are displayed in Table 1 (for mesh sequence
A) and in Table 2 (for mesh sequence B), where the errors and the corre-
sponding convergence orders,

) log(Ey(h) / Eyp(h/2))
Ey(h) = |up —ill, and k= 6] ,

(26)

are shown for the norms || - |1, || - [|2, and || - ||co-

Note that each method ADERm attains its expected convergence order
m ~ ky in (26) for each of the three norms and on either mesh sequence.
But the errors E,(h) on the mildly distorted meshes of sequence A (see
Table 1) are smaller than those on the sequence B (see Table 2) of highly
distorted meshes. This is because the triangles of the sequence A are closer
to being equilateral than those in the mesh sequence B. This complies with
corresponding results in [2, 17], where it is shown that simulations on meshes
with equilateral triangles lead to higher accuracy compared with simulations
on meshes with non-equilateral triangles.

Nevertheless, it is quite remarkable that even for the sequence B of highly
distorted meshes, reasonable numerical results are obtained by each method
ADERm, which shows that the proposed ADER scheme, in combination
with the stencil selection algorithm in the WENO reconstruction, is robust,
even for very anisotropic stencils.
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h E1(h) k1 Es(h) ko Eo(h) oo
1/8 |[11265-107% — |1.2826-10"% — [2.7656-10"! —
1/16 | 4.2780-1072 1.40 | 4.8948-1072 1.39 | 1.0326-10"1 1.42
1/32 | 1.1288-1072 1.92 | 1.2915-10"2 1.92 | 2.6589-10"2 1.96
1/64 | 2.6513-1073 242 | 3.0153-1073 2.43 | 1.1444-10"2 1.41
1/128 | 6.3234-10"* 2.13 | 7.1838-10~* 2.14 | 3.7882-10"% 1.65
1/8 1.4226-10-1 - [1.6078-10=' — [27919-10-1 —
1/16 | 1.6160-10"2 3.14 | 1.8617-102 3.11 | 3.9276-10"2 2.83
1/32 | 1.5446-1073 3.39 | 1.8346 - 1073 3.34 | 4.2469-1073 3.21
1/64 | 2.0259-10"% 3.40 | 2.2524-10~* 3.51 | 4.2128-10~* 3.87
1/128 | 2.4139-10~° 3.17 | 2.6835-10~° 3.17 | 5.1008 - 10> 3.14
1/8 129912-107% — |3.4907-107° — |7.2935-107% —
1/16 | 1.1801-10% 4.66 | 1.5787 1073 4.47 | 5.2470-10"% 3.80
1/32 | 6.9519-107° 4.09 | 8.9930-10~> 4.13 | 3.2150-10~* 4.03
1/64 | 6.4714-1076 3.97 | 8.0984-10"¢ 4.03 | 3.1137-107° 3.91
1/128 | 4.4070-10~7 4.00 | 5.5669 - 10~7 3.99 | 2.2974-1076 3.88

Table 1: Linear case. Results by ADER2, ADER3, ADER4 on sequence A.

h Ei(h) k1 Es(h) ko Eo(h) Koo
1/8 |[1.3924-107% - |1.6233-100% — [3.998-10"1 —
1/16 | 3.2158-1072 2.11 | 3.8800-10"2 2.06 | 1.4476-10~1 1.47
1/32 | 6.8809-1073 2.22 | 8.3858-107% 2.21 | 3.9424-10"% 1.88
1/64 | 1.6080-1073 2.10 | 1.9787-107% 2.08 | 1.0345-10"2 1.93
1/128 | 3.8924-10~* 2.05 | 4.8469-10~* 2.03 | 3.1769-10~2 1.70
1/8 [27500-107Y — |3.0955-10"% — [4.9177-1071 —
1/16 | 3.8493-1072 2.84 | 4.4821-1072 2.79 | 9.5172-10"2 2.37
1/32 | 4.5424-107% 3.08 | 5.3011-107% 3.08 | 1.1456- 1072 3.05
1/64 |5.2333-107* 3.12 | 6.0649-10~* 3.13 | 1.2106-10"3 3.24
1/128 | 6.1609-10~> 3.09 | 7.1088-10~> 3.09 | 1.4629-10~* 3.05
1/8 [6.6326-1072 — |7.9679-1072 — |[1.5932-10' —
1/16 | 3.9170-1073 4.08 | 5.2793-10~2 3.92 | 1.3527-10"2 3.56
1/32 | 2.0676-107* 4.24 | 2.7034-10~* 4.29 | 8.8686-10~* 3.93
1/64 | 1.3002-107° 3.99 | 1.5726- 107> 4.10 | 5.3229-10"° 4.06
1/128 | 7.7907 -10~7 4.06 | 9.5160 - 10~7 4.05 | 3.7559-10"6 3.82

Table 2: Linear case. Results by ADER2, ADER3, ADER4 on sequence B.
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4.2 Nonlinear Advection

As regards the nonlinear case, we consider solving Burgers equation [5]

L o L o
ug + <—u > + <—u ) =0, (27)
2 - 2 -

with initial condition
uo(z) = u(0,2) = 0.3+ 0.7 sin(27r(x1 + J:g)), (28)

on the computational domain €2 = [—0.5,0.5]x[—0.5,0.5]. The computations
are carried out for the short time interval I = [0, %], so that during the entire
simulation the solution w of the Cauchy problem (27),(28) is smooth. As in
the linear case, we work with periodic boundary conditions. Note that the
initial condition (28) leads to a transonic rarefraction.

The cell averages of a reference solution # are calculated via a 7-point
quadrature rule for triangles, where the value at each quadrature point is
calculated by using Newton’s method. Our numerical results are reflected
by Tables 3 (concerning mesh sequence A) and 4 (mesh sequence B). The
errors E,(h) in (26), obtained after the final time step of the simulation, are
shown along with the experimental convergence orders k, in (26).

As for the linear model problem of the previous subsection, each method
ADERm attains its expected convergence order m, except for ADER4, which
seems to not quite attain the expected order m = 4 on the highly distorted
mesh sequence, Bo—By4, see Table 4.

We can explain this behaviour of ADER4 as follows. It is well-known
that the occurrence of long and thin triangles may lead to reconstruction
polynomials of rather poor approximation quality, due to almost degener-
ate forward and backward sectors. This leads to very elongated one-sided
stencils, which are covering only a small range of preference directions. The
resulting reconstruction quality, especially when measured in the ||-||o-norm,
is in this case rather poor.

Note that this effect is not observed in the linear case. This is because the
solution u of the linear model problem (24),(25) is sufficiently smooth during
the entire simulation, whereas the solution u(T,-) of the nonlinear model
problem (27),(28) exhibits steep gradients at final time 7' = . The steep
gradients of u(7T,-) are not reconstructed sufficiently accurate, in particular
when working with the highly distorted mesh sequence B.

Nevertheless, the approximation behaviour of ADERm can significantly
be improved by working with adaptive triangular meshes. This is supported
by the numerical results of the following section.
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h Ey(h) k1 Ey(h) ko FEoo(h) koo
1/8 |14816-1072 — |21592-1072 — |[8.9534-1072 —
1/16 | 5.0152-1073 1.56 | 6.8720- 102 1.65 | 3.2865-10"2 1.45
1/32 | 1.3421-1073 1.90 | 1.8877-10~2 1.86 | 1.0561-10"2 1.64
1/64 | 3.4067-107* 1.98 | 4.8618-10~* 1.96 | 2.7014-1073 1.97
1/128 | 8.3667-107° 2.03 | 1.2018-10~* 2.02 | 7.0141-10"* 1.95
1/8 1.2429-1072 — | 1.5481-1072 — |[4.7784-1072 —
1/16 | 1.6329-1073 293 | 2.2922-103 2.76 | 1.0174-10"2 2.23
1/32 | 1.9838-107* 3.04 | 3.0528-10~* 2.91 | 2.1328-1073 2.25
1/64 | 2.7484-107° 3.31 | 4.0679-10~° 3.37 | 2.8764-10"* 3.35
1/128 | 3.5762-1076 3.04 | 5.1999-10~% 3.06 | 4.9262-10"° 2.63
1/8 [29430-10% — |39772-107% — |1.6612-1072 —
1/16 | 2.2322-10~* 3.72 | 3.5916-10~* 3.47 | 1.5177-107% 3.45
1/32 | 1.9599-107° 3.51 | 3.7513-107° 3.26 | 2.7872-10~* 2.44
1/64 | 1.7003-107% 4.09 | 2.9834-107° 4.24 | 2.9170- 107> 3.78
1/128 | 1.3478-1077 3.78 | 2.4466 - 10~7 3.72 | 2.6691 - 10°% 3.56
Table 3: Burgers. Results by ADER2, ADER3, ADER4 on sequence A.
h Ei(h) k1 Es(h) ko Eo(h) oo
1/8 |24789-1072 — |35598-1072 — |1.2087-107! -
1/16 | 8.1998-1073 1.60 | 1.1486-10"2 1.63 | 6.5593-10"2 0.99
1/32 | 2.2506-1073 1.87 | 3.2835-1073 1.81 | 2.7181-1072 1.27
1/64 | 5.5952-10~% 2.01 | 8.4517-10"% 1.96 | 9.1484-1073 1.57
1/128 | 1.3480-10~* 2.05 | 2.0520 - 10~* 2.04 | 2.5284-10"3 1.86
1/8 |[21345-1072 — |2.7487-1072 — |8.6973-1072 -
1/16 | 3.0335-1073 2.81 | 4.4508-10~% 2.63 | 1.9878 -10"2 2.13
1/32 | 3.8506-10"% 298 | 6.4792-10~% 2.78 | 5.4981-10"% 1.85
1/64 | 4.5916-1075 3.07 | 7.6192-107° 3.09 | 6.2541-10"* 3.14
1/128 | 5.5909 - 1076 3.04 | 9.2328 -10~% 3.04 | 8.5906-10~° 2.86
1/8 |56973-107% — |8.1636-1073 — |4.3144-1072 -
1/16 | 5.1513-107* 3.47 | 9.2607-10~* 3.14 | 5.0294-10~% 3.10
1/32 |3.9238-107° 3.71 | 7.8427-107° 3.56 | 6.1687-10"* 3.03
1/64 | 2.7966-1075% 3.81 | 6.0176-10% 3.70 | 5.2142-107° 3.56
1/128 | 1.8851-1077 3.89 | 4.4105-10~7 3.77 | 5.6319-10"¢ 3.21
Table 4: Burgers. Results by ADER2, ADER3, ADER4 on sequence B.
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5 ADER4 on Adaptive Triangular Meshes

In this section, we apply the proposed adaptive ADER4 method to a Cauchy
problem for Burgers equation (27). Moreover, we provide a numerical com-
parison between various adaptive and non-adaptive variants of ADER4. The
latter is done in Subsection 5.2.

5.1 Burgers Equation

Burgers equation (27) constitutes a popular standard test case concerning
nonlinear conservation laws, mainly due to its shock wave behaviour. Even
for smooth initial data, the solution of Burgers equation typically devel-
ops discontinuities, corresponding to shocks. We consider solving Burgers
equation (27) in combination with the initial condition

llz—c||? )
ex y for ||z — || < R,
U()(:C) = P <Hxic”27R2 ” ” (29)

0, otherwise,

with R = 0.15, ¢ = (—0.2,-0.2)T on the two-dimensional computational
domain Q = [-0.5,0.5)> C R2. This test case is also used in [8].

A 3D view on the numerical solution u, obtained by ADERA4, is shown
at four different times, to = 0 (initial time), t199 = 0.21427 (100 time steps),
tsoo0 = 0.64146 (300 time steps), and typo = 1.49514 (700 time steps), in
Figure 6. The corresponding adaptive triangular meshes are shown in Fig-
ure 7. Recall that the time step size is subject to the CFL condition (23),
see Algorithm 1.

Note that already for the initial condition wug, its support is effectively
localized by the adaptive refinement of the triangular mesh. The adaptive
triangular mesh continues to capture the support of the solution u very well.
In particular, the propagation of the shock front is well-resolved during the
entire simulation, see Figure 7. Moreover, in regions, where the solution
u is rather smooth, the triangular mesh is rather coarse. The latter helps
to reduce the required computational costs, which supports the utility of
the customized adaption rules (discussed in the Appendix). This is further
supported by the numerical comparison in the following subsection.
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to=0 t100 = 0.21427

t300 = 0.64146 t700 = 1.49514

Figure 6: Burgers equation. 3D view on the numerical solution u obtained
by ADERA at four different times.
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Figure 7: Burgers equation. Adaptive triangulation during the simulation
by ADERA4 at four different times.

5.2 Comparison with Non-Adaptive Triangular Meshes

Not surprisingly, in all our numerical experiments we found that the perfor-
mance of the method ADERm over an adaptive triangular mesh is, in terms
of its enhanced accuracy and smaller complexity, always superior to any
(comparable) method ADERm over a non-adaptive triangular mesh. To be
more precise, at fixed computational costs, the adaptive method ADERm
reduces the approximation error of its non-adaptive counterpart quite sig-
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nificantly. Likewise, at fixed approximation error, the adaptive variant of
ADERm requires much less computational time than any comparable non-
adaptive variant of ADERm.

To conclude this section we provide a numerical comparison between
various adaptive and non-adaptive variants of the method ADER4. This
comparison does not only support our general statements from above, but it
also serves to quantify the gain in performance when working with adaptive
triangular meshes rather than with non-adaptive ones.

For the purpose of comparison, we consider solving the Cauchy prob-
lem for the linear advection equation (24) in combination with the initial
condition (29). We evaluate the performance of the method ADERA4 for a se-
quence ADs—ADy of three different adaptive triangular meshes, where AD»
is the “coarsest” and AD, is the “finest” adaptive mesh by their minimal
edge length. We compare the numerical results with those obtained by the
method ADER4 on the sequence of non-adaptive meshes Ao—A,4 from Sec-
tion 4, see also Figure 4, where the minimal edge length of the non-adaptive
mesh A; coincides with the minimal edge length of the adaptive mesh ADj;,
i=2,3,4.

Mesh | CPU[sec] E E, E
A, 343 | 0.0061 | 0.0202 | 0.1520
Aj 2880 | 0.0025 | 0.0089 | 0.0844
Ay 24874 | 0.0011 | 0.0045 | 0.0432

AD, 245 | 0.0067 | 0.0218 | 0.1604

AD; 1876 | 0.0028 | 0.0097 | 0.0882

AD, 14231 | 0.0013 | 0.0049 | 0.0469

Table 5: Numerical results obtained by ADER4 on non-adaptive meshes A;
and adaptive meshes AD;, i = 2,3, 4, for the Cauchy problem (24),(29).

We recorded the resulting approximation errors Fp, Fs, and Ey in
(26) between each numerical solution wy(t,z) and the analytic solution
u(t,z) = up(z —t) at time t = 0.5. The numerical results are shown in
Table 5, where also the elapsed CPU times are included, respectively. The
comparison in Table 5 shows that the approximation errors F1, Fo, and E
obtained by ADER4 on the adaptive mesh AD; are almost equal to the
corresponding errors for the non-adaptive mesh A;, i = 2,3,4. The com-
putational costs required for ADER4 on the non-adaptive mesh A;, how-
ever, are reduced by about 30%-40% when using the adaptive mesh AD;,
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2,3,4. In conclusion, at comparable accuracy, the adaptive method

ADERA requires significantly smaller computational costs than the non-
adaptive method ADER4, see Table 5. This complies with previous obser-
vations in all our numerical experiments.
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Appendix: Adaption Rules

This appendix briefly explains the utilized adaption rules, which are simi-
lar to the ones of our previous papers [3, 4, 15]. The adaption rules rely
on an a posteriori error indicator, which is combined with refinement and
coarsening strategies for the triangular cells.

5.3 Error Indication

A customized error indicator is used in order to adaptively modify the tri-
angles of the current triangulation 7. A significance value np, assigned to
each T € T, reflects the local approximation quality of the cell average ur
over triangle T. The significances np, T € 7T, are used to flag single triangles
as “to be refined” or “to be coarsened”.

Definition 2 Let n* = maxyer nr, and let Ocrs, Oret be two tolerance values
satisfying 0 < Oers < Oret < 1. We say that a cell T € T is to be refined,
iff nT > Oret - ™, and T is to be coarsened, iff nr < Ocs - ™.

In our numerical experiments, we let . = 0.01 and 6. = 0.05. Note
that a triangle T' cannot be refined and be coarsened at the same time; in
fact, it may neither be refined nor be coarsened. In order to define the
error indicator np, we first need to introduce another concept for triangle
neighbourhoods, which leads us to Moore neighbourhoods, see Figure 8.

Figure 8: A triangle T' (dark shaded) and its Moore neighbours.

Definition 3 Let 7 be a conforming triangulation. For any triangle T € T,
the set 3 .
M(T) = {T e T\{T}:TNT 0}

is called Moore neighbourhood of T. Any triangle in M(T) is called a
Moore neighbour of T.
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Following along the lines of [10], and with assuming that for each triangle
T € T its cell average is assigned to its barycenter &7, i.e., ur = u(&r), we
define the error indicator for any triangle T' € 7 by

nr = |u(ér) — s(ér)|, (30)

where for the Moore neighbourhood M(T') of T' the function s = s(7) in
(30) denotes the thin plate spline interpolant [14] satisfying the interpolation
conditions

s(&7) = u(&z), for all T € M(T).

Now, for any triangular cell T € 7, the error indication nr is small,
whenever the approximation quality of @ by s around 7' is good, whereas a
high value nr indicates that @ is subject to strong variation locally around
T. This way, the error indicator allows us to locate discontinuities of the
solution u quite effectively. For further details, we refer to our previous
papers [3, 4, 15], where similar adaption rules are employed.

5.4 Coarsening and Refinement
The adaptive insertion and removal of current triangles 7" € 7 is accom-
plished by the following operations.

5.4.1 Coarsening.

A triangular cell T € T is coarsened by the removal of its three vertices
(nodes) from the current Delaunay triangulation 7. But the coarsening of
a triangle T is only performed, if all triangular cells of its Moore neighbour-
hood M(T'), and T itself, are flagged as to be coarsened. After the removal
of T, the Delaunay triangulation 7 is updated by a local retriangulation
according to the Delaunay criterion.

5.4.2 Refinement.

A triangular cell T' € T is refined by the insertion of its barycenter &7 into
T, followed by a subsequent local Delaunay retriangulation.
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