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Abstract. Petroleum reservoir modelling requires effective multiscale
methods for the numerical simulation of two-phase flow in porous media.
This paper proposes the application of a novel meshfree particle method
to the Buckley-Leverett model. The utilized meshfree advection scheme,
called AMMoC, is essentially a method of characteristics, which combines
an adaptive semi-Lagrangian method with local meshfree interpolation by
polyharmonic splines. The method AMMoC is applied to the five-spot
problem, a well-established model problem in petroleum reservoir simula-
tion. The numerical results and subsequent numerical comparisons with
two leading commercial reservoir simulators, ECLIPSE and FrontSim, show
the good performance of our meshfree advection scheme AMMoC.

1 Introduction

Petroleum reservoir simulators help oil companies to make effective use of
expensive data collected through field measurements, data processing and
interpretation. In fact, reservoir simulators are among the very few tools
which are available for modelling various physical multiscale phenomena
within hydrocarbon reservoirs. Hydrocarbon exploration and production,
in particular, requires computational methods for the numerical simulation
of two-phase flow in porous media.

Two-phase flow modelling is concerning the displacement of one fluid,
say oil, by another, say water, within a reservoir. This model problem may
be characterized by the injection of a wetting fluid (water) into the reservoir
at a particular location, displacing the non-wetting fluid (oil), which is being
withdrawn at another location.

Due to the physical interaction between the two phases, water and oil,
this production process leads to a moving shock front at the interface be-
tween the two phases. The evolution of the shock front is of primary im-
portance for the production, where the goal is to withdraw as much oil as
possible before the breakthrough, when water arrives at the production site.

However, the geometry of the moving shock front may be very compli-
cated, mainly due to varying flow velocities. In order to model the propa-
gation of the shock front effectively, numerical simulation of two-phase flow
essentially requires customized multiscale algorithms, which manage to cap-
ture and resolve important local features of the flow. To this end, adaptive
numerical algorithms are necessary in order to combine small computational
costs with high accuracy.
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In our previous work [8], a novel concept for the meshfree numerical
simulation of multiscale phenomena in transport processes is proposed. The
resulting particle-based advection scheme, called AMMoC, is essentially
a method of characteristics, which combines an adaptive semi-Lagrangian
method with local meshfree interpolation by polyharmonic splines. This
paper further supports the utility of this meshfree concept. To this end, we
propose the application of the method AMMoC to numerical simulation of
two-phase flow in porous media.

The outline of this paper is as follows. Further discussion on two-phase
flow in petroleum reservoirs is provided in the following Section 2, where in
particular the mathematical formulation of the flow problem is given. Basic
ingredients of our meshfree advection scheme AMMoC are then explained
in Section 3, where also some details concerning its implementation are
discussed and the required computational costs are analyzed. Numerical
results are finally provided in Section 4, where AMMoC is applied to the
five-spot problem, a popular test case scenario in oil reservoir simulation.
The good performance of our method AMMoC is shown by numerical
comparisons with two leading commercial reservoir simulators, ECLIPSE and
FrontSim.

2 Two-Phase Flow in Petroleum Reservoirs

Petroleum reservoirs contain hydrocarbons and other chemicals trapped in
the pores of a rock. Waterflooding is one effective technique for the ex-
ploration and production of hydrocarbons from petroleum reservoirs. This
technique involves drilling wells into the rocks, injectors and producers. By
the injection of water through the injectors, hydrocarbons are then, due to
the resulting pressure, pushed into the rocks and forced to flow towards the
producers.

A somewhat simplified, but fairly realistic model problem for petroleum
reservoir simulation is the Buckley-Leverett model [10]. This standard model
is concerning two-phase flow of two immiscible and incompressible fluids,
say water and oil, within a porous medium, where diffusive effects, such as
capillary pressure, are ignored and gravitational forces are neglected.

In the following of this section, the governing equations of this particular
two-phase flow model are introduced, and some of their fundamental prop-
erties are recalled. A more comprehensive discussion concerning geophysical
aspects, especially from the viewpoint of petroleum reservoir simulation, can
be found in the textbooks [5, 19, 20].

Let us first turn to the governing equation for the fluid flow. Due to mass
conservation, the flow for each of the two individual phases is described by a
time-dependent hyperbolic conservation law. The two resulting mass balance
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equations are the mass conservation of water,

φ(x)
∂

∂t
uw(t, x) + ∇ · vw(t, x) = 0, (1)

and the mass conservation of oil,

φ(x)
∂

∂t
uo(t, x) + ∇ · vo(t, x) = 0. (2)

In both (1) and (2), the scalar field φ(x) denotes the porosity of the
medium, which determines the volume accessible to fluid flow. Hence, for
any homogeneous medium, its porosity φ is constant.

Moreover, the time-dependent vector fields vw(t, x) in (1) and vo(t, x)
in (2) are the phase velocities, and uw(t, x) in (1) and uo(t, x) in (2) are
the saturations of water and oil, respectively. The saturations, uw and uo,
are the corresponding fractions of available volume, of water and oil, in the
pores of the medium. Therefore, we have 0 ≤ uw ≤ 1 and 0 ≤ uo ≤ 1, and
moreover,

uw(t, x) + uo(t, x) = 1, (3)

since the medium is assumed to contain only two phases, water and oil.
The two phase velocities, vw(t, x) in (1) and vo(t, x) in (2), are deter-

mined by Darcy’s law

vw(t, x) = −K(x)
kw(uw)

µw
∇p(t, x), (4)

vo(t, x) = −K(x)
ko(uo)

µo
∇p(t, x), (5)

where p(t, x) is the reservoir pressure, K(x) is the permeability tensor of
the porous medium, and kw(uw) in (4) and ko(uo) in (5) are the relative
permeabilities of the corresponding phases. Moreover, the scalar parameters
µw in (4) and µo in (5) denote the fluids’ viscosities, so that the ratios

Mw(uw) =
kw(uw)

µw
and Mo(uo) =

ko(uo)

µo

yield the phase mobilities. The total mobility is thus given by M = Mw+Mo.
By combining the two fluids’ mass balance equations, (1) and (2), with

the relation (3), we obtain the incompressibility relation

∇ · (vw(t, x) + vo(t, x)) = ∇ · v(t, x) = 0,

which states that the total fluid velocity v(t, x) is divergence-free.
Now the phase velocity of water can be expressed as

vw(t, x) = v(t, x) · fw(uw), (6)

3



where fw(uw) is the flux tensor, given by the ratio fw(uw) = Mw(uw)/M(uw)
between the phase mobility Mw(uw) of water and the total mobility M .

A corresponding relation for the phase velocity vo of oil can be estab-
lished accordingly. But we wish to further simplify the notation. To this
end, we let u ≡ uw, and so uo = 1−u by (3), and we also let f(u) = fw(uw).

We remark that the fractional flow function f in (6) is monotonically
increasing and it satisfies 0 ≤ f(u) ≤ 1 for u ∈ [0, 1]. The following con-
siderations rely on the Corey model [5], according to which the relative
permeabilities, kw and ko, are quadratic functions of the form

kw(u) = u2, ko(uo) = (1 − u)2.

This yields

M(u) =
u2

µw
+

(1 − u)2

µo
,

for the total mobility and so in this case the fractional flow function f in
(6) is given by

f(u) =
u2

u2 + µ(1 − u)2
, (7)

where we let µ = µw/µo for the ratio of the two fluids’ viscosities.
We summarize the discussion of this section as follows.
The Buckley-Leverett equation

∂u

∂t
+ v · ∇f(u) = 0, (8)

together with the incompressibility relation

∇ · v(t, x) = 0, (9)

and Darcy’s law
v(t, x) = −K(x)M(u)∇p(t, x), (10)

describes the flow of two immiscible incompressible fluids, water and oil,
through a porous homogeneous medium, φ ≡ 1, in the absence of capil-
lary pressure and gravitational effects (see also [5, 19, 20] and the related
discussion in [21]).

The solution u of (8),(9),(10) is the saturation of the wetting fluid (wa-
ter). Hence, the value u(t, x) is, at a time t and at a point x, the fraction
of available volume (in the pores of the medium) filled with water, and so
u = 1 means pure water, and u = 0 means pure oil.

We remark that the incompressibility relation (9) together with Darcy’s
law (10) forms an elliptic equation. The Buckley-Leverett equation (8) is a
hyperbolic equation, which develops discontinuities in the solution u, corres-
ponding to a shock front at the interface between the two phases.
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3 Meshfree Flow Simulation

This section introduces a novel concept for meshfree flow simulation, where
special emphasis is placed on the particularities of the Buckley-Leverett
model (8).

Generally speaking, meshfree methods provide very flexible, robust and
reliable discretization techniques for multiscale simulation, which have re-
cently gained much attention in many different applications from computa-
tional sciences and engineering, as well as in numerical analysis. Among a
few others, prominent meshfree discretization techniques include the Mesh-
less Local Petrov-Galerkin (MLPG) Method, see the papers [3, 4, 17] and the
textbook [2] of Atluri for an up-to-date account and comprehensive treat-
ment of the method and its rich variety of applications.

The resulting particle-based meshfree advection scheme of this paper,
AMMoC, is essentially an Adaptive Meshfree Method of Characteristics,
which combines the well-established semi-Lagrangian method with local
meshfree interpolation by polyharmonic splines [6, 7, 8] and customized
adaption rules [7] required for the effective refinement and coarsening of
flow particles. For further background on the method of characteristics, we
refer to the textbook [13]. Moreover, a comprehensive overview over the
semi-Lagrangian method is offered in [18, Section 7], and scattered data
interpolation by polyharmonic splines (and other radial basis functions) is
explained in the recent tutorial [15].

This section first explains a standard stabilization technique for the
Buckley-Leverett equation (8). This is done in Subsection 3.1, where the
relevant Cauchy problem for the viscous Buckley-Leverett equation is for-
mulated. In order to give a short introduction to the basic ingredients of our
meshfree advection algorithm AMMoC, some selected features of the mesh-
free method of characteristics are then explained in Subsection 3.2. This is
followed by a short discussion on polyharmonic splines in Subsection 3.3.
Some selected aspects concerning the implementation of AMMoC and the
required computational costs are finally analyzed in Subsection 3.4.

For deeper insight into the ingredients of AMMoC, especially the imple-
mentation of the adaption rules and other computational aspects, we refer
to our previous papers [6, 7, 8] and the recent research monograph [16].

3.1 Viscous Buckley-Leverett Equation

The Buckley-Leverett equation (8) is a time-dependent hyperbolic equation,
whose solution u develops discontinuities, even for smooth initial data. Re-
call that the discontinuities of the saturation u are corresponding to the
shock front at the interface between the two phases.

In order to model the propagation of the shock front, we consider the
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viscous Buckley-Leverett equation

∂u

∂t
+ v · ∇f(u) = ε · ∆u, (11)

on a computational domain Ω ⊂ R
d, d ≥ 1, and for a compact time interval

I = [0, T ], T > 0, where f is the fractional flow function in (7), ε > 0 denotes
a small diffusion coefficient, and ∆ denotes the Laplace operator on R

d.
We remark that this modification (11) of the Buckley-Leverett equation

(8) relies on a standard stabilization technique, dating back to Burgers [11].
The idea of this stabilization is to transfer the hyperbolic equation (8) to a
parabolic equation (11), which has, unlike (8), at any time t > 0, a smooth
solution u, even for discontinuous initial data. Moreover, the solution u of
the Buckley-Leverett equation (8) is approximated arbitrarily well by the
solution u ≡ uε of the viscous Buckley-Leverett equation (11), provided that
the diffusion coefficient ε is sufficiently small.

We consider solving the viscous Buckley-Leverett equation (11), in com-
bination with given initial conditions

u(0, x) = u0(x), for x ∈ Ω. (12)

To this end, we work with our above mentioned meshfree advection scheme,
AMMoC, whose basic ingredients are discussed in the remainder of this
section.

3.2 Meshfree Method of Characteristics

The discretization of the given Cauchy problem (11), (12), suggested in [8],
works with a finite set Ξ ⊂ Ω of nodes, each of which corresponds at a
time t ∈ I to one fluid particle. According to the basic concept of semi-
Lagrangian advection, the equation (11) is integrated along the trajectories
of the particles’ streamlines. Moreover, the node set Ξ is adaptively modified
during the simulation, where the adaption rules rely on a customized a
posteriori error estimator, which is introduced in [7].

Starting point of our meshfree advection scheme is the Lagrangian form

du

dt
= ε · ∆u,

of (11), where du
dt

= ∂u
∂t

+ v · ∇f(u) is the material derivative. This leads us
to the discretization

u(t + τ, ξ) − u(t,x)

τ
= ε · ∆u(t,x), (13)

where x ≡ x(ξ) is the upstream point, corresponding to the node ξ ∈ Ξ. The
upstream point x of ξ can be viewed as the position of a particle at time
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t, which by traversing along its trajectory, arrives at ξ at time t + τ , where
τ > 0 denotes the time step size. Adopting some standard notation from
dynamical systems [12], we express the upstream point x of ξ as

x = Φt,t+τξ, (14)

where Φt,t+τ : Ω → Ω denotes the continuous evolution of the (backward)
flow of the ordinary differential equation (ODE)

ẋ =
dx

dt
= a(t, x), (15)

with a = ∂f(u)
∂u

being the advection velocity.
Note that the exact location of x is usually unknown. Therefore, in order

to compute an approximation x̃ ≈ x numerically, we work with a specific
discrete evolution Ψt,t+τ of the flow, corresponding to the continuous evolu-
tion Φt,t+τ in (14). The operator Ψt,t+τ is given by any suitable numerical
method for solving the above ODE (15), which allows us to express the
resulting approximation x̃ of x as

x̃ = Ψt,t+τξ.

For the sake of brevity, we refrain from expanding details concerning the
employed ODE solver of our preference, but rather refer to our previous
paper [8].

Having computed x̃ = Ψt,t+τξ, the desired approximation of u(t + τ, ξ)
in (13) would thus be given by

u(t + τ, ξ) = u(t, x̃) + τ · ε∆u(t, x̃), for ξ ∈ Ξ. (16)

In order to determine the unknown function values u(t, x̃), ∆u(t, x̃) in
the right hand side of (16), we work with local interpolation by using poly-
harmonic splines. Some selected details concerning the relevant background
of this particular interpolation scheme are briefly discussed in the following
Subsection 3.3. For the moment be it sufficient to say that, on any given
upstream point approximation x̃, we determine a neighbouring set N ⊂ Ξ
of current nodes around x̃, all of whose values u(t, ν), ν ∈ N , are known.
Then, we compute a polyharmonic spline interpolant s satisfying

s(ν) = u(t, ν), for all ν ∈ N , (17)

before we replace (16) by

u(t + τ, ξ) = s(x̃) + τ · ε∆s(x̃), for ξ ∈ Ξ.

Altogether, the advection step t → t + τ is accomplished as follows.
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Algorithm 1 (Method of Characteristics).

INPUT: Time step τ , nodes Ξ, values {u(t, ξ)}ξ∈Ξ.

FOR each ξ ∈ Ξ DO

(a) Compute the upstream point approximation x̃ = Ψt,t+τξ;

(b) Determine s(x̃) ≈ u(t, x̃) by local interpolation, i.e., solve (17);

(c) Advect by letting u(t + τ, ξ) = s(x̃) + τ · ε∆s(x̃).

OUTPUT: The values u(t + τ, ξ), for all ξ ∈ Ξ, at time t + τ .

3.3 Polyharmonic Spline Interpolation

In order to solve the local interpolation problem (17), we prefer to work with
polyharmonic splines, which are popular tools for multivariate interpolation
from scattered data. In this particular interpolation scheme, the interpolant
s in (17) has the form

s =
∑

ν∈N

cν · φd,k(‖ · −ν‖) + p, p ∈ Pd
k , (18)

where ‖ · ‖ denotes the Euclidean norm on R
d, and the polyharmonic spline

φd,k is given by

φd,k(r) =

{

r2k−d log(r), for d even,

r2k−d, for d odd,

with 2k > d. Moreover, Pd
k denotes the linear space of all d-variate poly-

nomials of order at most k. We remark that the interpolation problem (17)
has under constraints

∑

ν∈N

cνp(ν) = 0, for all p ∈ Pd
k ,

a unique solution, provided that the points in N are Pd
k -unisolvent, i.e., for

p ∈ Pd
k ,

p(ν) = 0 for all ν ∈ N =⇒ p ≡ 0.

The stability and the approximation order of local polyharmonic spline
interpolation has recently been analyzed in [14]. One of the key observation
in [14] is that the Lagrange basis (λν(x))ν∈N , and thus the Lebesgue constant

Λ(U,N ) = max
x∈U

∑

ν∈N

|λν(x)|, for N ⊂ U ⊂ Ω,
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of the interpolation scheme is invariant under uniform scalings. This in
turn leads to a stable algorithm for solving (17). Moreover, it shows that
the approximation order of local polyharmonic spline interpolation around
any x̃ is k, i.e., for any point x̃ + h(x − x̃) ∈ U , h > 0, and a fixed local
neighbourhood U of x̃ we have

|sh(x̃ + h(x − x̃)) − u(t, x̃ + h(x − x̃))| = O(hk), h → 0, for u(t, ·) ∈ Ck,

where sh denotes the unique polyharmonic spline interpolant satisfying

sh(x̃ + h(ν − x̃)) = u(t, x̃ + h(ν − x̃)), for all ν ∈ N .

For further details on local polyharmonic spline interpolation, we refer to [14].
Polyharmonic spline interpolation is also used in order to adaptively

modify the current node set Ξ ≡ Ξ(t) after each advection step of Algo-
rithm 1, yielding a modified node set Ξ ≡ Ξ(t + τ). To this end, we work
with an error indicator, which assigns to each current node ξ ∈ Ξ(t) a sig-
nificance value

η(ξ) = |sN\ξ − u(t, ξ)|, for ξ ∈ Ξ, (19)

where sN\ξ denotes the polyharmonic spline interpolant which interpolates
the values u(t, ν), ν ∈ N , at a set N ⊂ Ξ \ ξ of current nodes in the neigh-
bourhood of ξ. The error indicator η : Ξ → R thus evaluates the local
approximation quality around the nodes in Ξ(t). The modification of Ξ(t) is
then accomplished by the removal of nodes with small significances, coars-
ening, whereas in the neighbourhood of nodes with large significances new
nodes are inserted, refinement. For further details concerning the implemen-
tation of these adaption rules, see [7].

3.4 Implementation and Computational Complexity

In this subsection, we discuss some selected aspects concerning the imple-
mentation of the proposed advection scheme AMMoC, and we consider
analyzing its computational complexity. To this end, let us first determine
the computational costs required for the performance of one advection step,
Algorithm 1, where the current node set Ξ, of size N = |Ξ|, is fixed. In the
following, we analyze the computational costs required for each of the steps
(a)–(c) in Algorithm 1 per node ξ ∈ Ξ.

First, note that the assignment in step (c) costs O(1) operations. As
regards the performance of step (a), recall that the computation of the
upstream point approximation x̃ relies on a specific ODE solver. In our
implementation of AMMoC, we employ a recursion of the form

βk+1 = τ · a(t + τ/2, ξ − βk/2)
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in order to obtain after merely a few iterations a sufficiently accurate linear
approximation β ∈ R

d to the trajectory arriving at ξ. This complies with
the recommendations in [18, equation (7.66a)] and yields by x̃ = ξ − β a
sufficiently accurate upstream point approximation in constant time, i.e., at
O(1) operations.

The performance of step (b) requires solving a local interpolation prob-
lem of the form (17) by a polyharmonic spline (18). This is accomplished
by solving a linear equation system of small size, (n + q)-by-(n + q), where
n = |N | is the number of neighbouring nodes and q =

(

k−1+d
d

)

is the dimen-
sion of the polynomial space Pd

k , see [15] for details. We use a direct method
for solving this small linear system, which requires O(n3) operations, where
n ¿ N . In our numerical example in Subsection 4.2, for instance, we have
n ≤ 15 during the entire simulation, whereas the number N of current nodes
is in the range 250 ≤ N ≤ 6000, see Figure 1.

Now let us turn to the computational costs required for the adaptive
modification of the nodes. Recall that after each advection step, by Al-
gorithm 1, the current node set Ξ is modified. This is done by using the
adaption rules proposed in our previous paper [7]. To be more precise, the
modification of Ξ relies on the a posteriori error estimator η : Ξ → [0,∞),
introduced in the previous Subsection 3.3, which first assigns a significance
value η(ξ) in (19) to each node ξ ∈ Ξ. This basically requires computing
the polyharmonic spline interpolant sN\ξ in (19). Like in step (b) of Algo-
rithm 1, this is accomplished by solving a linear equation system of small
size (n + q)-by-(n + q), which costs only O(n3) operations.

Moreover, according to the adaption rules in [7], either operation, the
coarsening or the refinement of a node, can be accomplished in constant time,
i.e., at O(1) operations. Therefore, the performance of both one advection
step by Algorithm 1 and the subsequent node adaption requires at most
O(N · n3) operations, where N = |Ξ| and n ¿ N denotes the (maximum)
size of neighbouring nodes.

Recall that in our particular application the adaptive modification of the
nodes is done in order to effectively capture the evolution of the shock front
and other local features of the flow. In all of our numerical experiments we
found that the current number N = |Ξ| of nodes in Ξ is about proportional
to the length of the current shock front. Since the geometry of the moving
shock front may be very complicated, it is very hard, if not impossible, to
predict the required size N ≡ N(t) of the node set Ξ ≡ Ξ(t), t ∈ I, a priori.

Nevertheless, under the assumption that the number of nodes is bounded
above by Nmax, i.e., |Ξ(t)| ≤ Nmax at any time t ∈ I, the entire simulation
requires at most O(Nmax · S · n3) operations in total, where S denotes the
number of time steps. In the numerical example of Subsection 4.2, we found
Nmax = 6000 (a posteriori), and we let S = 2100, and n = 15 (a priori).
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4 Numerical Results and Comparisons

In order to illustrate the good performance of our adaptive meshfree advec-
tion scheme, AMMoC, we consider using one popular test case scenario
from hydrocarbon reservoir modelling, termed the five-spot problem, where
AMMoC is shown to be competitive with two leading commercial reservoir
simulators, ECLIPSE and FrontSim of Schlumberger.

4.1 The Five-Spot Problem

The following variant of the five-spot problem in two dimensions, d = 2,
may be summarized as follows. The computational domain Ω = [−0.5, 0.5]2

is corresponding to a bounded reservoir, where we normalize, for the sake of
simplicity, the permeability K of the homogeneous porous medium, so that
K(x) ≡ 1.

Initially, the pores of the reservoir are saturated with non-wetting fluid
(oil, u ≡ 0), before wetting fluid (water, u ≡ 1) is injected through one
injection well, placed at the center o = (0, 0) of Ω. During the simulation,
the non-wetting fluid (oil) is displaced by the wetting fluid (water) towards
the four corner points

C = {(−0.5,−0.5), (−0.5, 0.5), (0.5,−0.5), (0.5, 0.5)}

of the square domain Ω.
The five-spot problem requires solving the equations (8),(9),(10) on Ω,

in combination with the initial condition

u0(x) =

{

1 for ‖x − o‖ ≤ R,

0 otherwise,
(20)

where we let R = 0.02 for the radius of the injection well at the center o ∈ Ω.
Our aim, however, is to merely solve the Cauchy problem (8),(20) for

the Buckley-Leverett equation. This is because we wish to evaluate the
performance of our meshfree advection method AMMoC as an adaptive
saturation solver on unstructured particle sets. Therefore, we decided to
work with the following simplifications of the five-spot model problem.

Firstly, following along the lines of Albright [1], we assume unit mobility,
M ≡ 1. Secondly, we work with a stationary pressure field, p(x) ≡ p(·, x),
given by

p(x) =
∑

c∈C

log(‖x − c‖) − log(‖x − o‖), for all x ∈ Ω, t ∈ I, (21)

which yields the stationary velocity field

v = −∇ · p, (22)
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due to Darcy’s law (10), and with the assumption M ≡ 1. It is easy to
see that the velocity field v is in this case divergence-free, i.e., v in (22)
satisfies the incompressibility relation (9). Figure 3 shows the contour lines
of the pressure field p together with the streamlines of the velocity field v,
resulting from Darcy’s law (10).

Note that by these two simplifications, the elliptic equations (9),(10)
uncouple from the Buckley-Leverett equation (8). This allows us to neglect
the pressure equation (10), so that we restrict ourselves to solving the flow
equation (8).

Let us make a few comments in order to support the two simplifications
taken above. First note that the pressure field p in (21) has singularities
at the corners and at the center of the domain Ω, so that the pressure
in the vicinity of the injection well at o is arbitrarily high, whereas the
pressure around the production wells, placed at the four corner points in C,
is arbitrarily small.

Therefore, the resulting particle flow exhibits high velocities near the
five wells but small velocities between the wells. This complies with the
actual physical behaviour corresponding to the five-spot model problem,
where moreover the variation of pressure has rather small effects on the
saturation.

Let us moreover remark that even in sophisticated, full reservoir simula-
tors, such as in ECLIPSE and FrontSim, the pressure (and thus the velocity)
are, unlike the saturation, updated rather infrequently. In other words, long
time steps are made between updates of the pressure, whereas many smaller
time steps update the saturation between the pressure updates.

That the above taken simplifications for the five-spot problem are quite
reasonable is further supported by numerical comparisons (in Subsection 4.3)
with two commercial reservoir simulators, ECLIPSE and FrontSim, each of
which solves the coupled set of equations (8),(9),(10).

4.2 Meshfree Simulation by AMMoC

According to the discussion in Section 3, we apply our meshfree advection
scheme AMMoC to the Cauchy problem (11),(20) for the viscous Buckley-
Leverett equation, rather than for the hyperbolic flow equation (8). Recall
that this is in order to model the propagation of the shock front, which is of
primary importance in the relevant application. Therefore, the accurate ap-
proximation of the shock front requires particular care. This is in AMMoC
mainly accomplished by the adaptive modification of the nodes during the
simulation.

Now let us turn straight to our numerical results, provided by our mesh-
free advection scheme AMMoC. In our simulation, we decided to select a
constant time step size τ = 5 ·10−5, and the simulation comprises 2100 time
steps, so that I = [0, 2100τ ]. Moreover, we let ε = 0.015 for the diffusion
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coefficient in (11), and we selected the value µ = 0.5 for the viscosity ratio
of water and oil, appearing in the fractional flow function (7).

Figure 4 shows the water saturation u during the simulation at six differ-
ent times, t = t0, t = t420, t = t840, t = t1260, t = t1680, and t = t2100, where
u is evaluated at a fixed cartesian mesh comprising 100 × 100 rectangular
cells. The corresponding color code for the water saturation is shown at the
right margin of Figure 4, respectively.

Note that the shock front, at the interface between the non-wetting fluid
(oil, u ≡ 0) and the wetting fluid (water, u ≡ 1), is moving from the center
towards the four corner points of the computational domain Ω. This way,
the non-wetting fluid (oil) is effectively displaced by the wetting fluid (water)
into the four production wells, as expected.

Just before the breakthrough, when the shock front arrives at the produc-
tion wells, an increased velocity can be observed around the four production
wells, see the transition between the time step t = t1680, Figure 4 (e) and
t = t2100, Figure 4 (f). This sucking effect is due to the singularities of the
pressure field p at the corners in C.

The distribution of the nodes, corresponding to the six different times,
t = t0, t = t420, t = t840, t = t1260, t = t1680, and t = t2100, is shown in
Figure 5. Due to the adaptive distribution of the nodes, the shock front
propagation of the solution u is captured very well. This helps to reduce
the required computational costs while maintaining the accuracy, due to a
higher resolution around the shock front. The effective distribution of the
nodes around the shock supports the utility of the adaption rules, proposed
in our previous paper [7], yet once more.

We found that the number of nodes in Ξ is roughly proportional to the
length of the shock front. This is confirmed by the graph in Figure 1, where
the number of nodes is plotted as a function of time.
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Figure 1: Five-spot problem. Number of nodes during the simulation by our
meshfree advection scheme AMMoC.
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4.3 Comparison with ECLIPSE and FrontSim

Let us compare the results of our simulation by AMMoC with two different
commercial reservoir simulators, ECLIPSE and FrontSim. Both ECLIPSE and
FrontSim are products of Schlumberger Oil Field Services. We remark that
ECLIPSE and FrontSim are regarded as the industry standard in reservoir
simulation.

ECLIPSE is reservoir simulation software, which works with first order fi-
nite differences. In contrast, the multi-phase simulator FrontSim is based on
a streamline method [9], which solves the Buckley-Leverett equation along
pre-calculated streamlines of the flow particles. Each of these two simu-
lators solves the coupled system of equations (8),(9),(10). In particular,
unlike in our model simplification, the pressure field p is updated during the
simulation.

The latter requires, due to Darcy’s law (10), the maintenance of the
total velocity v, which also appears in the flow equation (8). However, our
simplifications taken in the previous subsection, are quite reasonable for
the special case of the five-sport problem. In particular, the variation of the
pressure field can be neglected. This is supported by the following numerical
results, where our advection scheme AMMoC is compared with ECLIPSE
and FrontSim.

Figure 6 shows the water saturation obtained from the simulator ECLIPSE
at six different times, whereas the corresponding results obtained by the sim-
ulator FrontSim are displayed in Figure 7. The evolution of the saturation
u, obtained by either of these two simulators, especially the location and
the propagation of the shock front, is comparable with that obtained by our
method AMMoC, whose results are shown in Figure 4.

For the purpose of further comparison, let us regard the water saturation
u at time t = t1260, for each of the three different simulation methods, AM-
MoC, ECLIPSE, and FrontSim, see Figures 4(d), 6(d), and 7(d). Figure 2
shows the three different profiles of the saturation u(t1260, ·) across the half
diagonal of Ω, drawn from the center o = (0, 0) to the corner point (0.5, 0.5).
For better orientation, the dotted line in Figure 2 shows the expected height
of the shock front, which can be computed analytically by Welge’s tangent
method [22].

Note that the three different methods lead to similar saturation profiles.
Moreover, each method captures the expected height of the shock front very
well. When it comes to accurately resolving the shock front, the method
FrontSim is the best, followed by our meshfree scheme AMMoC and lastly
ECLIPSE. This is not very surprising insofar as FrontSim relies on front
tracking, a technique which is well-known for its small numerical diffusion.

Since the method ECLIPSE is only of first order, ECLIPSE is inferior to
both AMMoC and FrontSim, due to enhanced numerical diffusion around
the shock front. Our meshfree advection scheme AMMoC, of second order,
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Figure 2: Five-spot problem. Comparison between ECLIPSE, FrontSim, and
our meshfree advection scheme AMMoC. The saturation profiles are, at
time t = t1260, compared along the half diagonal from the center o = (0, 0)
to the corner point (0.5, 0.5). The values on the axis of abscissae correspond
to the distance d from o.

reduces (compared with ECLIPSE) the numerical diffusion, mainly due to
the effective adaptive node distribution. Moreover, the saturation profile
obtained by our meshfree method AMMoC is fairly close that of FrontSim,
see Figure 2.

In conclusion, we feel that our meshfree method AMMoC is, as re-
gards its performance concerning the five-spot problem, quite competitive
with both ECLIPSE and FrontSim, since it produces only small amount of
numerical diffusion and tracks the shock front very well.

Let us finally remark that neither ECLIPSE nor FrontSim is accessible to
us. The presented results by ECLIPSE and FrontSim, each based on hard-
ware optimized Fortran codes, were obtained at Schlumberger Stavanger
Research. In contrast, the numerical simulation by AMMoC was per-
formed by using MATLAB 6 Release 13 on inferior hardware, namely on a
PC (model: IBM 236623G) with processor type Intel Pentium(R) 4 1600MHz.
Therefore, we refrained from providing the required CPU times for the simu-
lation by the three different methods, since any such comparison can only
be unfair on our method AMMoC.
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Figure 3: Five-spot problem. (a) Contours of the pressure field, (c) stream-
lines of the velocity field, and (e) velocity vectors in Ω = [−0.5, 0.5]2. The
corresponding plots of these data in the top left quarter [−0.5, 0] × [0, 0.5]
are shown in (b), (d), and (f).
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Figure 4: Five-spot problem. Solution obtained by AMMoC. The color
plots indicate the water saturation u during the simulation at six different
times, (a) t = t0, (b) t = t420, (c) t = t840, (d) t = t1260, (e) t = t1680, and
(f) t = t2100.
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Figure 5: Five-spot problem. Adaptive node distribution during the sim-
ulation by AMMoC at six different times, (a) t = t0, (b) t = t420, (c)
t = t840, (d) t = t1260, (e) t = t1680, and (f) t = t2100.
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Figure 6: Five-spot problem. Solution obtained by ECLIPSE. The color plots
indicate the water saturation u during the simulation at six different times,
(a) t = t0, (b) t = t420, (c) t = t840, (d) t = t1260, (e) t = t1680, and (f)
t = t2100.

22



(a) (b)

(c) (d)

(e) (f)

Figure 7: Five-spot problem. Solution obtained by FrontSim. The color
plots indicate the water saturation u during the simulation at six different
times, (a) t = t0, (b) t = t420, (c) t = t840, (d) t = t1260, (e) t = t1680, and
(f) t = t2100.
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