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Logic and the axiomatic method I

ca 300 BCE: The axiomatic method is used by Euclid of
Alexandria in the context of geometry in his influential
Elements.

1879-1903: G. Frege attempts to found mathematics on pure
logic; he introduces the first-order predicate logic.

1889: Peano introduces the set of axioms known today as
Peano’s axioms in an attempt to formalize the natural
numbers.

1903: B. Russell detects Russell’s Paradox in Frege’s work.
This sparks the foundational crisis.

1908-1922: E. Zermelo, A. Fraenkel and Th. Skolem develop
an axiomatic system for set theory, known today as ZFC.
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Logic and the axiomatic method II

1910-1913: B. Russell and A.N. Whitehead specify in their
Principia Mathematica a formal system (axioms and rules of
deduction), in which they establish parts of basic
mathematics.

ca 1922: D. Hilbert publicly announces his programme of
proof theory – today known as Hilbert’s programme.

1933: K. Gödel publishes his two incompleteness theorems,
proving the impossibility of carrying out Hilbert’s programme.

1943-today: Many examples in different branches of
mathematics are found, which give a significance to Gödels
first incompleteness theorem.
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Russell’s paradox

G. Frege used the following principle in his foundation of
mathematics:

Principle (Comprehension scheme)

For any (first-order) formula ϕ(x) there is a set containing exactly
all the sets x such that ϕ(x) is true.

However this principle is inconsistent as was shown by B. Russell:

Proof of Russell’s paradox.

Let ϕ(x) be x /∈ x . Let y := {x | x /∈ x}. Then y ∈ y ⇔ y /∈ y , a
contradiction.
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The foundational crisis and Hilbert’s programme

Foundational crisis: Is it necessary to revise mathematical
practice to avoid paradoxes like Russell’s?
Hilbert’s answer: No! Instead we should put mathematical
practice on a firm ground and prove that this ground doesn’t admit
paradoxes!

Follow two steps:

1 Formalize all mathematics in a formal language using a set of
axioms that is easy to describe (like ZFC) and a finite set of
inference rules to deduce theorems.

2 Show that this formal system cannot produce contradictions
using finitary means (up to some restricted instances of
complete induction).
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What is first-order logic? (I)

We fix a signature consisting of relation symbols, function symbols
and constant symbols. This specifies our language.

Examples

The signature of groups contains only a binary function
symbol ·.

The signature of rings contains two binary function symbols ·
and + and two constant symbols 0 and 1.

The signature of arithmetic contains the unary function
symbol S, the binary function symbols · and +, the constant
symbol 0 and the relation symbol ≤.

The signature of sets contains one binary relation symbol ∈.
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What is first-order logic? (II)

Given a signature, its language consists of all formulas build out of
the symbols in the signature (used according to their kind) plus
equality = using logical connectives (∨,∧,↔,¬, etc. ) and binding
variables by quantifiers.

Examples

1 ∀x∀y(x · y = y · x) is a formula in the language of groups.

2 1 + x = y · y is a formula in the language of rings.

3 ∀x(∃y(S(y) = x) ∨ x = 0) is a formula in the language of
arithmetic.

4 ∀+ x0 = is not a formula in the language of rings.

Formulas with all variables bounded by a quantifier are called
sentences. Above, 1 and 3 are sentences, 2 is not.
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How do we formalize proofs?

A theory is a set of sentences of a fixed language. A derivation
from a theory T is a finite sequence of formulas of a given
language, where every member of this sequence is either an axiom
ϕ ∈ T or obtained by applying a logical rule to (one, none or
several) formulas occurring earlier. Examples for logical rules are:

1 Modus Ponens: If ϕ→ ψ and ϕ are established, conclude ψ.

2 Conjunctive introduction: If ϕ and ψ are established,
conclude ϕ ∧ ψ.

3 Generalization: If ϕ(x) is established, where x is free,
conclude ∀xϕ(x).

4 Reflexivity of =: Without justification conclude x = x .
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Alexander Block Gödel’s incompleteness theorems



Context and basics
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Why does this formalization work?

We fix a certain finite∗ collection of rules. Let T be a theory, ϕ a
formula. Then write T ` ϕ iff there is a derivation from T s.t. ϕ
is its final member.
Different perspective: We write T |= ϕ iff in every mathematical
structure, in which all formulas in T hold, also ϕ holds.

Example

Let T be the axioms of a group. Then T |= ϕ means that ϕ is
satisfied by any group. So, e.g., T 6|= ∀x∀y(x · y = y · x).

Theorem (Gödel’s completeness theorem)

We have T ` ϕ if and only if T |= ϕ.
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Gödel’s first incompleteness theorem

Conclusion and preview

History
Technical foundation

Why does this formalization work?

We fix a certain finite∗ collection of rules. Let T be a theory, ϕ a
formula. Then write T ` ϕ iff there is a derivation from T s.t. ϕ
is its final member.
Different perspective: We write T |= ϕ iff in every mathematical
structure, in which all formulas in T hold, also ϕ holds.

Example

Let T be the axioms of a group. Then T |= ϕ means that ϕ is
satisfied by any group. So, e.g., T 6|= ∀x∀y(x · y = y · x).
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The popular statement
Unraveling and preparing
Proving the first incompleteness theorem

The popular statement

We say that a theory T is inconsistent iff T ` ∃x(x 6= x).
Otherwise it is consistent.
We say that a theory T is complete iff for any sentence ϕ of the
corresponding language either T ` ϕ or T ` ¬ϕ. Otherwise it is
incomplete.

Theorem (Gödel’s first incompleteness theorem, popular)

Let T be a sufficiently strong consistent arithmetic theory T that
can be recursively axiomatized. Then T is incomplete.

What does that mean?
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Alexander Block Gödel’s incompleteness theorems



Context and basics
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First things first...

Until further notice we work in the language of arithmetic.
Recall the (countably many Peano axioms):

1 ∀x(S(x) 6= 0);

2 ∀x∀y(S(x) = S(y)→ x = y);

3 ∀x(x + 0 = x);

4 ∀x∀y(x + S(y) = S(x + y));

5 ∀x(x · 0 = 0);

6 ∀x(x · S(y) = x · y + x);

7 ∀x∀y(x ≤ y ↔ ∃z(x + z = y));

8 ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(S(x)))→ ∀xϕ(x),
for any arithmetical formula ϕ(x).

Let PA denote the set of Peano axioms.
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Gödelization

We consider logical and arithmetic symbols as natural numbers via
the following mapping:
ζ = ¬ ∧ ∀ ( ) 0 S + · x y . . .

#ζ 1 3 5 7 9 11 13 15 17 19 21 23 . . .

Let 〈pi | i ∈ N〉 be the enumeration of all prime numbers. Then we
assign to a string of symbols ξ = ζ0 · · · ζn the Gödel number

ξ̇ := p1+#ζ0
0 · · · p1+#ζn

n .

Let Φ = 〈ϕ0, . . . , ϕn〉 be a sequence of formulas. Then analogously
we define the Gödel number of Φ as

Φ̇ := p1+ϕ̇0
0 · · · p1+ϕ̇n

n .
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Gödelization

We consider logical and arithmetic symbols as natural numbers via
the following mapping:
ζ = ¬ ∧ ∀ ( ) 0 S + · x y . . .

#ζ 1 3 5 7 9 11 13 15 17 19 21 23 . . .

Let 〈pi | i ∈ N〉 be the enumeration of all prime numbers. Then we
assign to a string of symbols ξ = ζ0 · · · ζn the Gödel number
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Gödelization

We consider logical and arithmetic symbols as natural numbers via
the following mapping:
ζ = ¬ ∧ ∀ ( ) 0 S + · x y . . .

#ζ 1 3 5 7 9 11 13 15 17 19 21 23 . . .

Let 〈pi | i ∈ N〉 be the enumeration of all prime numbers. Then we
assign to a string of symbols ξ = ζ0 · · · ζn the Gödel number
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Doing logic in N

Now we can do logic in the structure N of the natural numbers and
define the following relations on N for any arithmetic theory T :

fmla = {n ∈ N | n is Gödel number of a formula},

proofT = {n ∈ N | n is Gödel number of a derivation from T},
prvT = {〈n,m〉 ∈ N× N |

n is Gödel number of a derivation from T

whose last member is n},
prvblT = {m ∈ N | m is Gödel number of a sentence

that can be derived from T}.

Then, e.g., for a sentence ϕ, prvblT (ϕ̇) is true in N iff T ` ϕ.
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What does PA know about all this? (I)

In PA we can define any single n ∈ N. We set 0 := 0 and
n + 1 := S(n). Then in N a given term n gets interpreted as n.
Attention: We have to distinguish between n and n, since these are
different types of objects.

To simplify our notation we write pϕq
for ϕ̇.
Now what does it mean to represent a relation on N in PA?

Definition

P ⊆ Nn is representable in a theory T ⊇ PA if there is a formula
α(~x) such that for any ~a ∈ Nn:

P(~a)⇒ T ` α(~a) and ¬P(~a)⇒ T ` ¬α(~a)
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What does PA know about all this? (II)

We say that a theory T is recursively axiomatizable iff there is a
subset T ′ ⊆ T such that for any ϕ ∈ T , T ′ ` ϕ and T
(informally) has the following property:
It is possible to write a computer program such that on any input
n ∈ N it decides in finite time whether there is ϕ ∈ T ′ such that
n = pTq.
PA itself is recursively axiomatizable as well as ZFC and all
common extensions of these two theories.
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Gödel’s first incompleteness theorem

Conclusion and preview

The popular statement
Unraveling and preparing
Proving the first incompleteness theorem

What does PA know about all this? (III)

Lemma

Let T be a recursively axiomatizable theory. Then the relations
proofT and prvT are representable in PA by formulas proofT (x)
and prvT (x , y), respectively.

Using this we get:

Lemma

Let T ⊇ PA be a recursively axiomatizable theory. Then

T ` ϕ⇒ There is some n ∈ N s.t. T ` prvT (n, pϕq)

and
T 6` ϕ⇒ For all n ∈ N, T ` ¬prvT (n, pϕq).
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A caveat about provability

Let prvbleT (y) :≡ ∃x(prvT (x , y)).
From the last Lemma it follows that

T ` ϕ⇒ T ` prvbleT (pϕq).

However, in general we cannot show that

T 6` ϕ⇒ T ` ¬prvbleT (pϕq).

Reason: There is a mathematical structure (a non-standard model)
satisfying PA, but containing an element a such that for no n ∈ N
the term n gets interpreted as a. This element can in turn encode
a proof not encoded by any n ∈ N.
Then by the completeness theorem it is not the case that

PA ` ∀x¬prvT (x , pϕq)⇔ For all n ∈ N, PA ` ¬prvT (n, pϕq).
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The fixed point lemma (I)

For a theory T and two formulas ϕ,ψ we write ϕ ≡T ψ to mean
T ` (ϕ↔ ψ).

Lemma (Fixed point lemma)

Let T ⊇ PA be a theory. Then for every formula α(x) with exactly
one free variable there is a sentence γ such that γ ≡T α(pγq).

Proof.

First we note that there is a formula sb(x1, x2, y) such that for any
formula ϕ = ϕ(x) we have sb(pϕq, n, y) ≡T y = pϕ(n)q. Then as
a special case we have that

sb(pϕq, pϕq, y) ≡T y = pϕ(pϕq)q. (∗)
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The fixed point lemma (II)

Proof (Cont.)

sb(pϕq, pϕq, y) ≡T y = pϕ(pϕq)q. (∗)

Now we define β(x) :≡ ∀y(sb(x , x , y)→ α(y)) and we define
γ :≡ β(pβq). Then:

γ ≡ ∀y(sb(pβq, pβq, y)→ α(y))

≡T ∀y(y = pβ(pβq)q→ α(y))

≡ ∀y(y = pγq→ α(y))

≡T α(pγq).
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A caveat about provability, revisited

Lemma (Non-representability lemma)

Let T ⊇ PA be a theory. Then prvblT is not representable in T .

Proof.

Let τ(x) be a formula representing prvblT . Then in particular we
have that

T 6` ϕ ⇔ T ` ¬τ(pϕq). (∗)

Now let γ be a sentence such that γ ≡T ¬τ(pγq). Then we
contradict (∗).
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Towards the incompleteness theorem (I)

We call a theory T ω-consistent iff whenever T ` ∃xϕ(x), then
there is n ∈ N such that T 6` ¬ϕ(n).

Theorem (Gödel’s first incompleteness theorem, original version)

Let T ⊇ PA be a recursively axiomatizable ω-consistent theory.
Then T is incomplete.

Proof.

Let prvbleT (x) = ∃y(prvT (y , x)).
Then T ` ϕ⇒ T ` prvbleT (x).
Let γ be a sentence s.t. γ ≡T ¬prvbleT (pγq).
Assume T ` γ. Then T ` ¬prvbleT (pγq) and so T 6` γ, a
contradiction. Hence T 6` γ.
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Alexander Block Gödel’s incompleteness theorems



Context and basics
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Towards the incompleteness theorem (II)

Proof (Cont.)

Assume T ` ¬γ. Then T ` prvbleT (pγq), i.e.,
T ` ∃yprvT (y , pγq). Then by ω-consistency we have that
T 6` ¬prvbleT (n, pγq) for some n ∈ N,

which implies T ` γ. This
contradicts the assumption that T is consistent and hence we get
T 6` ¬γ.

We can weaken ω-consistency to consistency by using instead of
prvble in the above proof a formula prvble′ such that
prvble′(pϕq) is ∃y [prv(y , pϕq) ∧ ∀z(z < y → ¬prv(z , p¬ϕq))].

Theorem (Gödel’s first incompleteness theorem, Rosser’s version)

Let T ⊇ PA be a recursively axiomatizable consistent theory. Then
T is incomplete.
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Hilbert’s programme, revisited

Recall the first step of Hilbert’s programme:
Formalize all mathematics in a formal language using a set of
axioms that is easy to describe (like ZFC) and a finite set of
inference rules to deduce theorems.

Of course such a formalization should always be complete and
encompass a theory of the natural numbers, i.e., must be at least
as strong as PA. Thus it must be incomplete. Hence there are
always infinitely many statements in mathematics that stay
undecided.
But as long as all undecided problems are not really interesting for
mathematics, we do not have a problem, right?

Alexander Block Gödel’s incompleteness theorems



Context and basics
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Formalize all mathematics in a formal language using a set of
axioms that is easy to describe (like ZFC) and a finite set of
inference rules to deduce theorems.
Of course such a formalization should always be complete and
encompass a theory of the natural numbers, i.e., must be at least
as strong as PA. Thus it must be incomplete. Hence there are
always infinitely many statements in mathematics that stay
undecided.

But as long as all undecided problems are not really interesting for
mathematics, we do not have a problem, right?
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Gödel’s second incompleteness theorem

Let T be a recursively axiomatizable theory and let
ConT :≡ ∀x(¬prov(x , p∃x(x 6= x)q). Then ConT is true in N iff
T is consistent.

Theorem (Gödel’s second incompleteness theorem)

Let T ⊇ PA be a recursively axiomatizable consistent theory. Then
T 6` ConT .

A funny corollary is the following:

Corollary

Let T ⊇ PA a recursively axiomatizable theory. Then T is
inconsistent if and only if it proves its own consistency, i.e.,
T 6` ConT .

Alexander Block Gödel’s incompleteness theorems



Context and basics
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Hilbert’s programme, revisited again

Recall the second step of Hilbert’s programme:
Show that the formal system cannot produce contradictions using
finitary means (up to some restricted instances of complete
induction).

“Finitary means” should be a weakening of PA, but even PA is not
strong enough to show its own consistency.
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The main question

Why is all this interesting for mathematicians?
Because this points towards the possibility of so-called
independence results. These are plentiful.

Example for PA: Consider Goodstein sequences. In N these
always terminate at 0, but PA cannot prove this.
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Lifting to set theory

Gödel’s theorems lift completely from arithmetic to set theory,
since arithmetic can be interpreted in set theory.

Theorem (Gödel’s first incompleteness theorem, ZFC-version)

Let T ⊇ ZFC be a recursively axiomatizable consistent theory.
Then T is incomplete.

Since ZFC is the modern foundation of mathematics, we have
examples everywhere:

Example (Continuum Hypothesis)

CH is the following statement: If X ⊆ R infinite, then either there
is a bijection f : X → N or a bijection f : X → R.
Gödel (1940) showed that ZFC 6` CH.
Cohen (1963) showed that ZFC 6` CH.
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More down-to-earth examples

Let KC (Kaplansky’s conjecture) be the statement that for any
compact Hausdorff space X and any homomorphism
f : C (X )→ B into another Banach algebra, f is continuous.

Theorem (Gales-Solovay (1976))

KC is independent of ZFC.

Let WP (Whitehead problem) be the statement that every abelian
group with Ext1(A,Z) = 0 is a free abelian group.

Theorem (Shelah (1973))

WP is independent of ZFC.
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Final words: What Gödel’s theorems are not

Gödel’s theorems do not say anything about knowledge per se.
Only statement: We cannot hope to completely axiomatize (in a
finitely controllable way) the infinite.

Opinion (me)

In hindsight this seems to be reasonable.
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Thanks for your attention!
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