Stochastische Prozesse II

Itô-Integrale und Stochastische Differentialgleichungen

Definition Stochastisches Differential:

Sei $(a(\cdot,s)) \in \mathcal{L}^1(0,T]$, $(b(\cdot,s)) \in \mathcal{L}^2[0,T]$, a und b (\mathcal{F}_t) -adaptiert, X_0 (\mathcal{F}_0) -adaptiert. Dann ist der Prozess $X(\omega,t) := X_0(\omega) + \int_0^t a(\omega,s) \, ds + \int_0^t b(\omega,s) \, dB_s$ ebenfalls (\mathcal{F}_t) -adaptiert. Die Kurzform $dX(t) = a(t)dt + b(t)dB_t$ nennt man "Stochastisches Differential".

Satz Itô-Formel: Besitzt (X_t) das stochastische Differential $dX(t) = a(t)dt + b(t) dB_t$ und besitzt $f: \mathbb{R} \times [0,T] \to \mathbb{R}$ die stetigen partiellen Ableitungen $\frac{\partial f}{\partial x}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial f}{\partial t}$, dann besitzt $Y_t := f(X_t, t)$ ebenfalls ein stochastisches Differential, und zwar

$$dY(t) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial x} dX(t) + \frac{\partial^2 f}{\partial x^2} \frac{1}{2} b^2(t) dt = \left[\frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} a(t) + \frac{\partial^2 f}{\partial x^2} \frac{1}{2} b^2(t) \right] dt + \frac{\partial f}{\partial x} b(t) dB_t.$$

Der Beweis erfolgt mit der Taylor-Formel (2. Grades) und mit " $(dB_t)^2 = dt$, $dB_t dt = (dt)^2 = 0$ ".

Die Itô-Formel benutzt man bei sog. Stochastischen Differentialgleichungen

$$dX(\omega, t) = a(X_t, \omega, t) dt + b(X_t, \omega, t) dB_t, \ t \in [0, T], \ X(0) = X_0,$$

die unter Wachstums- und Lipschitz-Bedingungen für a und b eindeutig (P-f.s.) lösbar sind.

Itô-Integral und Stratonovich-Integral

Das Itô-Integral wird approximiert durch $\int_0^T b(s) dB_s = \lim_{\Delta \to 0} \sum_{n=0}^{N-1} b(t_n) (B_{t_{n+1}} - B_{t_n})$ (bei stetigem b), wobei $0 = t_0 < t_1 < \dots < t_n = T$ mit $\Delta := \sup(t_{n-1} - t_n)$.

Wählt man statt $b(t_n)$ den Wert $b(\frac{t_n+t_{n+1}}{2})$, so erhält man das **Stratonovich-Integral:** $\int_0^T b(s) \circ dB_s = \lim_{\Delta \to 0} \sum_{n=0}^{N-1} b\left(\frac{t_n+t_{n+1}}{2}\right) \left(B_{t_{n+1}} - B_{t_n}\right).$

Dass die beiden Integral-Definitionen <u>nicht</u> übereinstimmen, sieht man an folgendem Beispiel:

Beispiel: (I)
$$\int_0^T B_s dB_s = \frac{1}{2}B_T^2 - \frac{1}{2}T$$
, (S) $\int_0^T B_s \circ dB_s = \frac{1}{2}B_T^2$.

Beweis: (I)
$$\sum_{n=0}^{N-1} B_{t_n}(B_{t_{n+1}} - B_{t_n}) =$$

$$= \sum_{n=0}^{N-1} \left[\frac{1}{2} (B_{t_{n+1}} + B_{t_n}) - \frac{1}{2} (B_{t_{n+1}} - B_{t_n}) \right] (B_{t_{n+1}} - B_{t_n}) =$$

$$= \sum_{n=0}^{N-1} \left[\frac{1}{2} (B_{t_{n+1}}^2 - B_{t_n}^2) - \frac{1}{2} (B_{t_{n+1}} - B_{t_n})^2 \right] =$$

$$= \frac{1}{2} B_{t_N}^2 - \frac{1}{2} B_{t_0}^2 - \frac{1}{2} \sum_{n=0}^{N-1} (B_{t_{n+1}} - B_{t_n})^2 \rightarrow \frac{1}{2} W_T^2 - \frac{1}{2} T.$$

(S)
$$\sum_{n=0}^{N-1} B_{\frac{1}{2}(t_n+t_{n+1})}(B_{t_{n+1}} - B_{t_n}) =$$

$$= \sum_{n=0}^{N-1} \left[\frac{1}{2}(B_{t_{n+1}} + B_{t_n}) + \left\{B_{\frac{1}{2}(t_n+t_{n+1})} - \frac{1}{2}(B_{t_{n+1}} + B_{t_n})\right\}\right](B_{t_{n+1}} - B_{t_n}) = \dots$$

Satt B_{t_n} steht hier $B_{\frac{1}{2}(t_n+t_{n+1})} = \frac{1}{2}(B_{t_{n+1}} + B_{t_n}) + \{B_{\frac{1}{2}(t_n+t_{n+1})} - \frac{1}{2}(B_{t_{n+1}} + B_{t_n})\}$.

Der erste Term ändert sich also nicht, der Term $\{\ \}$ ist nach der Wiener-Konstruktion stoch unab. von B_{t_n} und $B_{t_{n+1}}$ also entfällt der zweite Term.

Bemerkung: Anders geschrieben lautet (I) und (S) – in differentieller Form:

(I)
$$d(B_s^2) = 2 B_s dB_s + 1 \cdot ds$$
 (S) $d(B_s^2) = 2 B_s \circ dB_s$ ("Kettenregel").

Satz: "Statonovich-Formel" wie Itô-Formel, aber ohne Itô-Term.

Anwendung: "Itô" eher bei Finanzmodellen, "Stratonovich" bei technischen Prozessen.