Stochastische Prozesse I

Martingale

Literatur: H. Bauer: Wahrscheinlichkeitstheorie (4. Aufl., Kap. IV)

Motivation: Es gibt in der Anwendung Prozesse, die nicht die Markov-Eigenschaft erfüllen, z.B. ein (faires) Spiel (X_t = Kapital eines Spielers), bei dem das Verhalten des Spielers (etwa der Einsatz bei der nächsten Runde) von der vollen Vorgeschichte abhängen darf. Trotzdem möchte man den Verlauf für große t kennen.

Im Folgenden sei T stets eine (halb-)geordnete Parametermenge, meist $T = \mathbb{N}_0$ oder \mathbb{R}_+ .

Definition Mt 1: Sei (Ω, \mathcal{A}, P) ein W-Raum mit Filtration (\mathcal{A}_t) . $(X_t : (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathbb{B}), \ t \in T)$ sei (\mathcal{A}_t) -adaptiert, X_t integrierbar $\forall t$.

Dann heißt (X_t) Supermartingal \leq Submartingal, wenn $\forall s \leq t$ (*) $E(X_t \mid A_s) = X_s$ P-f.s. Submartingal \geq

Bemerkung Mt 2: "Martingal" ist ursprünglich ein gewisser Zügel bei Pferden. Dem Prozess sind sozusagen "Zügel angelegt". "Sub-" bzw. "Super-" gibt an, wo die Zügel angelegt sind: "Super" = oben ($\leq X_s$), ein Supermartingal geht also im Mittel abwärts.

Beispiel Mt 3: Zinsbereinigte Aktienkurse bei Arbitrage-Freiheit sind (\approx) Martingale.

Beispiel Mt 4: Prozesse (X_t) mit unabhängigen Zuwächsen, X_t integrierbar und $E(X_t-X_s) \ge 0/\le 0/=0$ sind Submartingale/Supermartingale/Martingale.

Beispiel Mt 5: Ein "faires" Spiel (bei voller Information) ist nach Definition ein Martingal.

Beispiel Mt 6: Ist $X: \Omega \to \mathbb{R}$ integrierbar, dann ist $(X_t := E(X|\mathcal{A}_t))$ ein Martingal.

Beispiel Mt 7: (Y_n) seien i.i.d Münzwürfe, $X_n := 0$ bei Kopf, $X_n := -2^n$ bei Zahl. Dann ist $(X_n = -2^n Y_n, n \in \mathbb{N}^*)$ ein Supermartingal (bzgl. \mathcal{A}_t^Y), aber (X_n) konv. P-f.s. nicht.

Beispiel Mt 8: Das "Verdoppelungs-Spiel" (Setzen auf "Rot" bis zum 1. Gewinn, bei Verlust doppelter Einsatz) ist beim üblichen Roulette ein Supermartingal, ohne die "0" ein Martingal, aber: $X_n = 1$ mit W. $1 - 2^{-n}//=1 - 2^n$ sonst. $\Rightarrow X_n \to 1 =: X_\infty$ (P-f.s.), aber EX_n (=0) konv. nicht gegen $EX_\infty = 1$, anders als erwartet (vgl. monotone und majorisierte Konvergenz).

Satz Mt 9: Konvergenzsatz für (Super-)Martingale

Sei $T = \mathbb{N}$, (Ω, \mathcal{A}, P) ein W-Raum mit Filtration (\mathcal{A}_n) , $(X_n, n \in \mathbb{N})$ ein Supermartingal

- (a) mit (Mt 1) $\sup_n E(X_n^-) < \infty$ oder äquivalent (Mt 2) $\sup_n E|X_n| < \infty$, dann konvergiert (X_n) P-f.s. gegen eine integrierbare Zufallsvariable (X_∞) ,
- (b) mit (Mt 3) $X_n \ge 0$ oder (Mt 4) (X_n) ist gleichgradig integrierbar * folgt (Mt 1), $X_n \to X_\infty$, und zwar P-f.s., stochastisch und unter (Mt 4) auch **im Mittel**, und $(X_n, n \in \overline{\mathbb{N}}(!))$ ist ein Supermartingal. [Zum Beweis s. nächste Seite] * $\forall \varepsilon > 0$ existiert (eine Fast-Majorante) $g: \Omega \to \mathbb{R}_+$, integrierbar, mit $\int_{\{|X_n| \ge g\}} |X_n| dP \le \varepsilon$.

Folgerung Mt 10: Ist (X_n) ein Martingal und gilt (Mt 4), dann ist $(X_n, n \in \overline{IN} (!))$ ein Martingal und es gilt (Mt 5) $X_n = E(X_{\infty} | \mathcal{A}_n), n \in IN$.

Bemerkung Mt 11 (Zeitumkehrung): Für Supermartingale $(X_n, n \in -\mathbb{I}N (!))$ mit (Mt 2) (bzw. Martingale) ex. $X_{-\infty} := \lim_{n \to -\infty} X_n$, und $(X_n, n \in -\overline{\mathbb{I}N} (!))$ ist (Super-)Martingal.