Stochastische Prozesse I

Markov-Ketten mit stetiger Zeit: Folgerungen und Beispiele

Darstellungsmöglichkeiten für HMKS und ihre Zusammenhänge

$$(X_t) \ \mathbf{HMKS} \qquad \stackrel{MKs3}{\longleftarrow} \qquad \stackrel{MKs2}{\longrightarrow} \qquad (p_{ij}(t)) \ \mathbf{\ddot{U}MF}$$

$$\downarrow ? \qquad \uparrow \text{ MKs 4} \qquad \qquad \downarrow \text{ MKs 5 / 9} \qquad \uparrow \text{ MKs 10}$$

$$((T_n, Z_n)) \ \mathbf{MEP} \qquad \stackrel{MKs7(b)}{\longleftarrow} \qquad (q_{ij}) \ \mathbf{\ddot{U}R\text{-Matrix, konserv.}}$$

Bemerkung: Aus ÜMF folgt nicht notwendig $p_{ij}(t) \rightarrow p_{ij}(0) = \delta_{ij} \ (t \rightarrow 0)$. Deshalb:

Definition MKs 8: Eine ÜMF $(p_{ij}(\cdot))$ heißt **Standard-ÜMF** (SÜMF), wenn gilt:

(E)
$$\lim_{t\to 0} p_{ij}(t) = \delta_{ij} \ \forall i,j$$
 oder äquivalent $[\mathbf{E}']$ $\lim_{t\to 0} p_{ii}(t) = 1 \ \forall i$.

Satz MKs 9: Sei $(p_{ij}(\cdot))$ eine SÜMF, dann gilt:

- (a) Es existiert $q_i := -q_{ii} := -p'_{ii}(0) = \lim_{t\to 0} \frac{1}{t}(1-p_{ii}(t))$ mit $q_i \leq \infty$ (!) $\forall i \in I$.
- (b) Es existiert $q_{ij} := p'_{ij}(0) = \lim_{t\to 0} \frac{1}{t} p_{ij}(t)$ mit $q_{ij} < \infty \quad \forall i, j \in I, i \neq j$.
- (c) Es gilt $\sum_{j\neq i} p'_{ij}(0) \leq -p'_{ii}(0) \leq \infty$, für endliches I $\sum_{j\neq i} p'_{ij}(0) = -p'_{ii}(0) < \infty$.

Bem. MKs 10: Für jede (!) konservative Standard-HMKS gilt die Rückwärts-Diff.gleichung.

Erste Beispiele: Ankunfts- und Abgangsprozesse (GuT-Prozesse)

Anwendungen auf: Populationen, z.B. Fischbestände, Wildbestände, Krankheitsfälle, Zahl der wartenden Kunden, Datenpakete, . . .

Modellierung durch eine HMKS: X_t sei die Größe einer Population z.Zt. t, $I = IN_0$,

Startverteilung: $(p_i(0))$, statt q_i und r_{ij} benutzt man einheitlich q_{ij} .

Ankunftsrate: vorläufig nur $p_{i,i+1}(h) = \lambda_i \cdot h + o(h)$, entsprechend $q_{i,i+1} = p'_{i,i+1}(0) = \lambda_i$,

Abgangsrate: vorläufig nur $p_{i,i-1}(h) = \mu_i \cdot h + o\left(h\right)$, entsprechend $q_{i,i-1} = p'_{i,i-1}(0) = \mu_i$.

Übergänge zu $i+2,\ldots,i-2,\ldots$ kleine h unwahrscheinlich, also $p_{ii}(h)=1-\lambda_i h-\mu_i(h)+o(h)$.

Annahmen: In Randpunkten: $\mu_0 = 0$, $\lambda_0 \ge 0$, bei I endlich: $\lambda_N = 0$, $\mu_N \ge 0$, sonst: $\mu_i > 0$, $\lambda_i > 0$.

Kann es dabei **unendlich viele Sprünge** geben? Nicht, wenn $\sum_{i=0}^{\infty} (\mu_i + \lambda_i)^{-1} = \infty$.

Spezialfälle:

- A: Warteschlange, 1 Schalter, unendl. Warteraum $(M|M|1|\infty)$ $\lambda_i = \lambda$, $\mu_i = \mu$, q_i beschr.,
- B: Bedien-Modell: "Klassische Telefonzentrale" (M|M| ∞) $\lambda_i = \lambda, \ \mu_i = i \cdot \mu$,
- C: Warteschlange mit s Schaltern, unendl. Warteraum (M|M| $s \mid \infty) ~ \lambda_i = \lambda, ~ \mu_i = \mu \min(i,s) \, ,$
- D: Lineares Wachstum mit Absorption: $\lambda = 0$, $\lambda_i = \lambda \cdot i$, $\mu_i = \mu \cdot i$,
- E: Lineares Wachstum mit Zuwanderung: $\lambda_i = \lambda \cdot i + a$, $\mu_i = \mu \cdot i$.

Satz MKs 11: Für $(p_{ij}(\cdot))$ konserv. und (π_i) (≥ 0) mit $(3) \sum \pi_i q_i < \infty$ und $(3') \sum \pi_i < \infty$ sind äquivalent: $(1) \sum_i \pi_i p_{ij}(t) \forall j, t$, $(1') \sum_i \pi_i p'_{ij}(t) \forall j, t$ und $(2) \sum_i \pi_i q_{ij} = 0 \forall j$.

Folgerung MKs 12: $(\pi_i, i \in I)$ $(\geq 0, \sum \pi_i = 1)$ mit (2) ist stationäre Verteilung von (X_t) und $(\varrho_i, i \in I)$ mit $\varrho_i := \pi_i q_i / (\sum \pi_i q_i)$ ist stationäre Verteilung von (Z_n) .

Satz MKs 13: Für alle $\mathbf{p} := (p_i(0))$ existiert $\lim_{t\to\infty} p_j(t) = \sum_{i\in I} p_i(0)\pi_{ij} =: \pi_j(\mathbf{p})$ und es gilt $\sum_{j\in I} \pi_j(\mathbf{p}) \le 1$ und (1): $\pi_j(\mathbf{p}) = \sum_{i\in I} \pi_i(\mathbf{p})p_{ij}(t), j\in I, t\ge 0$.