Stochastische Prozesse I

Markov-Ketten mit stetiger Zeit

Literatur: K.L. Chung (genau), einführend: Çinlar, Kohlas, Waldmann/Stocker u.a.

Definition MKs 1:

Ein Markov-Prozess $(X_t: \Omega \to I, t \in \mathbb{R}_+)$, I abzählb., heißt **Markov-Kette mit stetiger Zeit**. Markov-Eigenschaft: $P(X_{t_{n+1}} = i_{n+1} \mid X_{t_0} = i_0, \dots, X_{t_n} = i_n) = P(X_{t_{n+1}} = i_{n+1} \mid X_{t_n} = i_n)$, falls $P(X_{t_1} = i_1, \dots, X_{t_n} = i_n) > 0$.

Eine Markov-Kette mit stetiger Zeit heißt **homogen**, falls für alle i, j, s, t $P(X_{s+t} = j \mid X_s = i)$ unabhängig von s ist, sofern $P(X_s = i) > 0$.

In diesem Fall heißt $t \to p_{ij}(t) := P(X_{s+t} = j \mid X_s = i)$ (mit geeign. s) Übergangs-Funktion von i nach j und $\mathbf{p}(\cdot) := (p_{ij}(\cdot), i, j \in I)$ Übergangs-Matrix-Funktion (ÜMF).

Man nimmt an, dass I minimal ist, d.h. dass für alle $i \in I$ ein $s \in \mathbb{R}_+$ ex. mit $P(X_s = i) > 0$.

Folgerung MKs 2: Für eine homogene Markov-Kette mit stetiger Zeit (HMKS) mit ÜMF \mathbf{p} und Startverteilung $(p_i(0)) := (P(X_0 = i), i \in I)$ gilt:

- (a) $p_j(t) := P(X_t = j) = \sum_{i \in I} p_i(0) p_{ij}(t)$
- (b) $P(X_{t_0} = i_0, \dots, X_{t_n} = i_n) = p_{i_0}(t_0) p_{i_0 i_1}(t_1 t_0) \cdots p_{i_{n-1} i_n}(t_n t_{n-1})$
- (c) $p_{ij}(s+t) = \sum_{k \in I} p_{ik}(s) p_{kj}(t)$, die Gleichung von Chapman-Kolmogorov.

Umkehrproblem: Wann gibt es zu $\mathbf{p}(\cdot)$ eine homogene Markov-Kette (X_t) ?

Satz MKs 3: Gegeben seien Abbildungen $(p_{ij}(\cdot): \mathbb{R}_+ \to \mathbb{R}, i, j \in I)$, I abzählbar, mit (A) $p_{ij}(t) \ge 0 \ \forall t > 0$, (B) $\sum_j p_{ij}(t) = 1 \ \forall t > 0$, (C) $p_{ij}(t+s) = \sum_{k \in I} p_{ik}(s) \ p_{kj}(t) \ \forall s, t > 0$, und eine Startverteilung (Z-Dichte) $(p_i(0), i \in I)$.

Dann gibt es eine homogene Markov-Kette st.Z. mit ÜMF $(p_{ij}(\cdot))$ und Startverteilung $(p_i(0))$.

Beweis: Man konstruiert endlich-dim. Verteilungen und benutzt den Satz von Kolmogorov.

Bemerkung: Man nimmt i.d.R. zusätzlich an, dass X_t rechtsseitig stetige Pfade besitzt.

Konstruktion einer (typischen) homogenen MK mit stetiger Zeit

Motivation: Da I abzählbar, muss (X_t) im Wesentlichen ein Sprungprozess sein. Wegen der Markov-Eigenschaft müssen die Zwischenzeiten exponential-verteilt sein (gedächtnislos!) mit Parametern, die nur vom gegenwärtigen Zustand abhängen. Ebenso darf die Verteilung des nächsten Spungziels nur vom gegenwärtigen Zustand abhängen.

Satz MKs 4: Sei I abzählbar, $(p_i(0))$ Z-Dichte (Startverteilung) auf I, $(r_{ij}, i, j \in I)$ eine stochastische Matrix mit $r_{ii} = 0$ (echte Sprünge) und $q_i > 0$, $i \in I$ (für die $\operatorname{Exp}(q_i)$ -Vert.). Dann ex. ein Markov-Prozess $((T_n, Z_n), n \in \mathbb{N}_0)$ (genannt Markov-Erneuerungs-Prozess) mit $T_0 = 0$, $P(Z_0 = i) = p_i(0)$, $P(Z_{n+1} \mid T_n, Z_n = i) = \operatorname{Exp}(q_i)$, $P(Z_{n+1} = j \mid T_n, Z_n = i, T_{n+1}) = r_{ij}$. Ist $S_n := \sum_{\ell=1}^n T_\ell$, N_t der zugehörige Zählprozess, so ist $X_t := Z_{N_t}$ eine HMKS mit Startverteilung $(p_i(0))$, $\operatorname{Exp}(q_i)$ -Verweildauern und Ü-Matrix (r_{ij}) .

Bemerkungen: 1. Ausgeschlossen wird $q_i = 0$ (Exp $(0) = \varepsilon_{\infty}$) und $q_i = \infty$ (Exp $(\infty) = \varepsilon_0$). 2. Allgemeine Markov-Erneuerungsprozesse (T_n, Z_n) lassen andere Verteilungen für T_n zu. Dann heißt $(X_t) = (Z_{N_t})$ Semi-Markov-Prozess, weil die ME nur z.Zt. $T_n (\forall n)$ gilt.