

Sheet 4

Question 4.1

Define an abelian group structure on the morphisms in a derived category (using the description of morphisms as zig-zags $\bullet \stackrel{\simeq}{\leftarrow} \bullet \to \bullet$).

Question 4.2

Let $Z \subset X$ be a closed subspace and \mathcal{A} an abelian category. Show that $D(\mathsf{Sh}(Z, \mathcal{A}))$ is a full subcategory of $D(\mathsf{Sh}(X, \mathcal{A}))$.

Question 4.3

We consider the sheaf of rings \mathcal{C}^{∞} on \mathbb{R} .

- (a) Show that $i_*\mathbb{R}$ is a sheaf of \mathcal{C}^{∞} -modules.
- (b) An \mathcal{R} -module \mathcal{F} on a space with a sheaf of rings \mathcal{R} is called *flat* if $\mathcal{F} \otimes_{\mathcal{R}} -$ preserves acyclic complexes. Show that $i_*\mathbb{R}$ is not a flat \mathcal{C}^{∞} -module.
- (c) Give a flat resolution of $i_*\mathbb{R}$ and compute $\operatorname{Tor}_i^{\mathcal{C}^{\infty}}(i_*\mathbb{R}, i_*\mathbb{R})$ (assuming the content of Remark 3.50).

Question 4.4

Let \mathcal{A} be an abelian category.

- (a) Show an object $A \in D(\mathcal{A})$ is isomorphic to 0 if and only if $H^i(A) = 0$ for all *i*.
- (b) Let $B = (\mathbb{Z} \xrightarrow{z \mapsto 2z} \mathbb{Z})$ and $C = (\mathbb{Z} \xrightarrow{z \mapsto [z]} \mathbb{Z}/3)$ be two complexes in $Ch(\mathbb{Z})$, both concentrated in degrees 0 and 1.

Find a map $f: B \to C$ with $H^i(f) = 0$ for all *i* but *f* is not the zero map in $D(\mathcal{A})$.

(c) Also find a map $g: D \to E$ in $Ch(\mathbb{Z})$ which is the zero map in $D(\mathbb{Z})$ but not in $K(\mathbb{Z})$.

These questions will be discussed in the exercise class on 9 May 2025.

Questions with an asterisk are more challenging.