

Sheet 1

Question 1.1

Fix the topological space $X = \mathbb{R}^n$ and define the presheaf *B* of bounded continuous functions with values in \mathbb{R} . Show it is not a sheaf and compute its sheafification.

Question 1.2

Let $x \in X$ be a point in \mathbb{R}^n (or in an arbitrary topological space such that $\{x\}$ is closed and not open). Consider the presheaf \mathbb{Z}_x on X defined by $\mathbb{Z}_x(U) = \mathbb{Z}$ if $x \in U$ and 0 otherwise.

- (a) Is \mathbb{Z}_x a sheaf?
- (b) Determine all presheaf homomorphisms from \mathbb{Z}_x to \mathbb{Z} und from \mathbb{Z} to \mathbb{Z}_x .

Question 1.3

Let $j: V \to X$ be the inclusion of a connected proper open subset into \mathbb{R}^n (or into any connected topological space).

Let \mathbb{Z}' be the presheaf sending U to \mathbb{Z} if $U \subset V$ and 0 otherwise. Let $\mathbb{Z}_!$ be the sheafification of \mathbb{Z}' .

- (a) Determine all stalks of $\mathbb{Z}_!$.
- (b) Compute $\mathbb{Z}_!(X)$.
- (c) Determine all sheaf homomorphisms from $\mathbb{Z}_{!}$ to \mathbb{Z} and from \mathbb{Z} to $\mathbb{Z}_{!}$.

These questions will be discussed in the exercise class on Tuesday 15/4/25. Questions with an asterisk are more challenging.