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1. Introduction

1.1.

Overview

In this course we study the basic theory of sheaves with a view to applications in topology.

— presheaves and sheaves, stalks and sheafifiaciton, pushforward and pullback functors. ,
sheaf cohomology.

This will require some background in category theory and homological algebra, in particular
the notion of derived functors, that I will review very very briefly.

Here is an outline of the course as it is planned at the moment. There may well be changes.

1.

6.

Basic definitions, examples and constructions. Presheaves, sheaves, stalks, sheafifi-
caiton, pushforward, inverse image.

A very brief introduction to homological algebra. Derived functors, the derived
category.

. Cohomology as derived global sections. Injective, flasque and soft sheaves, de Rham

and Cech cohomology.

Computations. Cohomology and pushforward with compact support; Mayer-Vietoris,
base change; Projection formula.

. Local systems. Cohomology with local coefficients, Riemann-Hilbert, constructible

sheaves.

If time permits: Advanced topics.

This is an advanced graduate course, the main pre-requisites is a course and on advanced
algebra (language of functors and homological algebra). A course on algebraic topology
(including cohomology) is extremely useful, but can be taken at the same time.

The course is not complete in the sense that I reserve the right to leave out some details and
use non-trivial results from the literature.

You can influence the pace and focus of the course somewhat by making requests, asking
questions or telling me to slow down or speed up.



2. Basic theory of sheaves

2.1. Definitions and Examples

Let X be a topological space and Op(X) the category (poset) of open sets. The category has
the open subsets of X as objects and a unique morphism U — V, written U C V if U is a
subset of V and no other morphisms.

Definition 2.1. A presheaf on X with values in a category C is a functor F : Op(X)® — C
We call F(U) the sections of F on U.
A morphism of presheaves F — ( is just a natural transformation.

We can unravel these abstract definitions: A presheaf on X provides an object F(U) of C
for any open set in X and a restriction map ryy : F(U) — F(V) for any inclusion V. — U
that is compatible with compsition: ryy = rUV o i’vW A morphism f : F — ¢ is a map
fv : FU) - G(U) for every U such that fy o rUV = rUV o fy.

We will be mostly interested in the case that C is the category of abelian groups or more
generally R-modules for some commutative ring R. We will always assume that C has all
small limits and that it is a concrete category equipped with a forgetful functor to sets, i.e. we
can characterise 7 (U) by its elements.

For a section s € F(U) we also write s|y for ryy(s) € F(V).

Example 2.2. 1. On any X the functor sending any open set U to Z is a presheaf with
values in abelian groups called the constant presheaf.

2. Ony any X the functor sending any open U to the set C°(U, R) of continuous functions
on U is a presheaf.

Definition 2.3. A collection {U,};c; in Op(X) such that UU; = U is called a cover.
A presheaf F is called a sheaf if for any cover U; of an open U and for any collection of
sections s; € F(U;) such that Vi, j € I

silU,-ﬂUj = Sle,ﬂUj
there exists a unique section s € & (U) such that s; = s|y, forall i € I.

The uniqueness of the section means that sections of a sheaf are determined by their
restrictions, they are locally determined. A presheaf satisfying this condition is sometimes
called separated.

The existence of the section means that sheaves can be glued from consistent local data.

We can write the sheaf condition somewhat compactly as a limit:



Lemma 2.4. A presheaf & on X is a sheaf if and only if for any cover {U,}ic; of any open
U C X we have

FU) =eq|[ [FW) =3 [ [FWinU)

i€l i,jel
Proof. Unravelling this limit returns the definition in words. m|

From either definition we can read off two useful facts:

1. For any sheaf & (II;U;) = []; #(U;) as the U; form a cover and all intersections are by
definition empty.

2. For any sheaf F(0) = =, the final object of the category C. This is a special case of the
previous point, we can cover the empty set by the empty set and read off that 7 (0) is the
limit over the empty category, i.e. the final object!

Example 2.5. The constant presheaf on a topological space is typically not a sheaf. Assume
X has two disjoint open subsets U, V and consider the constant sheaf with value Z. Then for a
sheaf F we have (U U V) = F(U) x F(V), but the constant sheaf takes value Z # Z X Z.

Example 2.6. Let Y be a topological space, for example ¥ = R. Let X be an arbitrary
toplogical space. Define C(U) to be the set of continuous maps U — Y. Then C is a sheaf.

Let U; be a cover of U. Then U is the colimit of the U;, to be precise U = coeq(Ll;U; &
U; N U;), which we write colim U; by abuse of notation to simplify things. But then C is a
sheaf because

C(colim U;) := Hom(colim U;, Y) = limHom(U;, Y) = lim C(U,)

by the fundamental property of limits and homs.

Alternatively, one can unravel the definitions.

In the case Y = R we call this the sheaf of real-valued (continuous) functons on X. IL.e. the
presheaf of real-valued continuous functions on X is a sheaf.

Example 2.7. In the previous example let Y have the discrete topology, for example ¥ = Z.
Then we have constructed the sheaf of locally constant functions on X with values in Y. We
call it the constant sheaf and denote it by Y. This is not to be confused with the constant
presheaf. To be precise, the value on a set U is Z°Y) where ¢(U) is the number of connected
components of U.

Example 2.8. Let E be a vector bundle of rank n on a topological space X, i.e. a space E
with a surjection p : E — X such that X has a cover U; and each p~!(U;) is homeomorphic to
U, xR,

Then & defined by §(U) = {s : U — p ' (U) | p o s = 1y} is a sheaf, the sheaf of sections
of E. If E = X X R is the trivial rank one vector bundle its sheaf of sections is the sheaf of
R-valued functions.



Example 2.9. More generally for any continuous map p : ¥ — X we may define the sheaf
of sections & that sends any U C X to the set of maps s : U — Y satisfying ps = 1y. By
definition $(U) = C(U) Xgom(.x) {tv} where ¢y is the inclusion U C X and thus for a cover we
have

&'(colim U;) = C(colim U;) Xgom(colim; v;.x) 1t}

= (lilm G(Ui)) Xlim Hom(U;,X) {Lu;}
= lilm (cewy XHom(U;,X) {LU,»}) = lilm SU)

as limits commute with limits, in particular the pullback commutes with the equalizer of
products in the sheaf condition.

Example 2.10. As sheaves are defined locally we may make local modifications: If E is a
smooth vector bundle on a smooth manifold the presheaf of smooth sections of E is a sheaf:
As the presheaf of smooth sections is contained in the sheaf of continuous sections we can
always glue compatible smooth sections to a unique continuous section. But this continuous
section must be smooth as it restricts to a smooth section on each open in our cover.

Similarly we may define the sheaf of locally constant functions or holomorphic functions
as a subsheaf of the sheaf of all continuous functions into C.

Here and in future a subsheaf & of a sheaf @ is just a sheaf on the same space such that
FWU)c Q) forall U.

Example 2.11. Let X = *. Then a C-valued sheaf on X is exactly an object of C.
Let * be a terminal object in C. Then the constant presheaf with value * is a sheaf.

Example 2.12. Let R be a commutative ring and M an R-module. We let Spec(R) be the set
of all prime ideals of R and define a topology a follows. Let for each f € R Dy C Spec R be
the set of prime ideals not containing f. This is a basis of open sets for a topology on Spec R
called the Zariski topology. Define a presheaf M as follows:

1. on the D by M(Df) = My, the localisation of M at f, i.e. the R-module of formal
quotients {fﬂ | me M, jeN}.

2. on an arbitrary U = UzD; we define M(U) = lim M(Df).

Then one can show with some commutative algebra that this is sheaf on Spec R. In particular
R itself gives rise to a sheaf on Spec R called the structure sheaf with the property that every
M(U) is a module over R(U). We say M is a quasi-coherent sheaf an the afine scheme Spec R
and these (and their generalizations to general schemes) play a huge role in algebraic geometry,
but our focus will lie elsewhere.

Definition 2.13. A topological space X equipped with a sheaf of rings R is called a ringed
space. A sheaf of R-modules is a sheaf 111 of abelian groups on X such that 777(U) is a (left)
R (U)-module for every open set U in X. A morphism of sheaves of ‘R-modules is a morphism
of sheaves ¥ — @ such that each F(U) — G(U) is R(U)-linear.



We will probably only look at sheaves of commutative rings, but there is no reason not to
define things in general.

Definition 2.14. Given a topological space X and a category C we define the category
PSh(X, C) as the category of presheaves on X.
We denote by Sh(X, C) the full subcategory of sheaves.

We will be particularly interested in sheaves with values in the category of R-modules for
some commutative ring R.

We write Sh(X, R) for Sh(X, R-Mod) for a commutative ring R and Sh(X) for Sh(X,Z) =
Sh(X, Ab) for the category of sheaves of abelian groups. If (X, R) is a ringed space we write
Sh(X, R) for the category of sheaves of (R-modules.

2.2. Stalks and sheafification

As sheaves are local we may look at them at a point. We begin by looking at presheaves
at points. To simplyif things we look at sheaves with values in an abelian category A, for
example abelian groups. Bt everything will be true in greater generality, for sheaves of sets
one needs minor modifications of the proofs.

Definition 2.15. The stalk F, of a presheaf F on X at a point x € X is defined as
colim,cy F(U) where the colimit is taken in the category A over all open sets containing
X.

Given s € F(U) we denote by s, its image in F,, called the germ of s.

Explicitly, objects of F, are pairs (U, s) with x € U c X open and s € F(U) up to the
equivalence (U, s) ~ (W, ¢) if thereis V. .c U N W with s|y = 1|y.

This is an example for a filtered colimit, which is sometimes (confusingly!) called a direct
limit. See the section in the appendix if you are unfamiliar with these kinds of colimits.

Note that the stalk of a sheaf of rings is again a ring (whose underlying abelian group is
the stalk of the underlying sheaf of abelian groups) by defining multiplication and addition of
representatives in the obvious way: [(U, s)] - [(V,1)] = [((U NV, slynv - Hunv)] etc.

Example 2.16. The constant presheaf with value R has stalk R = colim R.

The constant sheaf R also has stalk R. The connected open neighbourhoods of a point P are
final in all open neighbourhoods, thus we can compute the stalk on connected open sets, see
Lemma|[A.35] But on a connected open set R(U) = R.

Example 2.17. The presheaf of continuous functions C on a manifold M has as stalk at the
point p the set (in fact, ring) of germs of functions at p.

Any morphism f : 5 — @ induces a morphism of stalks f, : &, — G, by sending the germ
represented by (U, s) to the germ represented by (U, f(s)).



Lemma 2.18. Two morphisms f,g : F — G of sheaves agree if they agree on stalks.

Proof. For any U we have a commutative diagram

FU) — GW)

£ L 2.1)

erU jx — HxEU gx

and the vertical maps are injections: Assume given s € G(U) with s, = O for all x € U. This
means for any x there is some U, on which s vanishes. But the {U,} form a cover of U and by
the uniqueness part of the sheaf condition s must be 0.

As the maps induced by f, g in the bottom row agree, they must also agree in the top row. O

Lemma 2.19. A morphism f : & — G of sheaves is an isomorphism if and only if all induced
morphisms on stalks are isomorphisms.

Proof. The only if direction is clear.

So let f be such that f, is an isomorphism for all x € X. We will show that for all U we have
an isomorphism fy : F(U) —» G(U), then U + f;;' is an inverse morphism in the category of
sheaves.

To show f is injective assume f(s) = O for all s € U. In particular f(s), = 0 for all x,
thus by injectivitiy s, = 0, so there is some U, with s|y, = 0. By the uniqueness property of
sheaves this means s|y = 0 as in Diagram [2.1]

To show surjectivity assume we have t € G(U). By surjectivity on stalks at the point x there
is some U, and s* € F(U,) such that (f(s¥), U,) represents f,. Shrinking U, if necessary we
may even assume f(s*) = |y, .

We want to glue the s* into a section of F(U). The U, cover U, so we have to check
overlaps. Let Uy, = U,NU, be nonempty. Then s*|y; and s’y  are sent to 7y, by assumption.
By the injectivity we have already established we have SXIUX;, = Slu,,- Thus by the sheaf
property of F we can glue to obtain s € F(U). As f(s) agrees with ¢ on all stalks we see that
s maps to ¢ by Diagram [2.1] O

The constant presheaf seemed like a reasonable construction and we did then construct
something we called the constant sheaf. Could we have obtained the constant sheaf directly
from the constant presheaf?

Definition 2.20. The sheafification of a presheaf F is defined as follows.
FNU) :={(f, € F)pev | f, are compatible}

where compatibility means that for any ¢ € U there is an open ¢ € V C U and a section
s € (V) with f, = s, for p € V. The restriction maps are the natural restriction maps.

Here the product is taken in the category A and the compatibility condition is expressible
as an equaliser, so if F takes values in A so does F"(U).



Theorem 2.21. Given a presheaf & on X there is a natural map u : F — F" such that any
presheaf morphism f : F — @ for a sheaf G factors uniquely through u.

Proof. Let F € PSh(X). We first note that #3" is indeed a sheaf. Given any cover we have
(U;) and compatible sections s; € F'(U;) we define s by ((s;),) | x € U,), i.e. we have to
specify an element of the stalk #, for any x € U, and just choose any x € U; in our cover and
choose the germ (s;),. By definition of the stalks this is well-defined. Thus we have existence
of sections. But the construction is also unique as s|y, = s; implies s, = (s;),.

We now consider the map of presheaves u : F — F" givenon U by s € F(U) = (8y)rev €
Fsh).

Let ¢ be a sheaf and f : F — G a map of presheaves. We define 7"(U) — G(U) for
any open U as follows. Take s = (5,)cy € FS"(U). By definition there is a cover {U;} of U
and sections s; € F(U,) such that for all x we have s, = (s;), for a suitable i. We consider
f(s;) € G(U;). By the sheaf property of  they glue to a section of G(U) that we call f(s).
(Note that sily,ny; = Sjlunu; as they agree on stalks.) This defines f* . 7" — G. This
morphism is unique as morphisms of sheaves are determined on stalks by Lemma [2.T§] O

Example 2.22. Let F be the constant presheaf with value R. Then F"(U) is given by
functions from U to R which locally come from a section of F(U) = R, i.e. they are locally
constant functions. Thus F" = R, the constant sheaf is the sheafification of the constant
presheaf.

Corollary 2.23. We have u, : &, = (F"), for any x € X

Proof. The morphism is from Theorem [2.21] the result follows by unravelling the definition
of (FM),. O

Corollary 2.24. If 7 is a sheaf F is uniquely isomorphic to F".

Proof. We have a map & — F°" by Theorem By Lemma it suffices to compare
stalks, so the result follows from Corollary [2.23] O

Corollary 2.25. Sheafification provides a functor left adjoint to the inclusion ¢ : Sh(X, A) —
PSh(X, A) of presheaves into sheaves, i.e. Homgnx 1)(F*",G) = Hompghx.1)(F,C) for a
sheaf G and presheaf F on X.

Proof. Given f : F — ¢ a map of presheaves we obtain a map 5" : " — " by applying
Theoremto F — G — ", Uniqueness ensures that this is functorial.

Theorem [2.21] provides the isomorphism of hom spaces for the adjunction. The map
u: F — «(F") is the unit and the identity map is the counit of this adjunction. O

Remark 2.26. There are different ways of considering sheafification. We may view the
sheafification of a presheaf as the sheaf of sections of a certain space associated to the presehaf,
the espace étalé, which is the union of all stalks of F, equipped with a topology such that the
natural projection map to X is a local homeomorphism.



This is just a different flavour of the construction we chose, but there are generally different
constructions.  Grothendieck’s plus construction associates to any presheaf a separated
presehaf and to any separated presheaf a sheaf, doing it twice is sheafification.

We could have of course also just defined sheafification as a left adjoint. We could have
then shown existence by constructing it explicitly, or by some general machinery like an
adjoint functor theorem. The main ingredient is checking that the inclusion of presheaves
into sheaves preserves limits (see below for (co)limits of (pre)sheaves).

2.3. Limits and colimits

Recall that a category is called (co)complete if it has all (co)limits.

Theorem 2.27. Let X be a topological spaces. If C is complete then so are PSh(X, C) and
Sh(X, C). Limits of presheaves and sheaves are computed objectwise.

If C is cocomplete then so are PSh(X,C) and Sh(X,C). Colimits of presheaves are
computed objectwise while the colimit of a diagram of sheaves is the sheafifiaciton of the
(objectwise) colimit of the underlying diagram of presheaves.

In particular the stalk of a colimit of sheaves is the colimit of the stalks.

Proof. We first observe that limits and colimits in the category of presheaves are determined
objectwise. If you are less familiar with (co)limits it’s a good exercise to check this for
yourself.

By the adjunction ()" & ¢ of Lemma [2.25] sheafification preserves colimits, thus with
Corollary [2.24) we have

colim F; = colim(uF,)™" = (colim .F)".
J J J

By Corollary [2.23| the statement about stalks follows.

To compute the limit of sheaves not that the objectwise limit of a diagram of sheaves is
again a sheaf: The sheaf condition may be formulated as a limit and limits commute with
limits. In other words, we may compute that for a cover {U;} of U and our diagram ; of
sheaves we have

lim F(U) = limlim F(U )
i l J
= lim lim #(U))
J l

where we used that the #; are sheaves and then that limits commute with limits (by what it
means to be a limit). So the objectwise limit is a sheaf and satisfies the universal property of
being a limit of presheaves, but then it also satisfies the weaker universal property of being a
limit of sheaves.

Note that the fact that limits of sheaves exist and are given by the limit of presheaves also
follows from the (non-trivial) category-theoretic statement that any inclusion with a left adjoint
creates limits. O



We now consider sheaves with values in a fixed abelian category A, for example R-modules
for a fixed commutative ring R.

Then in particular a kernel of a map of sheaves is determined pointwise. We say that a map
of sheaves is injective if its kernel is the O sheaf, i.e. it is injective on each open.

We say f : F — @ is surjective if the cokernel is the 0 sheaf, which is the case if and only
if all the maps f, : F. — G, on stalks are surjective. In particular the map does not have to
be surjective on each open. The condition is also called locally surjective to emphasize this
point.

Remark 2.28. In fact these are precisely monomorphisms and epimorphisms in the category
of sheaves and arguably these are the better terms to use. But enough people use the words
injections and surjections.

Example 2.29. The need to sheafify the cokernel may look like a formal inconvenience, but
it has a mathematical meaning. Let X be a complex manifold (like C \ {0}) and © the sheaf of
holomorphic functions.

Consider for example the inclusion of sheaves Z 2™, ©. This is the kernel of the exponential
map from © — ©O* whose image as a presheaf we denote by F. Then 7 is the presheaf of
functions admitting a logarithm. We obtain a short exact sequence of presheaves

0-2-0->55->0

which is just a compact way of saying © — & is an epimorphism with kernel Z.

However, the presheaf cokernel F is not a sheaf. Having a logarithm is not a local property
so if we try to glue locally defined functions which admit logarithms into a global function,
the result will not in general have a logarithm.

The sheafification of F is ©*, the sheaf of invertible holomorphic functions. It is clear
this is a sheaf so it suffices to check that ©* is the stalkwise cokernel of the map Z — ©.
The sheaf of locally constant funnctions is the kernel of the exponentiation map, s we need to
check surjectivity. Let (s, U) be a nonzero holomorphic function on some open U containing
y. Shrinking U if necessary we may assume s(y) € B%I o€ f(x)) and we have a well-defined
logarithm.

The proof of the following lemma contains a brief reminder what an abelian category is.

Lemma 2.30. The category Sh(X, A) of sheaves with values in the abelian category A is
itself abelian.

Proof. Sh(X) clearly has hom spaces which are abelian groups, it has a zero object given by
the constant sheaf taking the value zero and we have seen it has finite limits and colimits in
Theorem [2.27] as A has finite limits and colimits. We also observe that finite coproducts are
equal to finite products. The presheaf finite product and coproduct agree, and this shows the
finite coproduct is already a sheaf and thus equal to its own sheafifiaciton by Corollary [2.24]
which is the coproduct of sheaves.



It remains to show that the natural map from the image of a map f (defined as ker coker(f))
to the coimage (defined as coker ker(f)) is an isomorphism. But this may be checked on stalks
by Theorem [2.2/|and Lemma below, and on stalks it follows from the result in A. O

Lemma 2.31. Let (F))ic; be a finite diagram of sheaves on X. Then (lim %), = lim;(#), for
all x € X.

Proof. By definition the stalk is a filtered colimit and colimits commute with finite limits in
categories sufficiently like Set, see Theorem

But one can also prove this in a more elementary way. Every finite limit is an equalizer of
maps between finite products by a variation of Lemma In an abelian category the finite
products are finite coproducts and commute with stalks, and the equalizer of two maps f, g
may be replaced by a kernel of g — f. Thus it suffices to show that given a map of sheaves
f:F — @ we have ker(f), = ker(f; : F — G,) and this follows by unravelling definitions:
Elements of the left hand side are germs (U, s) with f(s) = 0 and elements of the right hand
side are germs (V, t) with f(t]y») = O for some x € V' ¢ V. Up to equivalence of germs these
sets agree. O

Note that infinite limits cannot usually be computed stalkwise.

2.4. Functors of sheaves

Given a continuous map f : X — Y of topological spaces we would like to transport sheaves
along f.

Definition 2.32. Let f : X — Y be continuous and let & be a sheaf on X. Then we define the
pushforward sheaf f.F(U)=F(f'U)onY.
Lemma 2.33. The pushforward sheaf is indeed a sheaf.

Proof. This follows as the preimage of a cover is a cover. O

Example 2.34. Let X be any topological space and p : X — = the only map to the one element
space. Then for any F in Sh(X, C) the object p.F = F(X) in Sh(x, C) = C is also written as
I'(X, F), the global sections of F.

Example 2.35. Leti : x — X be an inclusion of a point and M € A. Then i.M is the sheaf
defined as i,M(U) = M if x € U and O otherwise. This is called the skyscraper sheaf at x.

Definition 2.36. Let f : X — Y be continuous and let F be a sheaf on X. Then we define the
pullback sheaf f~'F as the sheafification of the presheaf U +— colim ey F (V).

Example 2.37. Let X be any topological space and p : X — =* the only map to the one
element space. For U open in X and R a ring considered as a sheaf on * then p~'R(U) is the
sheaf associated to the presheaf U +— R, using that the index category of all V with p(U) c V
only has the element {*}. Thus p~'R = R.

10



Example 2.38. Leti : x — X be the inclusion of a point and let F be a sheaf on X. Then i~'F
is by definition equal to the stalk F,.

Example 2.39. Let j : U — X be the inclusion of an open set and F a sheaf on X. Then
JIF(V) = F(V) with V c U c X. This is a sheaf (by the sheaf condition on X) and is
also denoted F|; and called the restricition of F to U. (This is not to be confused with the
restriction maps of sections of a sheaf induced by an inclusion of open sets.)

Example 2.40. A sheaf F on X is called locally constant if there is a cover of X by open sets
U; such that each F|y, is isomorphic as a sheaf to the constant sheaf.

Let for example X = S! and M the open Mdbius strip whith projection p : M — S!. Then
the sheaf § of sections of M, defined as locally constant maps s : U — M xS 'U with ps = 1y,
forms a sheaf. (As being locally constant is a local condition this is a subsheaf of the sheaf
of sections from Example [2.9) It is locally constant as we can cover X by two open intervals
U, U, on which the M6bius band is homeomorphic to U; X R. This identifies our sheaf of
sections with the locally constant functions, which is the constant sheaf.

The definition of the sheaf pullback looks unwieldy, but it is well-behaved on stalks.

Lemma 241. Let f : X — Y be continuous and let F be a sheaf on Y. We have
(f'F) = Fy. In particular let iy : * — Y be the inclusion of a point. Then (iy)‘lg = 5.

Proof. We may take the stalk (f~'F), as the stalk of the underlying presheaf, thus we
compute colim ey colimgycy F (V) which is exactly Fpy = colimgyey F (V) by unravelling
definitions. (Any V containing f(x) also contains the image of an open containing x, namely
v) m

The following fact is extremely useful.
Theorem 2.42. Given f : X — Y there is an adjunction f~' 4 f. : Sh(Y) & Sh(X).

Proof. We fix ¥ € Sh(X) and ¢ € Sh(Y). It is possible to write down natural maps
f1£F — Fand @ — f.f'@ which are the unit and counit of the adjunction, or equivalently
write down natural maps between Hom(G, £.5) and Hom(f~'¢, F). Checking the triangle
equalities, respectively the fact the maps are indeed inverse is not pleasent (books like to skip
this step). The following trick is from Vakil’s Foundations of Algebric Geometry, Exercise
2.7.B.

Define the set Hom“ (G, ) as the set of all collections of maps ¢yy : G(V) — F(U) for
f(U) c V which are compatible with restrictions.

From the point of view of the open sets U C X these maps are represented by maps
colimg)cy G(V) — F(U). Compatibility with restriction means we have a map from the
diagram of all V with f(U) C V, thus we obtain a map from the colimit.

From the point of view of the open sets V C Y these maps are represented by maps
G(V) = F(f1(V)), as for a fixed V any U with f(U) C V is a subset of f~1(V). O
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For example we may compute for any sheaf & on X that
Hom(Z, ¥) = Hom(p~'Z, ) = Hom(Z, p.F) = (X, F)
forp: X — *.

Definition 2.43. Given F,§ € Sh(X) we define the sheaf of homomorphisms U >
FHomsnu.a(Flu, Gu)-

One can check that this is indeed a sheaf.
In particular the hom space Homgnx)(F, G) is nothing but I'(Fom(F, §)).
Restricting Theorem to open subset of ¥ shows the following:

Corollary 2.44. For any f : X — Y and sheaves F on X and G on Y we have
[ Homx(f*GQ,F) = Homy(C, f.T).

Proof. Let V be an open subset of Y and apply Theoretho the restriciton f’ : f~'V — V
to obtain Hom -1y (f* G, F) = dtomy(G, fF). This verifies the corollary on each open. O

Let now R be a sheaf of rings on X. We let & and ¢ be sheaves of left R-modules on X,
see Definition We can define Homg(F, () as the subsheaf of #om(F, () that on each
U consists of R(U)-linear maps.

Similarly (R be a sheaf of rings on X, F a sheaf of left R-modules and ¢ a sheaf of right R-
modules. (Equivalently ¢ is a sheaf of left R°°-modules.) Then there is a presheaf of abelian
groups U — F(U) ®xw) G(U) which we may sheafify to obtain a tensor product of sheaves.

The tensor hom adjunction of modules directly gives us a tensor hom adjunction for sheaves:

Corollary 2.45. Let R, S be sheaves of rings on X. Let F be a R ® $°P-module sheaf, G a
sheaf of §-modules and # a sheaf of R-modules. Then there is a natural isomorphism

Homg (F ®s G, #) = Homg (G, Homx(F, #))
where we used that Homg (5, #) has a natural S-module structure.

Proof. We may check on each open, using Corollary [2.23] O

12



3. An introduction to homological algebra

3.1. Exactness

We now work in some general abelian category. This could be R-Mod for an arbitrary unital
ring R or the category Sh(X, A) of sheaves on some space X with values in some other abelian
category A.

All our functors will be additive, i.e. they preserve finite sums (which are the same as finite
products). It is a key question if they preserve kernels and/or cokernels.

Definition 3.1. A (cochain) complex in A is a sequence of objects A’ € A where i € Z with
differentials d; : A’ — A™* satisfying d;,, o d; = 0.

A morphism of complexes A — B is called a chain map, it consists of maps f* : A’ — B’
for every i which commute with the differential.

Complexes and the morphisms between them form the category Ch(A).

The i-th cohomology of a complex C is ker(d;)/ Im(d;_;).

A cochain complex C whose cohomology group H(C) = 0 is called exact at C'. And if all
cohomology groups vanish it is called exact or acyclic. We also call an exact cochain complex
an exact sequence.

A[Ilt] is often convenient to consider a shifted complex A[1] defined by A[1]" = A*! and
aM = gt

i+1°

This is cohomological grading convention. It is often convenient to instead use homological
grading convention where the differenital decreases degree.
We will identify objects of A with cochain complexes in Ch(A) concentrated in degree 0.

Definition 3.2. An exact chain complex 0 — A N B> C - 0in A is called a short exact
sequence.

We also say B is an extension of C by A.
Example 3.3. For any objects A, C in A there is a shorte exact sequence

0-A—>A9C—->C—-0

called a split short exact sequence. One can show an exact sequence 0 — A EX B3 C—0is
split if and only if f has a left inverse or g has a right inverse.

In particular in a short exact sequence we have ker(f) = 0, coker(g) = 0 and ker(g) = Im(f).

If you know homology from topology you know that the sequence of singular chains is
exact at the object in degree n if there aren’t any “holes” in degree n. In homological algebra
you study this condition algebraically.

13



f g . . .
Lemma 3.4. A sequence of sheaves & — G — # is a short exact sequence if and only if
. — G — #, is a short exact sequence at each x

Proof. We have seen in the proof of Theorem [2.19]that f is injective if all f, are injective. By
definition we see that g is surjective if all g, are surjective.

It remains to compare the image of f with the kernel of g. But as kernel and image (by
definition the kernel of a cokernel) are computed stalkwise by Theorem[2.27]and Lemma
this follows. O

Example 3.5. Consider a point x; on the manifold R. Then there is a short exact sequence of
sheaves

0o 00 LR, 50

where R, is the skyscraper sheaf at x.

3.2. Exact functors

Short exact sequences are thus a way to encode monomorphisms, epimorphisms and
extensions. We now examine what functors do to them.

Definition 3.6. An additive functor that preserves short exact sequences is called exact. An
additive functor that sends an exact sequence 0 - A — B — C — 0 to an exact sequence
0 — F(A) —» F(B) — F(C) (not necessarily exact on the right!) is called left exact. Similarly
for right exact functors.

Example 3.7. For any object M of A the functor Hom(M, —) : A — Ab is left exact. The
functor Hom(—, M) : A°? — Ab is also left exact.

Example 3.8. For any f : X — Y the functor f, is left exact. By Theorem [2.42] we see that f,
is a right adjoint, thus it preserves all limits and in particular kernels. It follows that f, is left
exact. The lack of right exactness of f. will occupy us for the rest of the semester.

Let us reiterate that by the argument in the example all left adjoints are right exact, and all
right adjoints are left exact.

Remark 3.9. Arguing as in Lemma[2.31]a functor is left exact if and only if it preserves finite
limits, and right exact if and only if it preserves finite colimits.

Example 3.10. The functor f~! : Sh(Y) — Sh(X) is not just right exact (as it’s a left adjoint)
but is exact. This follows as f~'F, = Fy,, by Lemma and we can check exactness at
stalks by Lemma [3.4]

Example 3.11. Leti : Z — X be a closed inclusion. Then i, is exact. We use again that we
can check exactness at stalks, so given an exact sequence 0 - F — ¢ — # — 0 we consider
i@.5), — (.Q), — (@i.#0), at an arbitrary x € X. As Z is closed we see that all stalks vanish
for x ¢ Z. If on the other hand x € Z we have (i.7), = colim,cy F(V N Z) which agrees with
F, as the V N Z are exactly the open neighbourhoods of x in Z.
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Example 3.12. The pushforward f, is not exact in general. Consider the projection p : X =
C \ {0} — = and the short exact sequence of sheaves 0 - Z - © — ©* — 0 from Example
2.29| Pushing forward along p is taking global sections, but the function exp : O(X) — ©O*(X)
is not surjective as there is no global logarithm of the identity function.

3.3. Derived functors

Consider the result of applying a left exact functor to a short exact sequence A - B — C. If
F is not right exact then F(B) — F(C) is not an epimorphism. So there is a cokernel. Can
we compute this cokernel in terms of F and the short exact sequence? Faling that, can we find
something which contains the cokernel, and then try to determine the cokernel of the new map
and so on. In other words, if we do not have a short exact sequence, can we get a long exact
sequence?

One useful observation is that we know that any additive functor will preserve split exact
sequences. We can relate being split to nice properties of modules:

Definition 3.13. An object M in an abelian category is projective if for any epi g : A — B and
any map f : M — Bthereisalift g : M — A such that g o g = f. An object N in an abelian
category 1is injective if for any monomorphismi : A — B and any map f : A — N there is an
extension g : B — N suchthatgoi = f.

It is easy to see that M is projective if only if Hom(M, —) is an exact functor and dually N
is injective if and only if Hom(—, N) is an exact functor.

Example 3.14. In the category of R-modules any free module is projective. In fact projectives
are exactly direct summands of free modules.
In the category of abelian groups the groups Q and Q/Z are injective.

Lemma 3.15. If C is projective or A is injective then A — B — C is split, i.e. B= A& C.

Sketch of proof. 1f C is projective use the identity map C — C to find a one-sided inverse of
the map B — C. Dually if A is injective. O

An object of A can be viewed as a complex concentrated in degree 0. We will now identify
such objects with larger complexes consisting of nicer objects.

Definition 3.16. A quasi-isomorphism of complexes is a map of complexes A — B such that
the induced map on cohomology is an isomorphism in every degree.

Definition 3.17. A projective resolution of A is a levelwise projective complex in nonpositive
degrees P* with a quasi-isomorphism to A.

An injective resolution of A is a levelwise injective complex /° in nonnegative degrees with
a quasi-isomorphism from A.

15



Definition 3.18. The i-th left derived functor of a right exact functor F is defined as L;F'(A) =
H;(F(P)) where P is a projective resolution of A.

The i-th right derived functor of a left exact functor G is defined as R'G(A) = H,(F(I))
where / is an injective resolution of A.

In the remainder of this section many results will have two versions, we one for left derived
functors and one for right derived functors. I will only make statements for right derived
functors, as these will be more interesting to us in this course, but it will be clear what the
analogous statements for left derived functors are.

Lemma 3.19. For any left exfact functor G we have R°G(A) = 0 and R°G(A) = G(A).

Proof. The first statement follows from the definition. For the second statement we have
by definition that A = ker(/° — I') for an injective resolution. By left exactness of G and
definition of R® we have G(A) = ker(GI° — GI') = R°G(A). O

Example 3.20. We define Extj}e(A, B) to be R'Homg(—, B)(A). Consider the category of
abelian groups, i.e. R = Z. Note that an injective resolution in Z-Mod® is given by a

projective resolution in Z-Mod. So Z L Z is a suitable resolution of Z/p and we find

Ext*(Z/p,B) = H*(B KN B). So Ext’(Z/p,B) = »B, the submodule of p-torsion elements,
and Ext'(Z/p, B) = B/pB.

Definition 3.21. A category has enough projectives if for every object there is an epimorphism
from a projective object. Dually a category has enough injectives if for every object there is a
monomorphism to an injective object.

Example 3.22. R-Mod has enough projectives, there is always a surjection F(M) — M, from
the free module generated by the elements of M to M.

Lemma 3.23. The category R-Mod has enough injectives.
Proof. The proof is explained in [We195, Exercise 2.35] and the lead-up to that. O

We collect some fundamental facts for future reference which you hopefully know from
previous exposure to homological algebra. Otherwise they are not hard to find, e.g. in the
book of Weibel.

Theorem 3.24 (Comparison Theorem). Let € : M — [* and n : N — J°® be injective
resolutions and f : M — N a homomorphism. Then there is a lift f : I° — J* of f, ie.
we have no f = f o e. Moreover, f is unique up to chain homotopy equivalence.

Proof. See [We195, Theorem 2.3.7] or do it as an exercise! O

Corollary 3.25. Injective resolutions exist in A if there are enough injectives in A. These
resolutions are unique up to chain homotopy equivalence.
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Corollary 3.26. The i-ith right derived functor is a well-defined functor.

Lemma 3.27. [Snake Lemma] Any short exact sequence of complexes0 - A —- B — C — 0
induces a natural long exact sequence in cohomology groups:

-+ > HYA) » HYB) > HY(C) - H*'(4) > - -

Proof. See [We195, Theorem 1.3.1] O
We explain how these facts give the key result on derived functors:

Corollary 3.28. Let F : A — B be a right exact functor between abelian categories. A s.e.s
00— A—> B— C — 0in A gives rise long exact sequence of derived functors

0> FA—>FB— FC >R'FA—R'FB—R'FC > R*FA— ---

in B. The boundary maps are natural.

Proof. We resolve all objects injectivly and use the lift from Theorem [3.24] This gives a short
exact sequence of complexes which by Lemma [3.15]is split in every degree as all entries are
injective. We apply F' to obtain a new short exact sequence and taking cohomology we finish
with the Snake Lemma [3.271 O

This definition of derived functors is the most direct one, it is not the only one. It is a bit ad
hoc and we have to work to show what we have is well-defined.

Injective objects are not always easy to work with, so it is good to have other ways to
compute. Let F be a left exact functor between two abelian categories.

Definition 3.29. An object A is F-acyclic if R'F(A) = 0 for all i > 0.
Acyclic objects can be used to compute derived functors.

Proposition 3.30. Let A be an object in an abelian category with enough injectives and let
0>A—>S°> 8! — ... 58" — ... bea resolution of A such that each S' is F-acyclic.
Then H'(S*) = R'F(A).

Proof. The proof technique here is called dimension shifting. We first consider 0 —- A —
§% — Qy — 0 with Q the quotient object. Then by Lemma we have R'F(A) = R-'FQ,
for i > 2 while R'F(A) = FQy/FS°. With Qy = ker(S' — S?) and F preserving kernels we
get R'F(A) = H'F(S*).

Now Qp has an F-acyclic resolution §! — §2 — .-, thus by the same argument we see
R'F(Qo) = H?F(S"*). Together with the first part we get the result for i = 2.

Now we proceed by induction, letting Q; = S7/S*™! = S//Q_; = ker(S™*! — S*?) we prove
R F(A) = FQ,/FS' = H*'F(S*). 0
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3.4. The derived category

To compute derived functors we replaced objects, considered as complexes concentrated in
degree 0, by quasi-isomorphic complexes. After applying the functor we have a complex
which is typically no longer quasi-isomorphic to a complex concentrated in degree 0. Hence
it makes sense to consider all complexes, up to quasi-isomorphisms, and try to lift functors to
this new category.

As complexes are now fundamental I will drop the —* from the notation.

Remark 3.31. It is non-trivial to invert quasi-isomorphisms, mainly since it is unclear what
happens to morphisms. We’d have to replace them by arbitrarily long zig-zags * — * « * —
* « --- — x where all right-to-left maps are quasi-isomorphisms. But if we do not have a set
of objects but a proper class then we quickly have a proper class of morphisms to consider,
which is a problem.

We first note that there is a natural complex of morphism between two complexes.

Definition 3.32. Let A be an abelian category and L,M € Ch(A). The hom complex
Hom(L, M)is defined by Hom'(L, M) = {f* : L* — M*"}and df : a = d(fa) — (-1 f(da)
where |f| denotes the degree of f.

In particular a chain map is a cocycle in degree 0.

Definition 3.33. Two chain maps f,g : L — M in Ch(A) are homotopic if there is a map
h: L — M([1] such that dh = g — f. In other words, they agree in H*(Hom(L, M)).

Given an abelian category A we define the homotopy category K(A) to be the category
with the same objects as Ch() but with morphisms equal to the homotopy classes of chain
maps.

There are different boundedness conditions we can put on chain complexes, and hence on
Ch(A) and K(A). Let Ch’(A) to be the category of bounded cochain complexes, i.e. those
A, such that A, = 0 for all but finitely many n. We also define Ch™(A), resp. Ch™(A), to be
the categories of chain complexes that are bounded below, resp. above. K*(A), K~(A) etc.
are defined similarly.

Definition 3.34. Given a category A and a class of morphisms S we define the localization
of A at S to be a category B with a functor Q : A — B such that Q(s) is an isomorphism
for any s € S and which is universal with this property: Any A — C that sends all s € § to
isomorphisms factors through Q.

Definition 3.35. We define the derived category D(A) as the localization of K(.A) at the class
of quasi-isomorphisms. Write Q 7 : K(A) — D(A) for the natural functor. D*(A) is defined
similarly from K?(), etc.

Theorem 3.36. D(A) exists (as a locally small category).
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Not a proof. See [We195, Sections 10.3 and 10.4] or [Huy06, Section 2.1] for a detailed proof.

I’1l just give some comments about the shape of the proof: Localization means that we
throw in an inverse f~! for every quasi-isomorphism f. This is a lot like Ore localization for
(noncommutative) rings, if you’ve met that. The content is in working out suitable conditions
for the existence of a localization, and checking that they are satisfied in our case. A class of
morphisms is called localising if

e S contains the identities and is closed under composition.

e Given morphisms A & A’ > Bwith s € S there are morphisms A — B’ & Bwithte S
making the obvious diagram commute. Dually given the second pair of morphisms there
exists the first one.

e Given any morphism f, g the existence of s € § with sf = sg is equivalent to the
existence of t € S with fr = gt.
These conditions hold for quasi-isomorphisms in the homotopy category, but not in the
category of chain complexes. O
The second condition in the proof allows us to write any morphism in the derived category

as a 2-term zig-zag or “roof” (s, f) := A Bay'Y EA B with s € §. Two morphisms (s, f) and
(t, g) represent the same map if there is a common roof (r, h) with sr = th and hg = fr.

AIN

/ X
A/ A//
7

. 8
5 '
A B

This is sometimes called a calculus of fractions.

Remark 3.37. Any complex with homology bounded above has a natural quasi-isomorphism
from a bounded above complex. Any complex with homology bounded below has a quasi-
isomorphism to a bounded below complex. Together this gives a chain of quasi-isomorphisms
between a complex with bounded cohomology and a bounded complex. There will not be
chain homotopies in general.

Example 3.38. Let R be a ring. We define the derived category of R, D(R), as the derived
category of Ch(R-Mod).

Because of its definition D(A) is a bit hard to work with. For example, it’s an additive
category, but that is not obvious from the definition!

A morphism A & A -5 Bin D(A) is 0 if it is equivalent to a morphism homotopy
equivalent to 0, and unravelling definitions this means there must exist a quasi-isomoprhism r
with f o r chain homotopic to 0.
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Remark 3.39. D(A) is not abelian but is an example of a triangulated category. 1dentifying
complexes up to quasi-isomorphism is a good middle ground between the homotopy category
of all complexes (which is very large) and the category A (which is not well-suited to
cohomology and derived phenomena). One issue with the derived category is that while it
admits derived functors (as we will see) it does not keep track of higher coherences. This
makes it ill-suited for some applications. For example it is not possible to glue locally defined
derived categories.

To keep track of this extra structure one may replace the derived category by a certain
stable co-category which is obtained as the co-categorical localisation of K(A) at all quasi-
isomorphisms. One can do this explicitily to build a simplicial derived category using the
so-called “hammock localization™ or by abstract properties of co-categories, as explained e.g.
in [Cis19].

For the purposes of this course we will need neither the details of triangulated categories
nor of stable co-categories.

The name triangulated category refers to the following very useful construction:

Definition 3.40. Given a chain map f : A — B in K(A) its cone is defined as the complex C
with C" = A" @ B" and d,, : (a,b) — (—-da,db — fa).

By construction there are natural maps B — cone(f) and cone(f) — A[1], and we can build

a sequence of morphisms A ER B’ — cone(f) — A[1] (which may of course be continued to
the left and to the right).

We call any sequence A —» B — C — A[1] in K(A) or D(A) that is isomorphic (in K(A),
respectively D(A)) to a sequence of the form D — cone(g) — E LN D[1] an exact triangle.
Here an isomorphism of sequences means there are isomorphisms A — D, B — cone(g) and
C — E making the obvious diagraom commute.

One can show thatif A - B — C — A[1] is an exact triangle sois B —» C — A[1] — B[1]
and so forth, see [We195, Example 10.1.6]. Thus while exact triangles are related to short
exact sequences in an abelian category there is no object singled out. (This also shows our
slightly non-standard definition is equivalent to the usual ones.)

Proposition 3.41. A chain map f : A — B is a quasi-isomorphism if and only if cone(f) is
acyclic, i.e. it has no homology.

Proof. By definition we have a short exact sequence of complexes B — cone(f) — A[1]. In
the associated long exact sequence of homology groups (Lemma[3.27) the boundary maps are
the maps induced by f on cohomology, thus the result follows. O

To get a more concrete representation of hom spaces in the derived category we have the
following very useful result:

Theorem 3.42. Given a complex of injectives I € K*(A) and any cochain complex A we have
HOI’HK(A)(A, I) = HOI’I’ID(ﬂ)(A, I)

20



Sketch of proof. We first show that Hom, (-, I) sends quasi-isomorphisms to quasi-isomorphisms.
We know by Proposition [3.41]that f : A — B is a quasi-isomorphism if its cone C := cone(f)

is acyclic. So we let B — C — A[1] be the short exact sequence in Ch(_A) associated to the

map f : A — B. We apply Hom(—, /) to obtain a sequence Hom(A[1],/) — Hom(C,I) —
Hom(B, I). Since our short exact sequence is levelwise split this is a level-wise split short ex-

act sequence. (Unravelling definitions we have [], Hom(A™*!, I"*))) — [], Hom(C", I"*)) —

[1, Hom(B", I"*!) in each degree, which is split exact.)

By construction Hom(C, I) is the cone of Hom(f, /), thus if Hom(C, I) ~ 0 we have that the
natural map Hom(B, I) — Hom(A, ) is a quasi-isomorphism.

To show that Hom(C, /) is indeed acyclic if C is we build a homotopy to O for an arbitrary
chain map g : C — [[i]. This shows that Hom(C, /) has no cohomology and the desired result
follows.

We build our homotopy # : C — I[i — 1]. As I is bounded below we may use
induction and start with 4% = 0 for some small enough k;. Assuming we found h=F with
gt = an! — (=17 likkd . ! — % we consider g€ — dh* : C* — I**. Using that g is a
chain map (i.e. dg = (—1)'gd) this factors through C*/C*!:

(g" — dh"d = (-1)'dg"™" — dh*d
= (=D)id(dh*" — (-1)""'h*) — antd
= dh*d — dh*d = 0

Since C*/C*! injects into C**!, by injectivity of / we may extend to a map (—1)*4* which
satisfies precisely g* = dh* — (—1)*h**1d.

We now consider the map f +— (1, f) from Homg)(A, I) to Homp7)(A, ). Let (s, f) be
morphism A — B in D(A), to show the theorem we have to show it is equivalent to a unique
(1, ). By our first claim there is a unique g with gs = f and then (1, g) is equivalent to (s, f).
To show uniqueness we look at the equivalence criterion for fractions. It suffices to show that
(1,g) and (1, g’) are only equivalent if g and g’ are homotopic. From the diagram we read off
that gr ~ g’r for some quasi-isomorphism r. Applying H to the first claim this implies g ~ g’.

O

The following corollary allows us to compute hom-sets in the derived category.

Corollary 3.43. Assume A has enough injectives. Then for objects A, B € A considered as
complexes concentrated in degree 0 we have Hompz)(A, B[i]) = Ext'(A, B).

Proof. The two sides may be identified with the two sides of Homp 7)(A, I[i]) = Homg (A, I[i]))
where [ is an injective resolution of B. O

Remark 3.44. This result remains true with the same proof for A, B any bounded below
complex as long as we define Ext'(A, B) suitably, i.e. via level-wise injective resolution of
B.
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Corollary 3.45. Assume A has enough injectives. Consider the subcategory K*(Inj(A))
of K*(A) that consists of levelwise injective complexes. Then the natural quotient map
Q7 : K*(Inj(A)) — D*(A) is an equivalence of categories.

Sketch of proof. Full faithfulness follows from Theorem[3.42] To show inclusion is essentially
surjective we have to injectively resolve complexes that are bounded below. There is a natural
but technical proof proceding by induction and using the existence of enough injectives, details
are in [GMO3, p. I11.5.25]. O

Remark 3.46. Total derived functors may be constructed even in the absence of injective
or projective resolutions. Say a class of objects R C K*(A) is adapted to a left exact
functor F : K*(A) — K*(B) if it preserves acyclic complexes and any A € K*(A) is quasi-
isomorphic to an object R4 in R.

Then RF(A) is defined as F(R,4) and has all the desirable properties, see [GMO3|].
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A. Basic category theory

I will give a rapid fire overview of category theory. The focus is on definitions and examples,
with a few results thrown in, but no proofs (those can be found in any standard reference, e.g.
Mac Lane’s “Categories for the working mathematician™).

If you have met a few concepts here and there this should be nice refresher putting
everything we need together in a systematic way

If you are comfortable with categories up to limits and adjunctions you can skip this. The
least standard part is probably Section[A.2.3|on filtered colimits.

A.1. Basics

A.1.1. Categories and Functors

Definition A.1. A category C consists of the following data:
e aclass of objects Ob(C),

e for every pair of objects X, Y € Ob(C) a class of morphisms Home(X, Y) (also called
arrows),

e for every object X a distinguished morphism 1y € Home(X, X), the identity

e for every three objects X, ¥, Z € Ob(C) a composition o : Home(Y, Z) X Home(X, Y) —
Home (X, Z),

such that
e compositon is associative: (fog)oh = fo(goh),
e the identity is an identity for composition: 1y o f = f = f o 1y for f € Home(X, Y).
Given f in Home(X, Y) we call X the source and Y the target of f.
Example A.2.

1. Sets and functions form a category we denote by Set. (Since we want to consider the
category of all sets and want to avoid paradoxa we referred to a class of objects in our
definition.)

2. Topological spaces and continuous maps form a category Top. It is easy to consider the
subcategory of CW complexes or path connected spaces etc.
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3. There is also a category Top, whose objects are pointed topological spaces (X, xy) and
whose morphisms are base-point preserving maps, i.e. f : (X, xo) — (¥, y) is given by
f X — Y with f(x¢) = yo.

This is an example of an undercategory: Given any category C with an object C there is
a category whose objects are arrows f : C — D in C, and whose morphisms are maps
g : D — D’ making the obvious triangle commute: go f = f' : C — DI1. Top, is the
category of topological spaces under the one point space.

4. In algebra we find many further categories: Groups and homomorphisms form the
category Group, vector spaces over k and linear maps form Vecty, abelian groups, rings,
fields, etc. all form categories

5. There is a category with one object and one morphism (the identity of the object). In
general a category is called discrete if the identities are the only morphisms. Every set
I can be considered as a discrete category I with Ob(I) = /.

6. For every category C there is an opposite category C°P with the same objects,
Homeor(A, B) = Home(B,A) and f oeer g == g oc f. Thus we obtain the opposite
category C°” from C by turning around all arrows.

We will often abuse notation and write C € C as a shortcut for “C is an object of C”’.

Definition A.3. A morphism f : C — D is called isomorphism, if there is g : D — C such
that go f =1cand fog =1p.

Homeomorphisms and (group/ring/vector space) isomorphisms are examples.
In all categories we consider isomorphic object as equivalent and (almost) interchangeable.

Remark A.4. If the objects and morphisms of a category form sets we call it a small category.
If there may be a class of objects but the morphisms between any two pair of objects form a
set we say the category is locally small.

Many categories we are interested in, like Top, Set and Group are not small, but locally
small.

Example A.5. A small category in which there is at most one morphism between any two
objects and in which any isomorphism is an identity is called a partial order. Then the
composition is uniquely determined by the morphisms (as there is only one function into a
set with one element).

An example is the category N whose objects are the natural numbers and where there is a
morphism i — jif and only if i < j.

An important motivation for the study of category theory is the observation that mathe-
matical objects are often better understood through the morphisms between them. The same
principle holds for categories.
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Definition A.6. A functor F between two categories C and &) consists of the following data:

e a map that associates to any X € Ob(C) an object F'(X) € Ob(D).

e for each pair of objects X, Y € Ob(C) a map from Home(X, Y) to Homg (F(X), F(Y))

which we write as f +— F(f),

such that

e F is compatible with composition: F(f o g) = F(f) o F(g),

e [ preserves the identities: F(1x) = 1px).

Example A.7.

1.

For every category C there is an identity functor 1o that does nothing on objects and
morphisms.

. Let C and @ be categories and D an object of . Then there is a constant functor

cp : C — D that sends every object of C to D and any morphism of C to 1p.

. A family of topological spaces (X;);c; is nothing but a functor from 7, considered as a

discrete category, to Top.

From every category whose objects have an underlying set e.g. Top, Group, Vect,) there
is a forgetful functor to Set, that forgets all additional structure.

. Algebraic Topology is in no small part the study of functors from topological spaces to

algebraic categories.

The homotopy groups are functors m, : Top, — Group associating to any pointed
topological space (X, x) the homotopy group r,(X, xo) and to any map f : X — Y the
induced map f..

Similary homology groups are functors H, : Top — Ab.

Cohomology groups are functors H" : Top®® — Ab. Note that these functors turns
around the direction of arrows, which is why we write it as a functor from the opposite
category. We also call such functors contravariant.

It is easy to see that functors can be composed, so there is a category of categories whose
objects are (small) categories and whose morphisms are functors.
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A.1.2. Natural Transformations

Remarkably, there are not just maps between categories (the functors) but also maps between
maps betwen categories.

Definition A.8. Let F,G : C — @ be two functors. A natural transformation a from F to G
consists of maps a¢ : FC — GC for every C € C such that for every map f : C — C’' in C
there is a commutative diagram:

Fc s Fer

\La/c J/(IC,

cc %L Go

Remark A.9. You might think that it is easier to write @¢ o F f = G f o a¢ instead of drawing
the commutative diagram.

The commutative diagram has the advantage that it keeps track of all the objects as well
as the morphisms between them. More importantly, in category theory, algebraic topology
and homological algebra there is often a plethora of maps whose compositions we want to
compare, and it is much easier to keep track if one arrange them all in a beautiful diagram.

Example A.10. 1. There is a functor D : Vect, — Vect, that takes every vector space to
its double dual V +— (V*)*. Then for every vector space there isamap ¢ : V — DV that
sends v € V to the functional @ — a(v). This map is natural, meaning it is compatible
with linear maps. In other words, ¢ is a natural transformation from the identity functor
1yect to the double dual D.

2. For any functor F : C — O there is the identity natural transformation 15 defined by
(1f)c = 1p¢ for every C € C.
3. Fix two categories I and C, where we may think of / as being somehow small.

We will consider a functor F : I — C as a diagram in C, given by objects F (i) together
with arrows F(f) : F(i) — F(j) for every morphism f :i — jin [.

Any object C of C determines a constant functor ¢c : I — C that sends any i to C and
any f:i— jto 1.

Then natural transformation from ¢ to another functor ¥ : I — C is given by maps
a; : C — F(i) for every i € I such that F(f) o a; = aj forevery f :i — j.

We call a natural transformation from a constant diagram to F a cone over F. We think
of C as the tip of the cone, and there are arrows going to all the vertices of the diagram,
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making all the triangles commute.

F@)

\
b -
/7

|
~
~
N

4. For every n > 1 the Hurewicz homomorphism 4, : n,(X, *) — H,(X, Z) from homotopy
to homologoy of path connected spaces is a natural transformation. (To be precise it
is a natural transformation from r, to the composition of homology with the functor
forgetting basepoints. If n = 1 we also have to compose with the inclusion functor from
abelian groups to all groups.)

5. For every topological space X we have a functor which takes the underlying set of X
and equips it with the discrete topology, write this as X°. Then the identity map from X°
to X is continuous. In fact it is a natural transformation from the discretization functor
to the identity functor X° — X.

Natural transformations may be composed and form the morphism in the category of
functors Fun(C, ) between two categories.

Definition A.11. A natural tranformation @ such that all @c are isomorphisms is an
isomorphism in the category of functors and is called a natural isomorphism.

A.1.3. Equivalences

Definition A.12. Two categories are equivalent if there are functor F : ¢ — @ and
G : @ — C such that F o G is naturally isomorphic to 15 and G o F is naturally isomorphic
to 1@.

We can give a more concrete description, for which we need some definitions.

Definition A.13. functor F : C — O is full if it induces surjections on all hom sets, i.e. every
g:FC — FC'in D is F(f) for some f : C — C'.

The functor F is faithful if it induces injections on all hom sets, i.e. F(f) = F(f’) only if
F=r.

F is fully faithful if it is both full and faithful.

F is essentially surjective if every object in 2 is isomorphic to some object FC in the image
of F.

Then one can prove that F : C — D is an equivalence of categories if and only if it is fully
faithful and essentially surjective. (The “if”” direction needs the axiom of choice.)
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Example A.14. 1. Let k be a field. There is an equivalenc of categories from finite-
dimensional k-vector spaces to its opposite category, given by V +— V* on objects.

2. Let Mat be the category whose objects are non-negative integers and whose morphisms
from m to n are (m X n)-matrices. Composition is given by matrix multiplication.

Then there is a natural functor from Mat to the category of finite-dimensional R-vector
spaces, given by n — R" on objects. This is an equivalence of categories.

A.1.4. Opposite categories
We recall the following Example [A.2]l6

Definition A.15. Let C be any category. Then its opposite category CP is defined to have the
same objects as C but Homeo (C, D) := Home(D, C) and f ocw g == g oc¢ f.

In words C is obtained by turning around all the arrows in C.

Clearly any functor F : C — @ induces an opposite functor F°P : C°P — )P,

Many natural functors, like cohomology, turn around the order of arrows, i.e. cohomology
is a functor Top®® — Ab.

Definition A.16. We call a functor C°° — @ a contravariant functor from C — D.

By using the opposite of categories and functors, we can dualize all the definitions and
results in category theory.

Moreover, whenever we prove a statement about a category C then the dual statement holds
for its opposite category.

This is a very powerful idea, which we will come back to soon.

A.1.5. The hom functor

Forming the hom sets in a category is actually functorial. Let us explain what this means.
Let C be a locally small category, i.e. the morphisms between any two objects form a set
(rather than a proper class). Let C be an object of C.

Definition A.17. The hom-functor, denoted hc : C — Set, sends any object D to Home(C, D)
and any morphism f : D — D’ to the map f. : Home(C, D) to Home(C, D’) defined by
g fog.

We can of course also put the object C in the second place of Hom. Then our functor will
be contravariant and turn around the order of arrows. We obtain h¢ : C°®° — Set which is
defined by D — Home(D, C) and f +— f*, where f*(g) = go f.

For another level of abstraction, -, defines a functor from CP to the category of functors
Fun(C, Set). This is a fully faithful functor that is called the Yoneda embedding. Any functor
naturally isomorphic to A¢ is called representable.
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Example A.18. The forgetful funtor U : Group — Set is representable by the group of
integers.

Unravelling our definition this means that there for every group G there is an isomorphism
Homgoup(Z, G) = U(G), and these isomorphisms are compatible with group homomorphisms.

But this just says that the set of morphisms from Z to G is exactly the set of elements of G,
the isomorphism is given by sending f : Z — G to f(1) € G.

Remark A.19. A key result in category theory is the Yoneda lemma. It states that natural
transformations from A¢ to some other functor F : ¢ — Set are in natural bijection with
F(C). It’s not hard, but very consequential. (Although we won’t need it.)

A.2. Universal constructions

A.2.1. Limits

Category theory allows us to unify many constructions in mathematics, in particular those
characterised by universal properties.

Definition A.20. Let / be a small category and C any category. A diagram of shape I in C is
just a functor D : I — C.

A cone over D is an object C in C together a natural transformation from the constant
diagram C to D.

Explicitly a cone consists of C with maps y; : C — D(i) for all objects i in I such that for
any a : i — jwe have D(a) oy; = ;.

A map of cones (C,y) — (E,e)isamap f : C — E compatible with the maps, i.e.
& f =7

We will often write F; for the objects F(i) fori € I.

Definition A.21. A [limit of the diagram F : I — C is a cone (L, @;) over F that is universal in
the sense that any cone (C, ;) maps uniquely to (L, @;).

In other words, L and @ have the property that whenever we have C in the following diagram
there is exactly one dashed arrow C — L making the diagram commute.

This universal property (like all universal property) ensures that if there are two limits L
and L’ there is a unique isomorphism between them: As L is a limit there is a unique map
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g: L — Landas L’is alimit there is a unique map g’ : L — L’. As g’g and 1,/ are both maps
of cones from L’ to itself they must agree and g’ and g are inverse.
We thus also speak of the limit and denote it by lim; F or lim F.

Remark A.22. Note that the limit need not exist! If we can form arbitrary (small) limits in a
category C we say that C has all small limits.

Let us make this more concrete.

Definition A.23. Let / a set considered as a discrete category. The limit of F : I — C is called
the product of the F'(i), often written [ [, F'.

Thus []; F; has the property that there are natural maps x; : [[; F; — F; for all j (called
projection) and whenever we are given maps 5; : C — F; for all j we obtain a map
B:C— I];Fisuchthat8; =mjop.

This recovers the familiar product of sets, topological spaces, abelian groups etc.

We consider a special case:

Definition A.24. Let I be the empty set considered as a discrete category without objects! The
limit of the unique functor I — C is called the terminal object of C, often written . It has the
property that for every C € C there is a unique morphism C — x.

The terminal object in Set is the set with 1 Element.

Definition A.25. Let I be the category with two objects and two arrows in the same direction
e 3 o, The limit of F : I — C is called equalizer.

Definition A.26. Let / be the category with three objects ® — e «— o. The limitof F : [ — C
is called pullback.

Example A.27. 1. The terminal object in Groups is the group with 1 element.
2. The terminal object in Top is the topological space with 1 point.

3. In the diagram e — e « e that defines pull-backs the middle object is terminal.

4. If a pull-back diagram in Set or Top takes the form * — Y L X then the pull-back is
the fiber of f (equipped with the subspace topology in the case of Top).

5. If a pull-back diagram takes the form X — * « Y, i.e. the middle object goes to the
terminal object of C, then the limit is the product X X Y.

6. In the category Groups there is a unique map from * to any group H and the pullback
of the diagram * — H A G is nothing but the kernel of f.

7. The equalizer of two maps f,g : A — B in Set is exactly the subset of A given by all
elements a with f(a) = g(a), this explains the name.
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A.2.2. Colimits

We now apply the idea of dualizing categorical notions by turning around all the arrows to the
previous section.

So we change the orientation of all the arrows in the definition of a limit. This gives the
dual notion of a limit, called the colimit.

Definition A.28. A colimit of the diagram F : I — C, denoted by colim; F, is an object D of
C together with a natural transformation a : F = cp that is universal, in the sense that any
natural transformation from F to a constant functor c¢ factors uniquely through cp.

The corresponding diagram looks like this:

CRG

Remark A.29. To make the duality of limit and colimit more precise we can observe that
(D, @) is a colimit of the diagram F : I — C exactly if (D, a®?) is a limit of the diagram
FP : [ — C°. Here a® : ¢} = F is the natural transformation corresponding to
a : F = cp under the correspondence of morphisms in C and C°P.

Definition A.30. The colimit over a discrete category is called the coproduct or sum.
The colimit of the empty diagram is called the initial object.
The colimit of the diagram e < e — e is called pushout.
The colimit of a diagram of shape e & e is called coequalizer.

Example A.31. 1. In Set and Top ithe coproduct is given by the disjoint union.
2. In Group the coproduct is given by the free product of groups.

3. In Vect the product and coproduct of two vector spaces V and W agree, both are given
by V @ W. (This holds for all finite products and coproducts in Vect, but it is no longer
true for infinite products and coproducts!)

The initial object in Set is given by the empty set.
The group with one object is both initial and terminal.

The pushout of the diagram 0 «<— V — W of vector spaces is the quotient space W/ V.

N & s

The coequalizer of two maps f,g : A — B in Set is given by the quotient of B by the
relation generated by f(a) ~ g(a) for all a € A.
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From the definition of limit and colimits it is not hard to obtain the following extremely
useful result:

Lemma A32. Let F : I —» Cand G : J — C be diagrams. Then we have natural

isomorphisms
Home(C, li;n F) = li}n Home(C, F;)

and
Home (coljim G;,C) = 1i5n Home (G, C)

A.2.3. Filtered colimits

A special kind of colimit is given by the following.

A category 1 is filtered if any finite diagram in / has a cone. Equivalently [ is filtered when
it is not empty, for every two objects i, i’ there exists an object k with two arrows i — k and
i" — k; for any two parallel arrows u,v : i =3 j there is an object kK and morphism f : j — k
with fu = fv.

A filtered diagram is a diagram I — C with [ filtered.

Definition A.33. A colimit over a filtered diagram is a filtered colimit

Example A.34. 1. The category (N, <) with objects the natural numbers and a single
morphism a — b whenevere a < b is filtered. A colimit indexed by (N, <) is also called
a sequential colimit. Increasing unions are a typical example: R = colimen(—a, a) as
sets or topological spaces.

2. The set of all neighbourhoods of a point x in a topological space X is a filtered category
under inclusion.

Such examples where there is at most one morphism between two objects are also called
posets.
A functor F : I — J is called cofinal if

1. For any object j in J there is i in / with a morphism j — F(i)
Jn

2. For any two arrows j — F(i) and j — F(i’) there is a zig-zag of arrows i L. n il
making the natural diagram commute:

- 3

F(iy) > & F(iy)

F(i) F(@")

F(f1) F(fu)

Note that the second condition is automatic if J is filtered.
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Lemma A.35. Let F : I — J be a final functor and G : J — C a diagram. Then if colim; GF
exists then colim; G also exists and agrees with colim; GF.

Example A.36. The inclusion of all prime numbers into (N, <) is final.
The inclusion of connected open neighbourhoods in all neighbourhoods of a point in a
topological set is final.

The key result about filtered colimits is the following:

Theorem A.37. In the category Set and A-Mod for any ring A finite limits commute with
filtered colimits.

A.2.4. Existence of (co)limits

We say a category C has all small limits or is complete if every diagram I — C has a limit.
Similarly we say C has all small colimits or is cocomplete if every diagram I — C has a
colimit.

This may seem extremely difficult to check, but in fact one can build any limit from just two
types of limit:

Recall that an equalizer is a limit for a diagram of the shape ¢ = e and a product is a
diagram whose shape is a discrete category.

We say a category C has all equalizers if any equalizer diagram has a limit, and similarly
for products (and other shapes of diagrams).

Lemma A.38. A category C has all limits if and only if it has all products and equalizers. It
has all colimits if and only if it has all coproducts and coequalizers.

A.2.5. Adjunctions

It is rare that categories are equivalent, but a weaker notion is extremely fruitful.

Definition A.39. We say F : C — D is left adjoint to G : D — C, in symbols F 4 G if for all
C € C and D € D there are natural isomorphisms

¢c.p : Home(C,GD) = Homy, (FC, D)
Here naturality means that for every map C — C’ in C the natural diagram commutes:

()

Home(C', GD) ——2% Hom,,(FC’, D)

I |

éc.p

Home(C,GD) —<2% Hom,,(FC, D)

and a similar diagram commutes for g : D — D’ in D.
If € and @ are locally small we can also phrase naturality as saying that the two functors
Home(—, G(-)) and Homg (F(-), —) from C°? X @ to Set are naturally isomorphic.
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Example A.40. 1. Throughout algebra there are adjunctions between free and forgetful
functors. For example the forgetful functor U : Group — Set has a left adjoint given
by taking a set X to the free group with set of X as set of generators.

2. The forgetful functor Top — Set has a left adjoint given by equipping any set with
the discrete topology. It also has a right adjoint given by equipping any set with the
indiscrete topology.

Left and right adjoints are naturally dual: If F : ¢ — @ is left adjoint to G, then
F°P : C°° — )P is right adjoint to G°P.

Let F 4G : C 2 @ and C € C. By the adjunction the identity map 1z¢c : FC — FC
corresponds to a map € : C — GFC. By naturality in the definition of an adjunction the €
assemble into a natural transformation € : 10 = GF. This is called the unit of the adjunction.

Simlarly there is a natural transformation  : FG = 1, called the counit of the adjunction.

Lemma A41. Let F 4 G. Then unit and counit satisfy the following identities of natural
transformations: For every C € C we have

nrc © F(ec) = 1pc

and for every D € 1D we have
G(nc) o €6p = 16p.

Put a little differently, we have the following identities of natural transformations: Gno ez =
1g and g o Fe = 1p.
In fact, adjoints may be equivalently characterized by the existence of unit and counit.

Remark A.42. An adjunction induces an equivalence of categories if and only if unit and
counit are natural isomorphisms.

One can also show that adjoints are given by a universal property and are thus unique up to
unique natural isomorphism.
Adjoints are closely related to limts:

Lemma A.43. Let F be a left adjoint. Then F preserves colimits, i.e. whenever (D, ) is a
colimit of a diagram G : I — C then (FD, Fa) is a colimit for F o G : [ — D.
Dually, if G is a right adjoint then G preserves limits.

Remark A.44. Under some assumption on the categories C and & there is even a converse to
the lemma: Any functor preserving all colimits has a left adjoint. There are different theorems,
depending on the precise assumptions made, but they are all called adjoint functor theorems.

We can even characterize limits using adjoints.

Lemma A.45. Consider the category Fun(l,C) of I-shaped diagrams in C. There is a
diagonal functor A : C — Fun(l, C) sending any object C to the constant functor cc. Then
taking the limit of a diagram is right adjoint to A, and taking the colimit is left adjoint.
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