Sheet 6

Question 6.1

Show that the following diagram of cdga's has a lift:

$$\begin{array}{ccc} \mathbb{Q}\langle z \rangle & \longrightarrow & A \\ \downarrow_{\theta} & & \downarrow_{\sim} \\ \mathbb{Q}\langle y, dy \rangle & \longrightarrow & B \end{array}$$

Here $\theta: z \mapsto dy$ as in lectures and $A \to B$ is any acyclic fibration.

Question 6.2

In the model category $\mathsf{cdgA}_{\mathbb{Q}}^{\geq 0}$ compute the homotopy fiber of $\mathbb{Q} \to \mathbb{Q}\langle t \rangle$ for t a generator in some non-negative degree. (It suffices to replace one map by a fibration.)

Question 6.3

In the model category $\mathsf{cdgA}_{\mathbb{Q}}^{\geq 0}$ compute the homotopy cofiber of $\mathbb{Q}\langle t \rangle \to \mathbb{Q}$ defined by $t \mapsto 0$. Here t a generator in some non-negative degree. (It suffices to replace one map by a cofibration.)

Question 6.4

Show that any class of maps defined by satisfying a LLP is closed under retracts.

Question 6.5 (*)

Let I be the diagram category $* \leftarrow * \rightarrow *$ and let \mathcal{M} be a model category such that \mathcal{M}^I has a model structure where weak equivalences and fibration are defined objectwise. Let $A \leftarrow B \rightarrow C$ be an object in \mathcal{M}^I such that B is cofibrant and $B \rightarrow A$ and $C \rightarrow A$ are two cofibrations.

Show that $A \leftarrow B \rightarrow C$ has the LLP with respect to acyclic fibrations.