## Sheet 13

## Question 13.1

Show that a nilpotent rational space of finite type has finite-dimensional rational cohomology in each degree.

Hint: Use induction and show that for a principal fibration $Y \rightarrow X$ with fiber $K(\mathbb{Q}, i)$ if $H^{i}(X, \mathbb{Q})$ is a finite-dimensional for all $i$ then the same is true for the $H^{j}(Y, \mathbb{Q})$.

## Question 13.2

Recall the cdga $M=\mathbb{Q}\langle a, b, c \mid d c=a b\rangle$ with $|a|=|b|=|c|=1$ from example sheet $7 . M$ is the minimal model of the topological space $Z$ obtained as the quotient of strictly upper triangluar $3 \times 3$-matrices by strictly upper triangular $3 \times 3$-matrices with integer entries. Compare the homotopy groups of $M$ and $Z$.
Describe a factorization of the minimal model and the corresponding tower of principal fibrations as in Example 9.7.

## Question 13.3

For the following topological spaces, determine their minimal model and the homotopy groups of the minimal model.

1. $S^{5} \times S^{2}$,
2. $\mathbb{R} P^{3}$,
3. $\mathbb{C} P^{2} \times S^{3}$,
4. $\mathbb{C} P^{\infty} \vee \mathbb{C} P^{\infty}$.

* You should have found the same homotopy groups in examples 1 and 3. Do the spaces also have the same homotopy groups? Can you give a topological reason why?

These questions will be discussed in the exercise class on 15.2.20.
Questions with an asterisk are more challenging.

