Sheet 12

Question 12.1

Let A be a k-algebar and N a left A-module. Show that $B(A, A, N)$ is a free resolution of N.

Hint: To show this is a resolution define maps $\epsilon: B(A, A, N) \rightarrow N$ given by the action of A on N, and $\iota: N \rightarrow B(A, A, N)$ given by $n \mapsto 1 \otimes n$. Now find a homotopy s from $\iota \circ \epsilon$ to $\mathbf{1}_{B(A, A, N)}$.

Question 12.2

Write down the Eilenberg-Moore spectral sequence for the Hopf fibrations. (You may use your knowledge of all the cohomology groups involved!)

Which differentials are nonzero?

Question 12.3

Write down the long exact sequence of homotopy groups associated to the Hopf fibration.

Question 12.4

Show that all homotopy groups of $S^{\infty}=\operatorname{colim}_{n} S^{n}$ are trivial.

Question 12.5

Construct a $K(\mathbb{Z} / 7,1)$.

Question 12.6

Is $S^{1} \vee S^{2}$ nilpotent?

These questions will be discussed in the exercise class on 8.2.20.
Questions with an asterisk are more challenging.

