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I. Basic Homological Algebra

1. Introduction

Introduction. Motivating example. Abelian categories. Exactness.

1.1. Preamble

This course is an introduction to homological and homotopical algebra. By the end of
it you should

1. see homology groups everywhere,

2. be able to compute lots of them, and

3. not be scared of the word derived.

I have tried to keep the required background to a minimum, and I have probably failed.
Note the following:

• Algebraic topology will often provide motivational and understandable exam-
ples.

• We will need some category theory. In particular we will freely use limits and
universal properties. There will be appeals to dual statements. A nice reference
are Julia Goedecke’s notes for the Cambridge Category Theory course, available
at www.dpmms.cam.ac.uk/ jg352/teaching.html.

Some proofs will be relegated to example sheets or left out. Not because they are hard,
but because they are long (or rather because the course is short).

Some sections of these notes were not lectured in class, they are marked as such in the
margins. (They are obviously not examinable.)

Brief annotated bibliography:
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[W] Weibel, An introduction to homological algebra, CUP 1995. Highly
recommended as a general reference, full of interesting examples, source of
a lot of the material in these notes.

[GM] Gelfand-Manin, Methods of homological algebra, Springer 2003. A bit more
modern on the theory, lighter on applications.

[DS] Dwyer-Spalinski, Homotopy theories and model categories. In Handbook of
Algebraic Topology, 1995. Very readable introduction to the theory and appli-
cations of model categories. (Freely available at hopf.math.purdue.edu/Dwyer-
Spalinski/theories.pdf.)

[Hov] Hovey, Model categories, AMS 1999. More comprehensive introduction to
model category theory.

[Huy] Huybrechts:, Fourier-Mukai transforms in algebraic geometry, OUP 2006. An
introduction to the beautiful theory of derived categories in algebraic geometry
that is conspicuously absent from this course

Comments and corrections are very welcome, please email jvsh2@cam.ac.uk.

1.2. Motivating example

We begin with the graded ring R = k[x0, . . . , xn] with deg(xi) = 1. (A grading on
a ring is a direct sum decomposition R = ⊕Rd such that Rd.Re ⊂ Rd+e, an element
r ∈ Rd is said to have degree d. Hilbert was very interested in graded modules over
R. A graded module is just an R-module that can be written as M = ⊕d Md such that
Rd Mn ⊂ Md+n. Then we consider the function d 7→ HM(d) = dimk Md. Hilbert tried
to compute this function in great generality, and proved that it is equal to a polynomial
function for large enough d. It’s now called the Hilbert polynomial.

One reason to care is that R is the homogeneous coordinate ring of projective space Pn
k ,

and projective varieties correspond to homogenous ideals I and the quotient M = R/I
is the homogeneous coordinate ring of the projective variety V(I).

The Hilbert polynomial is extremely important in algebraic geometry, for example
when considering moduli spaces one often fixes the Hilbert polynomial. If S = R/I is
the coordinate ring of a curve C in Pn then the Hilbert polynomial is

H(d) = deg(C) · d + (1 − g(C))
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To compute we would like to replace M by free modules for which the computation
becomes straightforward. We can begin by writing down a surjection F0 // M, this
will exist as M has generators. Then we consider the kernel K0, given by all the
relations between generators (finitely generated by Hilbert’s basis theorem). Hilbert
(following Sylvester) called the elements of K0 syzygies. If K0 is free, we can stop.
Otherwise there are relations between relations, forming what’s called the 2nd module
of syzygies. We continue by writing K0 = F1/K1, and so on.

We write the end result . . . // F2 // F1 // F0 // M and call it a free resolution.

Theorem (Hilbert 1890). M has a free resolution of length at most n + 1, i.e. s.t.
Fn+2 = 0.

Now observe that HM(d) =
∑

i(−1)iHFi(d) by applying the rank nullity theorem a few
times. Next we compute HFi . We can write Fi = ⊕ jR(−ai j), where R(b) stands for
the graded module R shifted by b, so R(b)c = Rb+c. This is the free R-module with a
single generator in degree b. It suffices to compute HR(−a). But it is an easy exercise
in combinatorics to show that HR(d) =

(
n+d

n

)
. Then HR(−ai j) =

(
n+d−ai j

n

)
. Putting it all

together we find

HM(d) =
∑

i

(−1)i
∑

j

(
n + d − ai j

n

)
As soon as d ≥ maxi, j(ai j) − r this expression becomes a polynomial.

1.3. Abelian categories

We will begin with abelian categories. But historically and logically we should begin
with an example:

Example 1. You are welcome not to worry about the definition of an abelian category
and only ever think about R-Mod, the category of left modules over an associative
unital ring R. We denote by Ab the category of Z-modules, also known as abelian
groups.

Example 2. Unless you are interested in geometry or topology, in which case you also
want to remember the abelian category of sheaves (or presheaves) of abelian groups
on a topological space, or O-modules or quasi-coherent sheaves or coherent sheaves
on a scheme, or some other categories of sheaves on sites, for example D-modules on
a smooth variety.
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So you might want to read the definition of an abelian category as a lemma (exercise)
about the category of R-modules.

Definition. An additive category is a category such that

1. every hom-set has the structure of an abelian group and composition distributes
over addition.

2. there is a 0-object, i.e. an object that is both initial and terminal, i.e. an object
that admits a unique morphism to and from every object.

3. For any objects A, B the product A × B exists. It is automatically equal to the
coproduct A q B and we write it as A ⊕ B.

A functor between additive categories is additive if it induces homomorphisms on
hom-sets. (We’ll see it then preserves finite direct sums.)

An abelian category A is an additive category such that

1. every map in A has a kernel and a cokernel

2. For every map f we have ker(coker( f )) � coker(ker( f )), image equals coimage.

Recall that the kernel of f : A //B is the equalizer of f and the 0-map A //0 //B, i.e.
the universal map to A that is killed by composition with f . The dual is the cokernel,
which for rings is given by the usual quotient.

A word about the image: Given a map f : A //B there is a map ker(coker f ) : I //B.
We call I the image of f . There is dually the coimage coker(ker f ) and there is always
a natural map from the image to the coimage, and in an abelian category this map is
an isomorphism.

Example 3. The last condition can be a bit confusing. Consider the category whose
objects are inclusions of vector spaces V ⊂ W, and whose morphisms are compatible
pairs of linear maps. Consider the natural inclusion map i from 0 ⊂ V to V ⊂ V . It
is easy to see this map is monic and epic. So the kernel and cokernel are trivial and
coker(ker(i)) = (0 ⊂ V) , (V ⊂ V) = ker(coker(i)). (This argument shows that the
category of filtered vector spaces is not abelian.)

Convention. From now on A will always be an arbitrary abelian category.

In general, objects of abelian categories need not have underlying sets, and need not
have elements. However, it is often incredibly useful to be able to pick an element and
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see what happens to it (this proof-technique is called diagram-chasing). In R-Mod
this is fine. In categories of sheaves we can argue with sections which behave very
much like elements.

Remark. In greater generality one appeals to the Freyd-Mitchell embedding theorem:
Let A be a small abelian category. Then there is a ring R and a fully faithful exact
functor (i.e. preserving kernels and cokernels) A // R-Mod. Hence most results that
are proved using diagram chases (in finite diagrams) apply to all abelian categories.
There are some subtleties, however. (For example the embedding need not preserve
infinite products.)

1.4. Exactness

Definition. Consider a sequence of morphisms A
f

// B
g

// C. If g ◦ f = 0 that
says Im( f ) ⊂ ker(g). If now also ker(g) ⊂ Im( f ) we say the sequence is exact at B.
An exact sequence is a sequence of morphisms that is exact at every object.

If you know homology from topology you know that the sequence of singular chains
is exact at the object in degree n if there aren’t any “holes” in degree n. It makes sense
to study this condition algebraically.

Remark. Recall that a map is monic or a mono(morphism) if it is left cancellable, i.e.
if f g = f h implies g = h, and is epic or an epi(morphism) if it is right cancellable. In
R-modules a morphism is epic iff it is surjective iff it is a quotient iff it is the cokernel
of some map, and it is monic iff it is injective iff it is the kernel of some map. This
follows from the isomorphism theorems. But note that Z // Q is an epi of rings.

If moreover f is monic and g is epic we call A // B // C a short exact sequence.
We can also write this as an exact sequence 0 // A // B // C // 0. One way of
looking at this is to say that B has quotient C and the kernel is A, so B is made up of
C and A, we say it as an extension of C by A. For example, we could have B = C ⊕ A,
in this case we say the short exact sequence is split. We will return to this viewpoint.

Example 4. In the category of abelian groups we have the short exact sequences

Z/2 //Z/2⊕Z/2 //Z/2 and Z/2
2 // Z/4 //Z/2. There are also exact sequences

Z // Z ⊕ Z/2 // Z/2 and Z
3 // Z // Z/3.
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2. Chain complexes

Chain complexes and cochain complexes, homotopies and quasi-
isomorphisms, exact functors.

2.1. Chain and cochain complexes

Definition. Let us consider a collection (Ci)i∈Z of objects of A and a sequence of
maps di : Ci // Ci−1 satisfying di−1 ◦ di = 0, but not necessarily exact. We often
just write d2 = 0. We call (C•, d) a chain complex and the d are called differentials or
sometimes boundary operators.

Definition. We also define Zi = ker(di) and Bi = Im(di+1), the cycles and boundaries.
Then we can measure the failure of C to be exact by considering coker(Bi) // Zi),
which we call the i-th homology object, Hi(C).

Remark. Homology began as counting holes, or rather: determining higher
connectivity. Riemann, Betti and Poincare developed Betti numbers and torsion
coefficients. Emmy Noether noticed that the numbers are ranks of groups. One can
see this as an instance of “groupification”, which is a precursor of categorification,
interpreting a mathematical object as the shadow of some other, richer object. For
example seeing a set as the equivalence classes of objects of a category.

Why is the condition d2 = 0 the right one? It seems quite a deep definition.
Historically d is a boundary operator, and the boundary of a boundary should be
empty. (Of course that’s not in general true for topological spaces.)

A complex all of whose homology groups are 0 is also called acyclic or (as before)
exact. Note we can also say the complex is exact everywhere. You can think of it like
a contractible topological space. It may be large, but there is nothing interesting going
on. (Unless there is extra structure, like a group action.)

It is often convenient to consider differentials going the other way and increasing
degree. Then by convention we write di : Ci // Ci+1 and call (C•, d) a cochain
complex and we define cohomology objects Hi(C). One can write Ci = C−i.

Example 5. Singular chains and cochains on a topological space. Chains an a
simplicial complex. The de Rham complex. The Bar complex. A flabby resolution of
a sheaf. A free or projective resolution of a module. The Čech complex. The Koszul
complex. You name it. (Don’t worry if you haven’t seen most of these before.)
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Definition. A chain map is a level-wise morphisms that commute with the differential.

The category of chain complexes over an abelian category A , denoted Ch(A ) has as
objects the chain complexes over A and as morphisms the chain maps.

Ch(A ) is additive and for every n there is an additive functor Hn : Ch(A ) //A . That
means given a map f : B //C there is a group homomorphism f∗ : Hn(B) // Hn(C).
You just define the map in the only way you can and check it is well-defined.

It’s easy to see that Ch(A ) is an abelian category, kernel and cokernel are defined
level-wise. So it makes sense to talk about a short exact sequence of chain complexes.

Lemma 1 (Snake Lemma). Given a short exact sequence A // B // C of chain
complexes there are boundary maps ∂ fitting into an exact sequence

. . . // Hi(B) // Hi(C)
∂ // Hi−1(A) // Hi−1(B) // . . .

of homology objects.

Proof. Exercise! �

Revisiting our definition for chain maps we see that f 7→ d f − f d looks like a
differential. In fact, it can be made into a differential on a suitable complex.

Definition. Define the hom-complex Hom(A, B) between two complexes as follows:
In degree n we have all collections of maps { fi : Ai // Bi+n}. (These are not chain
maps). The differential is f 7→ f d − (−1)nd f .

Indeed d2( f ) = d(d f − (−1)n f d) − (−1)1(d f − (−1)n f d)d = 0.

Remark. There is a sign rule that says whenever an element a of degree |a|moves past
an element b of degree |b| a sign (−1)|a||b| should appear.

Remark. Instead of a hom-set we have now defined a hom-complex and in this way
Ch(A ) can actually be enriched over chain complexes Ch(Ab).

Note that the hom set is the Z0 of the hom complex. That begs the question if we
should not be talking about H0(Hom) instead.

Definition. A chain homotopy between to chain maps f and g from A to B is a
collection of map s : An // Bn+1 with ds + sd = f − g. A map f : A // B is a
chain homotopy equivalence if there is g : B // A such that g f and f g are homotopic
to the identity.
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This is equivalent to saying there is a map s ∈ Hom1(A, B) such that d(s) = f − g.
(Note there is a change of sign, which does not matter.)

The next definition is very convenient:

Definition. We define the shifted complex by C[n]i = Ci+n (and correspondingly
C[n]i = Ci+n). We also change the differential of C[n] by a factor of (−1)n. Note
that Hi(C) = H0(C[i]).

One often writes H∗(C) for the graded object ⊕iHi(C)[−i]. (A graded object is a
complex without differentials.)

One confusing thing about this definition is that a chain complex equal to A
concentrated in degree n is A[−n].

Remark. You will also find the definition C[n]i = Ci−n, e.g. in [W].

Note that shift is a functor, we just change indices of chain maps.

With this definition a chain map A // B[n] is precisely a cycle in Homn(A, B).

Lemma 2. Chain homotopic maps induce the same maps on homology .

Proof. Just check it. �

Definition. A chain map inducing isomorphisms on homology is called a quasi-
isomorphism. A and B are quasi-isomorphic if there exists a quasi-isomorphism
between them (in either direction!)

We often write A ' B if A and B are quasi-isomorphic, which is bad notation since it
is an asymmetric definition.

Example 6. For example the chain complex Z
p

// Z in degrees 1 and 0 is quasi-
isomorphic to Z/p. But note there is no morphism, never mind a quasi-isomorphism,

from Z/p to Z
p

// Z.

It follows from the lemma that chain homotopy equivalences are quasi-isomorphisms.
The converse is not true.

Note that chain homotopies and chain homotopy equivalences are preserved by
additive functors as they are defined in terms of composition and addition. On the
other hand quasi-isomorphisms are not necessarily preserved by additive functors.
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Definition. Given a chain map f : A // B we define the cone, cone( f ) with

underlying graded module A[−1] ⊕ B and differential
(
−dA

− f dB

)
. If A and B are

cochain complexes we have to take the underlying graded module to be A[1] ⊕ B.

Lemma 3. The map f is a quasi-isomorphism if and only if cone( f ) is exact.

Proof. There is a short exact sequence B // cone( f ) // A[−1]. The diagram chase
of the snake lemma shows that the boundary in the associated long exact sequence is
f∗ : H∗(A) // H∗(B). Then the result follows. �

Definition. A non-negative chain complex C∗ with homology equal to M in degree
0 and zero elsewhere is quasi-isomorphic to M by the map that is 0 in degrees other
than zero and projection C0 = Z0(C) // H0(C) in degree 0. We call such a map a
resolution of M by C and write M∗ // C.

2.2. Exact functors

Short exact sequences are a way to encode injections, surjections and extensions. We
now examine what functors do to them.

Definition. An additive functor that preserves short exact sequences is called exact.
An additive functor that sends an exact sequence 0 // A // B //C // 0 to an exact
sequence 0 // F(A) // F(B) // F(C) (not necessarily exact on the right!) is called
left exact. Similarly for right exact functors.

Example 7. For any object M of A the functor Hom(M,−) : A // Ab is left exact.
The functor Hom(−,M) : A op // Ab is also left exact.

Let M be an arbitrary R-module. The functor − ⊗R M : R-Mod // Ab is right exact.

All of this is easy to check. On the other hand, none of these functors is exact in
general.

Note that left adjoints are right exact, right adjoints are left exact. This follows since a
functor is right exact if it preserves cokernels. Cokernels are colimits and left adjoints
preserve colimits.
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Example 8. Let M be an (R, S )-bimodule, i.e. it is a left R-module and a
right S -module (equivalently, it is a left R ⊗ S op-module). Then HomR(M,−) :
R-Mod // -Mod is a right adjoint of M ⊗S − : S -Mod // R-Mod. I.e. given an
R-module A and an S -module B we have HomS (B,HomR(M, A)) � HomR(M⊗S B, A)
and the isomorphism is natural in A and B.

Our next goal is to approximate functors by exact functors. First note that every
additive functor preserves, i.e. is exact on split exact sequences.

This is thanks to the 3rd characterisation in the following lemma.

Lemma (Splitting Lemma). For a short sequence A
f

// B
g

// C in an additive
category the following are equivalent:

1. The morphism g is a cokernel of f and f has a left inverse r.

2. The morphism f is a kernel of g and g has a right inverse s.

3. There are morphisms A
r
← B

s
← C such that the identities r f = 1A, g f = 0,

rs = 0, gs = 1C and 1B = f r + sg hold.

4. The sequence A
f

// B
g

// C is isomorphic to the sequence A
i //

A ⊕ C
p

// C, i.e. there is an isomorphism B � A ⊕ C making the obvious
diagram commute.

Proof. The last two items are equivalent by definition (the isomorphism A ⊕C � B is
given by maps f + s : A⊕C // B and (r, g) : B // A⊕C). Clearly these imply the first
two items. So let us show 2. implies 3. (1. implies 3. will be similar). By assumption
we have gs = 1C and g f = 0.

Next we need to produce r. Consider h = 1B − sg. As gh = 0 we know h factors
through f uniquely, say h = f r. This gives 1B = f r + sg. Since f r f = h f = f and f
is monic we have r f = 1A. Moreover hs = 0 gives rs = 0. �
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3. Derived functors

Derived functors via projective resolutions. The long exact sequence.
Examples.

3.1. Introduction

Consider the result of applying a right exact functor to a short exact sequence
A // B // C. If F is not left exact then F(A) // F(B) is not monic. So there is a
cokernel. Can we compute this cokernel in terms of F and the short exact sequence?
Maybe not the cokernel, but something which contains the cokernel, and then we try
to determine the cokernel of the new map . . . In other words, if we can’t get a short
exact sequence, can we get a long exact sequence?

If, for example, F was exact on some short exact sequence of complexes, that would
give rise to a long exact sequence of homology groups. We are not given complexes,
we are given objects in A . But recall that complexes with no homology are like
contractible spaces. So we can identify complexes with a single homology group in
degree 0 with their homology group.

Next we need to force F to be exact on a sequence of complexes. We know that any
additive functor will preserve split exact sequences. We can relate being split to nice
properties of modules:

Definition. An object M in an abelian category is projective if for any epi q : A // B
and any map f : M // B there is a lift g : M // A such that q ◦ g = f . The dual
notion is called injective.

It is easy to see that M is projective if only if Hom(M,−) is an exact functor and dually
N is injective if and only if Hom(−,N) is an exact functor.

Example 9. In R-Mod it is easy to show that M is projective if and only if it is a
summand of a free module. An example of a non-free projective R-module is given
for R = Matn(S ) by the module of column vectors S n.

Injective modules are more unwieldy. An example of an injective Z-module is Q.

Lemma 4. If C is projective then A // B // C is split. Similarly if A is injective.

14
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Proof. Use the identity map C // C and the splitting lemma. �

Definition. A projective resolution of A is a levelwise projective complex quasi-
isomorphic to A.

Definition. The i-th left derived functor of a right exact functor F is defined as
LiF(A) B Hi(F(P)) where P is a projective resolution of A.

Note that by right exactness of F we always have L0F(A) = F(A) and L<0F(A) = 0.

Example 10. We define TorR
i (A, B) to be Li(− ⊗R B)(A). Consider the category of

abelian groups, i.e. R = Z. We have a projective resolution Z
p

// Z. We find that

Tor(Z/p, B) = H(B
p

// B). Hence Tor0(Z/p, B) = B/pB and Tor1(Z/p, B) = pB

Example 11. We define ExtiR(A, B) to be RiHomR(−, B)(A). Consider the category of
abelian groups, i.e. R = Z. Note that an injective resolution in Z-Modop is given by

a projective resolution in Z-Mod. So Z
p

// Z is a suitable resolution of Z/p again

and we find Ext∗(Z/p, B) = H∗(B
p

// B). So Ext0(Z/p, B) = pB, the submodule of
p-torsion elements, and Ext1(Z/p, B) = B/pB.

Remark. You may wonder what happens if instead we consider Li(A ⊗R −)(B) or
RiHomR(A,−)(B). We’ll prove in Proposition 32 that we get the same answers as
before, this is called balancing.

3.2. Proofs

Definition. A category has enough projectives if for every object there is an
epimorphism from a projective object. Dually a category has enough injectives if
for every object there is a monomorphism to an injective object.

Example 12. R-Mod has enough projectives, there is always a surjection F(M) //M,
from the free module generated by the elements of M to M. It also turns out that
R-Mod has enough injectives. Details are on the example sheet.

The abelian category of sheaves on X has enough injectives but does not have enough
projectives.

Lemma 5. Projective resolutions exist in A if there are enough projectives in A .
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Proof. Let A be an object of A . There is a projective object P0 and a short
exact sequence 0 // K1 // P0 // A // 0. Inductively there are short exact
sequences Ki+1 // Pi // Ki. Since the kernel of one such sequence is the cokernel
of the next these short exact sequences assemble to give a long exact sequence
. . . // P1 // P0 // A // 0. (This is called splicing.) �

Theorem 6 (Comparison Theorem). Let ε : P∗ // M and η : Q∗ // N be projective
resolutions and f : M // Q a homomorphism. Then there is a lift f̃ : P∗ // Q∗
of f , i.e. there we have η ◦ f̃ = f ◦ ε. Moreover, f̃ is unique up to chain homotopy
equivalence.

Proof. Exercise! (See example sheet.) �

Corollary 7. Projective resolutions are well-defined up to a chain homotopy and
hence the derived functors are well-defined.

Proof. Lift the identity to two comparison maps between the two resolutions. Their
compositions lift the identity, so the maps are homotopy equivalences. �

The theorem also allows us to define Li f as Hi( f̃ ).

Corollary 8. The i-ith left derived functor is a functor.

Lemma 9 (Horseshoe lemma). Given a short exact sequence A1 // A2 // A3 with
projective resolution P1 // A1 and P3 // A3 there exists a projective resolution
P2 // A2 such that P2

i = P1
i ⊕ P3

i and the inclusion and projection maps lift the maps
A1 // A2 // A3.

Proof. We proceed by induction. Let P2
0 = P1

0 ⊕ P3
0. To define the map ε to A2 we lift

ε3 : P3
0

// A3 to map to A2 and we compose ε1 with the inclusion A1 // A2. Now we
see coker(ε2) = 0 by the snake lemma, and ker(ε1) // ker(ε2) // ker(ε3) is exact,
also by the snake lemma. This completes the induction step. �

Corollary 10. A s.e.s A // B // C in A gives a long exact sequence of derived
functors

. . . LF2(C) // L1F(A) // L1F(B) // L1F(C) // FA // FB // FC // 0

16
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Proof. By the horseshoe lemma we know we can compatibly resolve and get a short
exact sequence of projective complexes that is levelwise split. As any additive functor
is exact on split exact sequences we are done by the snake lemma. �

Proposition 11. The boundary map is natural, i.e. given two short exact sequences
with maps fi between them we have ∂ ◦ Li f3 = Li−1 f1 ◦ ∂.

Not a proof. This requires a bit of work, see [W] Theorem 2.4.6. �

To compute right derived functors we do everything with injective resolutions. We do
not need to do any more work, we just argue in the opposite category!

Similarly, note that Hom(−,M) is contravariant, so it’s a functor A op //R-Mod. Now
an injective resolution in A op is a resolution by projectives in A .

We would like some universal property to make our derived functors canonical. Note not lectured
that what we have here is enough to work with most derived functors. Moreover, we
will look at universality later in the context of derived categories and model categories
to get a better foundational understanding. For completeness here is the definition:

Definition. A homological δ-functor is a a collection of additive functors Ti, together
with boundary maps ∂ : Tn(C) // Tn−1(A) for every short exact sequence, that form a
long exact sequence for every short exact sequence, and which are natural with respect
to maps of short exact sequences. A universal homological δ-functor is a δ-functor Tn

that is universal, i.e. given any δ-functor S and map f0 : S 0 // T0 there is a unique
morphism of δ-functors {S n // Tn} extending f0.

As it’s defined via a universal property the universal δ-functor is unique. One can
show that our left derived functors are universal δ-functors, see [W] 2.4.7.

3.3. F-acyclics
not lectured

Do we really need injective and projective objects to compute derived functors?

Definition. Let F be a left exact functor. We say an object A is F-acyclic if
R,0(A) = 0. Similarly for right exact functors. An F-acyclic resolution is defined
as a resolution by F-acyclic objects.
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Example. In the category ChR flat modules are − ⊗R M-acyclic for any module M.
Recall a module is flat if −⊗R M preserves injections, hence if −⊗R M is exact and all
Tor>0(A,M) = 0. (We are using balancing.)

It turns out that a resolution of F-acyclics suffices to compute derived functors.

Proposition. Let F be left exact and A // J an F-acyclic resolution. Then H∗(FJ) �
R∗FA.

Proof. See first example sheet. �

Remark. This is useful, but clearly not enough. It is well known that the category of
quasi-coherent sheaves on a variety does not have enough projectives. Still we would
like to derive the tensor product. We say a class of objects D is adapted to a left exact
functor F if F maps any acyclic bounded below cochain complex of objects in D into
an acyclic complex, and if any object injects into an object of D . Dually for right
exact functors. (In particular restrict to bounded below chain complexes.)

In the category of OX-modules on a variety X on sees that locally free sheaves are flat
(a sheaf is flat if its stalks are) and quasi-coherent sheaves have flat resolutions. Flat
sheaves are adapted to the tensor product and one can compute the derived functors of
− ⊗F even though there are not enough projectives.

To see how to develop the theory of derived functors from adapted objects see [GM]
III.6.
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4. Derived categories

Homotopy category and the derived category. Hom-sets and the
subcategory of injectives. Total derived functors.

4.1. The derived category

To compute derived functors we replaced objects, considered as complexes concen-
trated in degree 0, by quasi-isomorphic complexes. After applying the functor we have
a complex which is typically no longer quasi-isomorphic to a complex concentrated in
degree 0. Hence it makes sense to consider all complexes, up to quasi-isomorphisms,
and try to lift functors to this new category.

Remark. It is non-trivial to invert quasi-isomorphisms, mainly since it is unclear
what happens to morphisms. We’d have to replace by arbitrarily long zig-zags
∗ → ∗ ← ∗ → ∗ ← · · · → ∗ where all right-to-left maps are quasi-isomorphisms. But
if we do not have a set of objects then we do not have sets of morphisms and things
get messy.

Definition. Given an abelian category A we define the homotopy category K(A ) to
be the category with the same objects as Ch(A ) but with morphisms equal to the
homotopy classes of chain maps.

There are different boundedness conditions we can put on chain complexes, and hence
on Ch(A ) and K(A ). Let Chb(A ) to be the category of bounded chain complexes,
i.e. those A∗ such that An = 0 for all but finitely many n. Chb(A ) is the category
of bounded cochain complexes. We also define Ch+(A ), resp. Ch−(A ), to be the
categories of chain complexes that are bounded below, resp. above. K+(A ), K−(A )
etc. are defined similarly.

Definition. Given a category A and a class of morphisms S we define the localization
of A at S to be a category B with a functor Q : A // B such that Q(s) is an
isomorphism for any s ∈ S and which is universal with this property: Any A // C
that sends all s ∈ S to isomorphisms factors through Q.

Definition. We define the derived category D(A ) as the localization of K(A ) at the
class of quasi-isomorphisms. Write QA : K(A ) // D(A ) for the natural functor.
Db(A ) is defined similarly from Kb(A ), etc.
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Theorem 12. D(A ) exists.

Not a proof. See [GM] III.2 or [W] 10.3 for details of the proof.

I’ll just give some comments about the shape of the proof: As above, localization not lectured
means that we throw in an inverse f −1 for every quasi-isomorphism f . This is a lot
like Ore localization for (noncommutative) rings, if you’ve met that. The content is in
working out suitable conditions for the existence of a localization, and checking that
they are satisfied in our case. A class of morphisms is called localising if

• S contains the identities and is closed under composition.

• Given morphisms A′
s
→ A ← B with s ∈ S there are morphisms A′ ← B

t
→ B

with t ∈ S making the obvious diagram commute. And dually given the second
pair of morphisms there exists the first one.

• Given any morphism f , g the existence of s ∈ S with s f = sg is equivalent to
the existence of t ∈ S with f t = gt.

The second condition allows us to write any morphism in the derived category as a
2-term zig-zag ∗ ← ∗ → ∗.

This is sometimes called a calculus of fractions.

These conditions hold for quasi-isomorphisms in the homotopy category, but not in
the category of chain complexes. �

Remark. Db(A ) is equivalent to the subcategory of D(A) given by complexes whose
cohomology is concentrated in bounded degrees. This does not hold on the level of
homotopy categories.

Remark. We will deal with the existence of localisations later when we work with
model categories, and hopefully prove a generalisation of this result.

Example 13. Let X be a scheme. Let Coh(X) be the abelian category of coherent
sheaves on X. We define the derived category of X, Db(X), as the derived category of
Chb(Coh(X)).

As Coh(X) has neither injectives nor projectives we typically enlarge the category to
do computations. Let QCoh(X) is the abelian category of quasi-coherent sheaves on
X. If X is Noetherian then Db(X) is equivalent to the subcategory of Db(QCoh(X))
consisting of complexes whose cohomology sheaves are coherent.
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Because of its definition D(A ) is a bit hard to work with. For example, it’s an additive
category, but that is not obvious from the definition! It is also not abelian.

However we have the following very useful result:

Theorem 13. Given a complex of injectives I ∈ K+(A ) and any cochain complex A
we have HomK(A)(A, I) � HomD(A )(A, I).

Sketch of proof. The crucial ingredient is the fact that HomK(A )(−, I) sends quasi-
isomorphism to isomorphisms in Ab. This allows us to uniquely replace A

∼
← B → I

by A // I. Now consider a quasi-isomorphism f : A // B. We consider the short
exact sequence B // cone( f ) // A[−1]. Now we show that Hom(−, I) sends acyclic
complexes to acyclic complexes. In fact, let g : C // I[i] be any chain map from
an acyclic C to shifted I. Then we need to construct a homotopy to the zero map,
which we can do term by term using injectivity of the Ii. It follows that Hom(A, I) and
Hom(B, I) are quasi-isomorphic, hence for their zeroeth homology groups we have
Hom(A, I) � Hom(B, I). �

The following corollary allows us to compute hom-sets in the derived category.

Corollary 14. Assume A has enough injectives. Then for objects A, B ∈ A
considered as complexes concentrated in degree 0 we have HomD(A )(A, B[i]) =

Exti(A, B).

Proof. Both sides equal HomD(A )(A, I[i]) = HomK(A )(A, I[i])) where I is an injective
resolution of B. �

Remark. This result remains true with the same proof for A, B any bounded below
complex as long as we define Exti(A, B) suitably, i.e. via level-wise injective resolution
of B.

Corollary 15. Assume A has enough injectives. Consider the subcategory
K+(Inj(A )) of K+(A ) that consists of levelwise injective complexes. Then
K+(Inj(A )) is equivalent to D+(A ).

Proof. Full faithfulness follows from Theorem 13. To show inclusion is essentially
surjective we have to injectively resolve complexes, which we’ll do in Lemma 35. (Or
you can do it now as an exercise.) �
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4.2. Total derived functors

We can now interpret derived functors differently: They lift functors to the derived
category. But we need to change our definition a little:

Definition. Let F : A // B is a left exact functor. By Corollary 15 we can choose
an equivalence of categories Φ : D+(A ) // K+(Inj(A )).

Then the right derived functor RF : D+(A ) // D+(B) is defined as QB ◦ F ◦ Φ.

If we need to disambiguate we will call the RiF the classical derived functors and RF
the total derived functor.

By Theorem 6 we can use any injective resolution of A to compute RF(A).

Proposition 16. There is a natural transformation ε : QB ◦ F // RF ◦ QA

between functors K+(A ) // D+(B). Moreover, the pair (RF, ε) is initial, i.e. given
G : D+(A ) // D+(B) and φ : QB ◦ F // G ◦ QA there is a unique natural
transformation ρ : RF // G such that ρ ◦ ε = φ.

Not a proof. [GM] III.6.8 or [W] 10.5.6. �

Remark. In fact, this characterisation of the derived functor via the universal property
is arguably the correct definition of the derived functor. Not only is it nice and
conceptual, but it is also available if A does not have enough injectives or projectives!
Note that [GM] develop the theory of derived functors without reference to injective
objects, using adapted objects, see Section 3.3.

4.3. Triangles
not lectured

Definition. Given a chain map f : A // B we define the cylinder, cyl( f ) to be the
complex which is An ⊕ An−1 ⊕ Bn in degree n and has differentialdA 1A

−dA

− f dB

 : An ⊕ An−1 ⊕ Bn−1 // An−1 ⊕ An−2 ⊕ Bn−1

22



Homological and Homotopical Algebra

It can be checked ([W] 1.5.6) that the natural inclusion B // cyl( f ) is a chain
homotopy equivalence with inverse (a, a′, b) 7→ f (a′) + b.

Note that we have a short exact sequence of complexes A // cyl( f ) // cone( f ). If

A
f

// B // C is a short exact sequence we have compatible quasi-isomorphisms.

The sequences A // cyl( f ) // cone( f ) //A[−1] are called strict exact triangles and
the sequences isomorphic to them in the derived category are called exact triangles.
These generalise short exact sequences. They satisfy certain axioms, making the
derived category into a triangulated category.

Remark. Derived categories and triangulated categories are very fruitful objects of
study. However, inverting all quasi-isomorphisms throws out a lot of information and
sometimes one wants to keep it and work with an enhanced derived category. That
could mean working with categories enriched in chain complexes, a.k.a. differential
graded categories, or with some other notion of stable infinity categories.

Proposition. Derived functors preserve exact triangles.

Not a proof. E.g. [GM] III.6. �
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II. Applications and Examples

5. Ext and extensions

Ext-groups and extensions.

5.1. Ext1 classifies extensions

The right derived functors of Hom(A,−) are called Exti(A,−). In fact they agree with
the derived functors of Hom(−, B) and we will use that. There is an elementary proof,
but we will prove it using spectral sequences in Proposition 32

Let us consider objects A, B and C in A . Then composition induces a product
Exti(A, B) ⊗ Ext j(B,C) // Exti+ j(A,C). We choose injective resolutions B // I and
C // J and consider the composition:

HomK(A ))(A, I[i]) ⊗ HomX(A )(I[i], J[i + j]) // HomK(A )(A, J)

In particular Ext∗(A, A) is an algebra.

We will now develop a very nice interpretation of Ext1, relating to extensions. Recall

that a short exact sequence A // B
g

// C in A can be viewed as an extension of C
by A. We call it split if C � A ⊕ B.

To relate this to Ext-groups us apply RHom(C,−) and see what happens. We get a
boundary map ∂ : Hom(C,C) // Ext1(C, A). So what is ∂(1)?

Lemma 17. The class ∂(1C) is 0 if and only if the s.e.s. defining ∂ is split.

Proof. If the sequence is split the map induced by g is surjective. For the converse
note that exactness means 1 lifts to a map C // B if ∂(1) = 0. �

We call ∂(1) the obstruction to splitting.

We say two extensions A // B // C and A // B′ // C are equivalent if there is an
isomorphism B // B′ that makes the obvious diagram commute.
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Theorem 18. There is a bijection between Ext1(C, A) and extensions of C by A up to
isomorphism.

Example 14. Consider short exact sequences of the form

Z/p
j

// A
k // Z/p

Now if the sequence is split A � Z/p⊕Z/p. Otherwise A � Z/p2 and then j : 1 7→ ap,
with a ∈ {1, . . . , p − 1}. This gives p extensions. On the other hand we can easily see
that Ext1(Z/p,Z, p) � Z/p.

Proof of Theorem 18. The above construction gives us a map Ψ : {extensions} //Ext1.

Let us consider the beginnings of a projective resolution, 0 // M
i // P // C // 0

where P is projective. Then a class in Ext1(C, A) is represented by a map α : M // A.
We define B to be the pushout of i and α, i.e. the cokernel of (α,−i) : M // A ⊕ P.
Write jA and jP for the obvious maps from A and P to B.

0 // M // P // C // 0
↓α ↓ jP =

0 // A
jA // B = (A ⊕ P)/M // C // 0

Then as i is an injection, A is a subobject of B: consider jA(a) = 0, i.e. (a, 0) =

(α(m),−i(m)), which forces m and hence a to be 0. Next

B/A � coker(( jA + α, i) : A ⊕ M // A ⊕ P) � P/M � C

so we get an extension.

Now assume we are given α′ homologous to α. That means α′ = α + f i for
some f : P // A. We need an isomorphism between B = (P ⊕ A)/(i ⊕ α)M and

B′ = (P ⊕ A)/(i ⊕ α′)M. Clearly
(
1 f
0 1

)
and

(
1 − f
0 1

)
are inverse isomorphisms.

So there is a map Φ : Ext1 // {extensions}.

We can show Ψ is surjective by checking Ψ ◦ Φ = 1. Starting with α, we construct
A // B // C and want to show that ∂(1C) = [α]. We can do that by chasing 1C

through the following diagram as is done in the proof of the snake lemma:

0 // Hom(M, A) // Hom(M, B) // Hom(M,C)
↑ ↑ ↑

0 // Hom(P, A) // Hom(P, B) // Hom(P,C) // 0
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Let us actually go the other way. We know α : M // A is sent to jA ◦ α : M // B
which equals jP ◦ i : M // B, which is the differential of jP : P // B which maps
to the projection map P // C which does indeed represent 1C . Retracing the steps
backwards shows that α = ∂(1C).

Next we consider the converse. Assume we are given an extension 0 // A
j

//

B
k // C // 0. Then we get a map β : P // B by projectivity of P. This leads

to M // B which factors through α : M // A by universality of the kernel. By
construction this is ∂(1C).

0 // M
i // P // C // 0

↓ α ↓ β =

0 // A
j

// B
k // C // 0

We now show that B is the pushout (P ⊕ A)/M. That proves Φ ◦ Ψ = 1. Clearly
B/(P ⊕ A) = 0, showing surjectivity of the natural map j ⊕ β. To show injectivity
consider the kernel of j ⊕ β. If j(a) + β(p) = 0 we must have kβ(p) = 0, hence p = im
for some m ∈ M. Note that a = α(m) by construction of α. �

5.2. More on extensions

Remark. Note that B we would like to think of B as the cone over “C[−1] // A”.
In the derived category there is indeed a map from C[−1] to A and B can indeed be
defined as a cone. Explicitly, on the level of cochain complexes, we consider the

map (α, 0) : (M
−i // P) // A] (here M and A are in degree 0). Then the cone is

the complex (M
(i,−α)

// P ⊕ A) which is quasi-isomorphic to its homology, which is
precisely how we defined B. (Note here that the cohomological cone has underlying
complex C[−1][+1] ⊕ A and the differential i changes sign twice.)

There is also an addition defined directly on extensions, called the Baer sum. It

is the only thing you can define: Take an extensions A
i // B

p
// C and

A
i′ // B′

p′
// C. Then B ⊕ B′ is an extension of C⊕2 by A⊕2, so we need to

kill a copy each of A and C. We define Q = ker(B⊕B′
p−p′

// C) and note that there are
two natural inclusions A // Q induced by i and i′. To identify them we quotient by

the skew diagonal and define B′′ = coker(A
(i,−i′)

// Q) which fits into A // B′′ // C.
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We can write this as a pullback along the diagonal ∆ : C // C ⊕ C followed by a
pushout along the addition map + : A ⊕ A // A.

0 // A ⊕ A
i // B ⊕ B′ // C ⊕C // 0

= ↑ x ↑∆

0 // A ⊕ A // Q // C // 0
↓+ y ↓ =

0 // A // B′′ // C // 0

Moreover, this addition agrees with addition in Ext1. The proof is not hard, we begin
with the diagonal map (α, α′) representing the extension B⊕ B′ and then we compose
with diagonal and addition map to get α + α′ representing B′′. See also [W] 3.4.5.
Remark. Now we can define Ext groups via extensions, even if we do not have enough
projectives. (For example in the category of finite abelian groups.)

Note that Extn(C, A) = Ext1(C, A[n− 1]) classifies extensions of C by A[n− 1]. These
are given by complexes now. To prove this we can go through the proof, replacing
the partial resolution by a longer one. To be precise we replace P∗ by a complex of
projectives of length n such that M // P∗ // C is exact. Then a map in Extn(C, A)
is again represented by a map M // A. We can go through the proof and interpret
everything in terms of complexes, for example f is understood to be a chain map, and
the chain map β is constructed degree by degree. The proof goes through! Moreover,
we can replace A by a complex. Now we need to resolve C further to be able to write
down a chain map P∗ // A, where P∗ ' C.

Now an extension of C[1 − n] by A can also be viewed as complexes of length n with
first and last homology group A respectively C, i.e. these give rise to exact sequences
with n + 2 terms (up to isomorphism):

0→ A→ B1 → B2 → . . .→ Bn → C → 0

Two such sequences are equivalent if there is a family of maps fi : Bi //B′i compatible
with each other and the identities on A and C. Together with a suitable definition of
Baer sums this allows us to define higher Ext-groups without projectives.
Remark. We can go even further and consider Ext1(C, A) for two complexes C and not lectured
A. Let us say C is bounded below. We then define Ext1(C, A) = HomCh(A )(P, A[1]),
where P // C is a quasi-isomorphism and P is level-wise projective. We will see in
Lemma 35 that such a resolution exists. Now short exact sequences A // B // C in
Ch(A ) are classified by Ext1(C, A).
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Remark. This is just one example of the rich story of cohomology classes with
interpretations as moduli. Indeed, many natural mathematical questions about families
of objects have precise homological answers:

• Extensions of a group G by an abelian group A are given by H2(G, A) B

Ext2ZG(Z, A), cf. [W] 6.6.

• Line bundles on a variety are given by H1(X,O∗).

• Deformations of a complex manifold are described by H1(X,TX) where TX is
the tangent sheaf on X.

• The space of deformations of an algebra A over k[t]/(t2) is given by the second
Hochschild cohomology group HH2(A, A).

• In fact, one can define HH2(X) for an algebraic variety which describes both
geometric and non-commutative deformations of X and encompasses the two
previous examples.

• The Brauer group Br(K) of a field is defined as follows: Its elements are not lectured
central simple K-algebras, i.e. K-algebras which are simple rings with centre
K, up to the equivalence relation that Mn(D) � Mm(D) for any division
algebra D. It turns out that tensor product provides a group operation. Then
Br(X) = H2(G; K∗s ), the (profinite) group cohomology of the Galois group with
coefficients in the separable closure Ks of K, cf. [W] 6.11.17.
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6. Group cohomology

Group homology and cohomology. The bar complex. Eilenberg-
MacLane spaces.

6.1. Group cohomology

Let G be a (discrete) group and write G-Mod for the category of k-representations
of G, equivalent to the category of kG-modules. Unless stated otherwise we will be
concerned with the case k = Z.

Definition. There is a natural functor G-Modk //k-Mod, defined by taking invariants
A 7→ AG B {a ∈ A | ga = a ∀g ∈ G}. This functor is left exact and hence has right
derived functors.

Dually there is the functor of taking coinvariants, A 7→ AG B A/{ga−a | g ∈ G, a ∈ A}.

One notes that AG = HomkG(k, A) and AG = k ⊗kG A and has the following easy
proposition.

Proposition 19. We have adjunctions −G a T a −G where T : k-Mod // kG-Mod is
the trivial module functor M 7→ M considered as a trivial kG-module.

Proof. These are just the usual adjunctions between Hom and ⊗ once one notes that
T M = Homk(k,M) = M ⊗k k where k is the trivial kG-module. �

Definition. The group cohomology H∗(G,M) of a group G with coefficients in a G-
modules M is given by the right derived functors of taking invariants, Ri(−G)(M).
Dually group homology H∗(G,M) is given by the left derived functors of taking
coinvariants.

By the above group cohomology and homology are just Ext and Tor in kG-Mod.

Example 15. Here is an example that uses Theorem 18: Let G be a finite group. Then
if M,N are any representations over a field with characteristic not dividing |G| then
Ext1G(M,N) = 0 by Maschke’s theorem.

Let us compute one concrete example.
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Example 16. Let Cn have generator g and let A be any Cn-module. We compute
H(Cn, A). To do this we need to resolve the Cn-module Z. Consider the augmentation
map ZCn // Z. Write N = 1 + g + · · · + gn−1. Then we claim that the complex

. . . // ZCn
N // ZCn

(1−g)
// ZCn

N // ZCn
(1−g)

// ZCn
ε // Z

is exact, where tho maps are given by multiplication with the elements N and 1 − g
respectively. We obtain this resolution by splicing together short exact sequences
which we get by examining the kernels and images of our differentials.

• First note that Im(N) = ker(1 − g). It is clear that ZN ⊂ ker(1 − g). On the
other hand suppose (1 − g)

∑
aigi = 0. Comparing coefficients all agi must be

the same, hence a = a0N.

• Next consider ker(ε) = Im(1 − g). The second assertion is clear as gi − 1 span
ker(ε), and each gi − 1 is a multiple of g − 1.

• Finally, ker(1 − ε) = ker(N). Certainly ker(ε) ⊂ ker N. On the other hand
suppose Na = 0. Then 0 = ε(Na) = ε(N)ε(a) = |G|ε(a) which forces a ∈ ker(ε).

Then we can easily compute that

H∗(Cn, A) =


ACn if ∗ = 0

{a | Na = 0}/(1 − g)A if ∗ = 1, 3, 5, . . .
ACn/N.A if ∗ = 2, 4, 6 . . .

Dually H∗(Cn, A) is ACn in degree 0 and even and odd degree terms are swapped.
(H2 = H1 and H1 = H2.)

For a concrete example, let A = Z and we have

H∗(Cn,Z) =


Z if ∗ = 0
0 if ∗ = 1, 3, 5, . . .
Z/n if ∗ = 2, 4, 6 . . .

Remark. If the group G is equipped with a topology we should work in the category
of continuous representations. Two important examples are Lie groups and pro-finite
groups like Galois groups (considering discrete modules).

Remark. Entirely analogously we can consider Lie algebra cohomology H∗(g,−) as
ExtU (g)(k,−), where U (g) is the universal enveloping algebra of the Lie algebra. We
also define Hochschild cohomology for bimodules of an algebra A as HH∗(A,−) =
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ExtA⊗Aop(A,−). Note that an associative algebra does not have a unique trivial
representation. Instead we study the endomorphism algebra A⊗Aop with its canonical
representation A. (This is not quite the right definition if A is an algebra over a ring k
that is not a field.)

6.2. The bar complex

There is an important canonical resolution for the trivial ZG-module Z.

Definition. Define the unnormalized bar complex Bu = Bu(G) as follows: Bu
n is the

free ZG-module generated by symbols [g1 ⊗ · · · ⊗ gn] where gi ∈ G. Bu
0 is just ZG,

and we write 1 as [] for convenience. The differentials are given as d =
∑n

i=0(−1)idi,
where

d0([g1 ⊗ · · · ⊗ gn]) = g1[g2 ⊗ · · · ⊗ gn]

di([g1 ⊗ · · · ⊗ gn] = [g1 ⊗ · · · ⊗ gigi+1 ⊗ · · · ⊗ gn])

dn([g1 ⊗ · · · ⊗ gn]) = [g1 ⊗ · · · gn−1]

It is straightforward to check that this is indeed a complex, i.e. d2 = 0.

Definition. We then define the (normalised) bar complex B∗(G) as the quotient
complex of Bu

∗(G) by the subcomplex generated by elements [g1 ⊗ · · · ⊗ gn] with at
least one gi equal to the identity.

One can check that B∗ is equivalent to the complex with B0(G) = ZG, Bn(G) the free
ZG-module generated by symbols [g1| · · · |gn] where gi ∈ G \ {1}. The differential is
given as for Bu

∗ except that di = 0 if gigi+1 = 1.

Example 17. As the definition of the bar complex is a bit daunting, here are some
concrete computations:

• d([g]) = (g − 1)[].

• d([ f |g]) = f [g] − [ f g] + [ f ]

• Bn(Z/2) = Z/2[g| · · · |g], where g is the generator of Z/2, and the bar complex
is isomorphic to the resolution we used to compute homology of Z/2. (Check
the differentials!)
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We define the augmented bar complex as · · · // B1
d // B0

ε // Z where ε is just
the augmentation map ZG // Z given by g 7→ 1.

Theorem 20. The normalised and unnormalized bar complexes give resolutions of
the trivial ZG-module Z.

Proof. The proofs are very similar, we do the unnormalized case.

We will show that the normalised bar complex is contractible, i.e. we will produce a
chain homotopy between identity and zero map on the complex B∗(G) // Z. This
is equivalent to showing that the augmentation map B∗ // Z is a chain homotopy
equivalence. (Note that this is an equivalence, as chain complexes, not as ZG-
modules.)

We define s−1 : Z // B0 by s−1(1) = [] and sn : Bn // Bn+1 by sn(g0[g1| · · · |gn]) =

[g0|g1| · · · |gn].

Now it is easy to see that ε ◦ s−1 = 1Z and s−1 ◦ ε = ds0. Moreover unravelling
definitions we find dsn = 1Bn−1 + sn−1d. �

Let now A be a right ZG-module. (We could set up the mirror of the bar complex to
deal with left ZG-modules.) Then we have H∗(G; A) = H∗(A ⊗ B∗(G)).

Corollary 21. For any group G we have H1(G;Z) = G/[G,G].

Proof. By the above H1(G;Z) is the free abelian group generated by symbols [g]
modulo the ideal 〈[1], [ f ]− [ f g]+ [g]〉. Now we can write down a map φ from G to H1
given by g 7→ [g]. The map sends f g to [ f g] = [ f ] + [g], hence it is a homomorphism
and must factor through [G,G]. On the other hand there is a map θ : H1 // G given
on the generators by [g] 7→ G/[G,G] and extended linearly. This is well defined,
as [ f ] − [ f g] + [g] 7→ f ( f g)−1g = [ f , g−1] ∈ [G,G]. The two maps are clearly
inverses. �

We finish this section with a view to algebraic topology.

Definition. There are connected spaces K(G, 1), unique up to homotopy, whose
homotopy groups are π1 = G and π>1 = 0. These are called Eilenberg-MacLane
spaces.

Theorem 22. H∗sing(K(G, 1), k) = H∗(G, k).

32



Homological and Homotopical Algebra

This is very reassuring.

Idea of proof. Here are two ways one can prove this, we might learn a little bit more
about one of them later on.

We can construct K(G, 1) as the quotient of some contractible EG by a properly
discontinuous G-action. (This is an Eilenberg-MacLane space thanks to the long
exact sequence of homotopy groups.) But then ZG acts freely on Sing∗(EG) and
the invariants are singular chains on the quotient.

We will later meet simplicial sets, which give an explicitly combinatorial model for
topological spaces. There is a classifying space construction in simplicial sets and one
can compute homotopy groups of the classifying space to be the homotopy groups of
Eilenberg-MacLane spaces. On the other hand the classifying space looks a lot like
tho bar complex and indeed the (co)homology groups are given by the bar complex
above. �
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7. Homological dimension

Global/homological dimension. Global dimension theorem. Koszul
resolutions and Hilbert’s theorem on syzygies.

7.1. Homological dimension

Definition. The projective dimension pdR(M) of a a module M over a ring R is the
smallest n such that there is a resolution 0 // Pn // . . . // P1 // M with Pi

projective. The injective dimension idR(M) dimension is defined dually.

Definition. The (left) global dimension gd(R) of a ring R, also called its homological
dimension is defined as the supM∈R-Mod(pdR(M)).

Right and left global dimension need not agree. We’ll restrict attention to the right
global dimension as most of our examples are commutative anyways. (The two
notions agree for left and right Noetherian rings, see [W] 4.1)

Theorem 23 (Global dimension theorem). The following numbers (possibly∞) agree
for any ring:

1. gd1 = supM∈R-Mod(pdR(M)) = gd(R)

2. gd2 = supM∈R-Mod(idR(M))

3. gd3 = sup{pd(R/J) | J ⊂ R is an ideal}

4. gd4 = sup{d | ExtdR(A, B) , 0 for some modules A, B}

Example 18. It follows that our computation in the last lecture show gd(ZCn) = ∞.
Also note that if k is a field then gd(k) = 0. A question on the first example sheet
shows that gd(Z) = 1.

Lemma 24. For any R-module M the following are equivalent:

1. id(M) ≤ d

2. ExtnR(N,M) = 0 for any n > d and N ∈ R-Mod

3. Extd+1(N,M) = 0 for any N ∈ R-Mod

4. If 0 // M // I0 // . . . // Id−1 // Q // 0 is a resolution with Ii injective
than Q is also injective.
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Proof. Exercise. (You just need four implications.) �

Lemma 25 (Baer’s criterion). A module I is injective if and only if every map J // I
from an ideal of R can be extended to a map from R.

Proof. E.g. [W] 2.3.1. The proof uses Zorn’s lemma. �

Proof of Theorem 23. The lemma and its dual show that the quantities gd1, gd2 and
gd4 agree. Also gd3 is clearly smaller or equal than the others. So let us assume
d = gd3 is finite and take an arbitrary module M. Take a partial injective resolution
of M, M // I0 // . . . // Id // Q // 0, where the Ii are injective. It suffices
to show M is also injective. Note that for any ideal J ⊂ R we know Ext1(R/J,Q) =

Extd+1(R/J,M) = 0 by assumption.

But the short exact sequence Q // R // R/J shows that

Hom(R,Q) // Hom(J,Q) // Ext1(R/J,Q)

is exact in the middle. So the map on the left is surjective for all ideals. By Baer’s
criterion this shows Q is injective. �

Example 19. Recall that a ring R is semi-simple if every ideal is a direct summand. It’s
easily seen this is equivalent to R having global dimension zero. (Consider the s.e.s.
I // R // R/I.) This is also equivalent, by Theorems 23 and 18, to saying that all
extensions of R-modules are split. We say the category of R-modules is semi-simple.

You may recall that semi-simple rings are precisely direct sums of matrix algebras
over division rings, by Wedderburn’s theorem.

Remark. Regular local rings have finite global dimension and local rings with
finite global dimension are regular. One important application of this result is that
localisations of regular local rings are regular. We don’t have time to do it, but if
you like commutative algebra have a look at the proof in [W] 4.4, for example. It’s a
serious proof, but it seems to be by far the easiest way (but not the only way) to show
this pure commutative algebra result.
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7.2. Hilbert’s theorem

One of the crucial examples (predating most of homological algebra!) is the
following:

Theorem 26 (Hilbert’s syzygy theorem). Let R = k[x1, . . . , xn] be a polynomial ring
over a field. Then gld(R) = n.

Note that we (like Hilbert) will prove that the “free dimension” of R is n, which is a
priori stronger than saying the global (projective) dimension is n. It turns out that the
notions are almost equivalent (see the second example sheet).

Remark. In fact, projective modules over R are necessarily free, but that is a hard
theorem. (Conjectured by Serre, proven by Suslin and Quillen independently.)

Remark. Modules over R are also known as quasi-coherent sheaves on An
k and thus

very interesting objects for algebraic geometers.

We will now prove the theorem, which needs some warming up. To compute with
modules over R = k[x1, . . . , xn] the following class of resolutions is very useful.
(Actually, it is useful in many other settings as well.)

Definition. Let t = (t1, . . . , tm) a sequence of central elements of a ring S . Then let

K(ti) be the complex S .ei
ti // S where the differential is d : ei 7→ ti. Here ei has

degree 1.

We define the Koszul complex K(t) as follows: Kp =
∧p(⊕m

i=1S .ei) and the differential
is

ei1 ∧ · · · ∧ eip 7→

p∑
j=0

(−1) jt jei1 ∧ · · · ∧ êi j ∧ · · · ∧ eip

Example 20. Here is K(x, y) for S = C[x, y]:

0 // S .ex ∧ ey
(y,−x)

// S .ex ⊕ S .ey

(x
y)

// S .1 // 0

In fact we would like to say K(t) B K(t1) ⊗S · · · ⊗S K(tm). To make this precise we
have to define the tensor product of complexes.

Definition. Let A, B be complexes. We let (A ⊗ B)n = ⊕i(Ai ⊗ Bn−i) and dA⊗B
n =

dA ⊗ 1 + (−1)i ⊗ dB. This is the (total) tensor product complex.
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Let’s go back to the Koszul complex. We say t is a regular sequence on an S -module
M if ti ∈ S is never a zerodivisor in M/(t1, . . . , ti−1) B M ⊗S S/(t1, . . . , ti−1).

Lemma 27. Let t be a regular sequence on M. Then K(t) ⊗S M is a resolution of
M/(t1, . . . , tm).

Proof. The result holds for m = 1 as t1 is not a zerodivisor. Now we proceed
by induction: Let t′ = (t1, . . . , tm−1). Then let C = K(t′) ⊗S M, which resolves
M/t′ B M/(t1, . . . , tm−1) by assumption. We are now looking for the homology groups
of K(tm) ⊗S C, which we can arrange as a double complex with two columns and m
rows, and with vertical and horizontal differentials. One can prove directly (or use the
spectral sequence for a double complex, to be introduced shortly) that its homology is
H0(C)/tmH0(C) = M/t, concentrated in degree 0. �

Let’s go back to R = k[x1, . . . , xn] as in the theorem.

Example 21. We can compute ExtR(k, k) or TorR(k, k) using a Koszul resolution. In
fact Ext∗R(k, k) � ∧∗k⊕n.

Proof of Theorem 26. The trick is to consider a resolution of R itself over the bigger
ring S = R[y1, . . . , yn]. There is R′ = k[y1, . . . , yn] ⊂ S and in fact S = R ⊗k R′.

Let t = (t1, . . . tn) with ti = xi − yi. We can rewrite S as R[t1, . . . , tn] and this shows
K(t) is a resolution of R′′ B S/(t1, . . . , tm). Of course R′′ � R. Now K(t) // R′′ is
actually a split exact sequence of R-modules (and R′-modules). As the sequence is
split exact, it stays exact after applying any additive functor, so given any R-module
M we can apply −⊗R M to obtain an exact sequence, which is an S -module resolution
of M � R′′ ⊗R M. We want to show this is a resolution by free R-modules. Note that
all ti are 0 on S/t and hence on M. So the R-module structure and R′-module structure
on the module M are the same. Hence we can compute S ⊗R M = R′ ⊗k M, which is
a free R′ � R-module. So K(t) ⊗R M is a natural resolution of M with n + 1 terms,
showing pd(M) ≤ n. But M was arbitrary.

Finally the computation of ExtR(k, k) shows that the global dimension is at least n. �
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III. Spectral Sequences

8. Introducing spectral sequences

Intuition for spectral sequences. Example. Filtrations.

8.1. Motivation

We’ll be working with cochain complexes. Before giving the definition, we try to
motivate it by considering a desired application.

Definition. A double complex C∗∗ is a collection of objects Ci j together with
differentials di j

h : Ci j // Ci+1, j and di j
v : Ci j // Ci, j+1 which satisfy d2

h = d2
v = 0

and dhdv = −dvdh.

There are two total complexes associated to a double complex: The direct sum
total complex Tot⊕C is defined as the complex (D∗, d) where Dn = ⊕i+ j=nCi j and
d = dh + dv. The direct product total complex Tot

∏
C has (Tot

∏
C)n =

∏
i+ j=n Ci j and

the same differential.

Note that the total complexes will only exist if A has all direct sums, resp. all direct
products. This is certainly the case in R-Mod.

Convention. Throughout this chapter we will assume we work in the abelian category
R-Mod.

Example 22. This looks familiar from our definition of the total tensor product. We
can first define a double complex (A ⊗ B)pq = Ap ⊗ Bq with horizontal differential
dh = dA⊗1 and vertical differential dv = (−1)p1⊗dB. Then (A⊗B)∗ = Tot⊕((A⊗B)∗∗).

How can we compute cohomology of the total complex? Let’s assume our complex is
concentrated in the first quadrant.

Consider an element x in Hn(Tot C). We can represent it as x =
∑m

i=0 xi where
xi ∈ Cp+i,n−p−i. (Here p is minimal such that x0 , 0. Let q = n − p.) Now if x
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is to be exact, we need dvx0 = 0, and dhxi = dvxi+1, and dhxm = 0. So x0 is an element
in H∗v and we have some extra condition about its horizontal differential.

It is useful to introduce a filtration on C. We are going to define filtrations properly
soon, here we just define FnC =

⊕
j≤n C j∗. So x ∈ F pC.

We would like to approximate x by only considering the first few xi. If we quotient
F pC by F p+rC we have [dhxr−1] = 0. Note the quotient by F p+1 precisely kills off the
horizontal differential.

If we want to reconstruct x ∈ F pC/F p+r+1C we need to consider dhxp+r−1 ∈ Fp+r, and
show it is a suitable boundary. This means that if we start by analysing an object in
Cpq we are led to consider if an object in Cp+r,q−r+1 vanishes. And the implicit map
from Cpq to Cp+r,q−r+1 is just induced by d.

So there is a differential associated to considering F pC/F p+rC and taking homology
repeatedly for larger and larger r should approximate the total complex.

In our example looking at a double complex, this means we first compute homology
with respect to dv and then with respect to dh, and then with respect to some new
differential of degree (2,−1).

Hopefully this helps explain where the following definition comes from:

Definition. A (cohomology) spectral sequence starting at Ea in an abelian category
A is the following data:

• A collection Epq
r of objects of A , where r ≥ a and p, q ∈ Z,

• a collection of morphisms dr = dpq
r : Epq

r
// Ep+r,q−r+1

r satisfying (dr)2 = 0,

• isomorphisms Epq
r+1 � ker dpq

r / Im dp−r,q+r−1
r .

The spectral sequence is usually denoted E∗∗r .

Here is the first page of a spectral sequence:

q E02
0 E12

0 E22
0 E23

0

1 E01
0 E11

0 E12
0 E13

0

0 E00
0 E10

0 E20
0 E30

0

0 1 2 p
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Here is a picture of the first few differentials, slightly abusing notation:

q d0a

1 a d1a

0 d2a

0 1 2 p

This is a schematic of E2 with differentials:

q ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 1 2 3 p

And here is a schematic of E3 with differentials:

q ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 1 2 3 4 p

Dually, there are homology spectral sequences.

We typically want to investigate what happens as r becomes large. Let us collect some
terminology.

Definition. A spectral sequence is regular if for every (p, q) there exists an r such that
dpq

s = 0 for all s ≥ r. We say a spectral sequences degenerates at Er if all ds≥r are 0.

Definition. If Epq
r becomes eventually stable, i.e. there exists r0 such that all Epq

r
agree for r ≥ r0 then we define Epq

∞ B Epq
r0 .
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If the spectral sequence does not become stable we can still consider the kernels and
images of the differentials dr and use them to construct Br ⊂ Br+1 ⊂ Zr+1 ⊂ Zr ⊂ Ea.
So let B∞ = ∪Br and Z∞ = ∩Zr and define Epq

∞ = Zpq
∞ /Bpq

∞ .

A spectral sequence is a tool for computing something complicated, e.g. the
cohomology of a total complex, in terms of simpler objects, e.g. the vertical and
horizontal cohomology.

8.2. First examples

Example 23. Consider the following double complex.

Z
3 // Z // Z/3

↑ ↑ ↑

0 // Z // Z

Here all unnamed maps are the identity respectively the natural projection.

I claim this gives rise to a spectral sequence. The underlying doubly graded object is
E0 of a spectral sequence. The vertical differential is d0. Then we can define d1 to be
induced by the horizontal differential, and it must be trivial.

Here is the E2 term of the sequence.

q

1 Z 0 0

0 0 0 3Z

0 1 2 p

?

What should the differential do? Let x denote a generator of E01
0 . We would like to

approximate dx = 0 + dhx. But dhx = dv3y, where y generates E10
0 . And dhy is the

generator z of E20
0 . Hence d2 should send [x] ∈ E01

2 to [3z] ∈ E20
2 . Hence the spectral

sequence degenerates to 0. It is easy to see that the double complex is exact.

The next examples are from topology. (Don’t worry about the details unless you want
to.)
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Example 24. Assume given a (Serre) fibration F // E // B of topological spaces
with fiber F and with base simply connected base B. It is a theorem that there is a
cohomological spectral sequence with E2 = Hp(B,Hq(F)), which degenerates and
“converges” to Hn(E). We’ll define convergence shortly, in practice we often have
⊕pEp,n−p

∞ = Hn(E). This is called the Leray-Serre spectral sequence. Note that over a
field Hp(B,Hq(F)) is just Hp(B) ⊗ Hq(F).

The projection S 2 × S 1 // S 2 is a fibration with fiber S 1, as is the Hopf fibration
S 1 // S 3 // S 2. The two spectral sequences have the some objects in E2:

q

1 H0(S 2,H1(S 1,Z)) 0 H2(S 2,H1(S 1,Z))

0 H0(S 2,H0(S 1,Z) 0 H2(S 2,H0(S 1,Z))

0 1 2 p

?

But the differential d2 : E01
2 � E20

2 is 0 for the product and is an isomorphism for the
Hopf fibration.

8.3. Filtrations and convergence

Most spectral sequences arise from filtrations, and we restrict attention to those.

Definition. A (decreasing) filtration on an object C of A is a collection of subobjects
FnC satisfying FnC ⊂ Fn−1C. The filtration is exhaustive if C = ∪Fn and Hausdorff
if ∩Fn = 0.

Remark. If we are not working in R-Mod we can still define union and intersection as
direct limit and inverse limit, respectively, of the diagram FiC. All we need is that A
is complete and cocomplete.

There are also increasing filtrations, typically denoted FnC, which can be defined
completely analogously (and are typically encountered in homological examples).

For a filtration of complexes we define the following:
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Example 25. Let C be a complex. There are two important filtrations we can always
define. The canonical filtration on C is defined by

(τ≥nC)m =


Cm if m > n
Zm if m = n
0 if m < n

The stupid filtration is defined by.

(FnC)m =

{
Cm if m ≥ n
0 if m < n

Definition. The associated graded object or just the associated of (C, F) is defined as
the graded object which is Grp

FC = F pC/F p+1C in degree p.

The associated graded of the stupid filtration is Grp
F(C) = Cp. The associated graded

of the canonical filtration is Grp
τ (C) ' Hp(C).

We still need to define what it means for a spectral sequence to converge, which turns
out to be a little subtle. We begin by thinking about the case of a filtered complex C.
We want to compute cohomology of the filtered complex starting with the associated
graded complex.

Example. A double complex is filtered by columns, say. The cohomology of the
associated graded is vertical cohomology.

Getting the full homology seems too much to ask, but the filtration on C associates a
filtration on cohomology, and we can often find the associated graded of homology of
C.

Definition. A spectral sequence Er weakly converges to H∗ if there is a filtration on
every Hn such that Epq

∞ � Grp Hp+q. We often write this as Epq
a ⇒ H∗

This allows for lots of really silly examples unless the filtration on the Hn is exhaustive
and Hausdorff. Even then we cannot tell the different between H0 = C[t] and
H0 = C[[t]], and that is not good enough. So we sharpen the definition one more
time:

Definition. The completion of a filtered complex is Ĉ = lim
←−−

C/FnC and a filtration is
complete if C � Ĉ.
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Recall that lim
←−−

C/FnC is the limit of the diagram

· · · // C/Fn+1C // C/FnC // C/Fn−1C // · · ·

For example C[[t]] = lim
←−−
C[t]/(tn).

Definition. Er converges to H∗ if the spectral sequence is regular and weakly
converges to H∗, and if the filtration on every Hn is exhaustive and complete (and
thus Hausdorff).

Example 26. If a spectral sequence degenerates and is bounded then it converges to
H∗ = ⊕pEp,∗−p

∞ . Just use the filtration coming from the first grading, Fr = ⊕p≥rEp,∗−p
∞ .

Remark. If the case the filtration on H∗ is exhaustive and Hausdorff, but not
necessarily complete one sometimes says Er abuts to H∗ or approaches H∗.

To make the subject even more confusing the nomenclature is not quite standardised.
We follow [W]. [GM] say “converges” where we say approaches, and McCleary: A
User’s Guide to Spectral Sequences uses “convergent” for our weakly convergent.
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9. The spectral sequence of a filtration

Convergence theorem for the spectral sequence of a filtration. Double
complexes. Balancing.

9.1. The convergence theorem

Let us now define boundedness for filtrations and for spectral sequences, the two are
closely related.

Definition. A filtration on C∗ is bounded if for every n there are integers a ≥ b such
that FaCn = 0 and FbCn = Cn. F is bounded below if for every n there is an a such
that FaCn = 0. F is bounded above if for every n there is a b such that FbCn = Cn.

Definition. A spectral sequence is bounded if, for some r, for each n there are only
finitely many terms of total degree n in Er. It is bounded below if for each n the terms
of total degree n vanish for large p. A spectral sequence that vanishes in the second
quadrant is bounded below, but not bounded. It is bounded above if terms of total
degree n vanish for small p.

Note a bounded below spectral sequence is regular. A bounded above spectral
sequence need not be.

We are now ready to state the main theorem of this chapter.

Theorem 28. For every filtered cochain complex (C, F) there is a spectral sequence
with Epq

1 = Hp+q(Grp
F(Cp+q)).

1. If F is bounded then the spectral sequence is bounded and converges to H∗C.

2. If F is bounded below and exhaustive than the spectral sequence is bounded
below and converges to H∗C.

3. If F is complete and exhaustive and the spectral sequence is regular then the
spectral sequence converges weakly to H∗C. If Er is moreover bounded above
then it converges to H∗C

Not a proof. I’m not going to prove this, but I will define the spectral sequence.
First we define the first page: Epq

0 = F pCp+q/F p+1Cp+q. We see that this shows
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the spectral sequence is bounded/bounded above/bounded below if the filtration is
bounded/bounded above/bounded below.

The crucial definition is the next one:

Apq
r B {x ∈ F pCp+q | dx ∈ F p+rCp+q+1}

These are approximate cycles, and as r becomes larger and larger they approximate
the actual cycles. Now Zpq

r is the image of Apq
r in Epq

0 = F pCp+q/F p+1, and Bp+r,q−r+1
r+1

is the image of the differential dApq
r in F p+rCp+q+1/F p+r−1. Now we can define

Epq
r = Zr/Br and there is a differential induced by the differential d of C. To be

precise, pick c representing an element in Epq
r . So dc ∈ F p+rCp+q+1 and we need to

check it represents an element of Zp+r,q+r−1 and that d factors through Bpq.

Similarly we define E∞.

The next step is to show that Er+1 is the homology of Er. Then we need to worry
about convergence, i.e. we must identify E∞ with Gr H∗. For the bounded below case
this is arguably just book-keeping (a lot of it, though). The complete convergence case
needs some ideas, and the derived functor of lim

←−−
makes an appearance, details can be

found in Section 5.5 of [W]. �

Remark. It can be seen from the definitions that given a filtered complex (C, F) the
spectral sequences associated to C, to Ĉ and to C/ ∩i FiC and to ∪FiC all agree.

We can also define maps of spectral sequences. But since we care about the behaviour
of spectral sequences only as r becomes large, we can be a bit lax:

Definition. A map between spectral sequences E and E′ is a collection of maps
f pq
r : Epq

r
// E′pq

r , for r ≥ b for some fixed b, that commute with the dr.

Theorem 29. A map f : C // D of filtered complexes induces a map fr of spectral
sequences compatible with the induced map on homology. If the filtrations are
complete and exhaustive and there is some r such that f pq

r is an isomorphism for
all p and q then H∗( f ) : H∗(C) // H∗(D) is an isomorphism.

Idea of proof. Note that the conditions don’t force convergence of the spectral
sequences, but we still get the quasi-isomorphism. The trick is to consider a filtration
on cone( f ), the associated spectral sequence degenerates to 0, so is certainly bounded
above. See [W] 5.5.11. �
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Corollary 30. Consider a map of filtered complexes inducing quasi-isomorphisms on
the associated graded complexes. If the filtrations are complete and exhaustive then
the map is a quasi-isomorphism.

9.2. Double complexes and balancing

Let us now go back to double complexes. There are two obvious filtrations and often
it is useful to play them against each other.

Let C∗∗ be a double complex. We define two filtrations, IF by columns and IIF by
rows. That is, (IFnC)pq = Cpq if p ≥ n and 0 otherwise. We let IEr be the spectral
sequence associated to the filtration IF and IIEr the spectral sequence associated to
IIF.

Proposition 31. Let C∗∗ be a first quadrant double complex. Then IEr and IIEr are
bounded and convergent and we have:

IEpq
2 = Hp

h Hq
v (C)⇒ Hp+q(Tot⊕(C))

and
IIEpq

2 = Hp
v Hq

h(C)⇒ Hp+q(Tot⊕(C))

Here Hv(C) denotes cohomology of C∗∗ with respect to dv. Then Hq
v (C) is indeed

a complex with a differential induced by dh, and the p-th cohomology group of this
complex is IE2.

Proof. This follows from Theorem 28. We just have to check that d2 is indeed induced
by dh resp. dv, which is straightforward. Note the change of index. �

The spectral sequence IEr finishes the proof of Lemma 27, by arranging K(t′)⊗K(tm)
as a double complex with m rows and two columns. (Because the grading was
homological you don’t quite get a first quadrant spectral sequence, but that is easily
overcome.) 1

If the complex is larger we have to worry about the difference between Tot⊕C and
Tot

∏
C.

I still owe you the balancing results for Ext and Tor. This is easy now:
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Proposition 32. Let B and A be R-modules. Then L(− ⊗R B)(A) � L(A ⊗R −)(B) and
RHomR(A,−)(B) � RHomR(−, B)(A).

Proof. We do the proof for Tor, the proof for Ext is similar. Take resolutions P∗ // A
and Q∗ // B and consider the double complex P ⊗ Q. The total tensor product chain
complex is Tot⊕(P ⊗ Q). The two (homological) spectral sequences of the double
complex converge and the E2 terms are H∗(P ⊗R B) and H∗(A ⊗R Q) respectively.
Hence the spectral sequences actually collapse, they are concentrated in a single
row, resp. column! This means that there are no extension problems and we have
IE2

p0 � Hp(Tot) � IIE2
0p, proving the theorem. �

Example. Next consider an application to topology, ignore this example unless you not lectured
know some differential geometry. Consider a smooth manifold M and recall that the
de Rham cohomology of M is the cohomology of the de Rham complex, the complex
of smooth differential forms A ∗(M), defined in any course on differential geometry.

Now assume M has a cover U by contractible open sets with contractible intersections.
To M is associated a category Op(M) whose objects are open subsets of M and whose
morphisms are inclusions. Then the constant preseheaf R is defined as the constant
functor Op(M)op // Ab with value R.

The Čech cohomology is the cohomology of the complex C∗(U,R) which is defined
via

Cq(U,R) =
⊕

i1<···<iq

R(Ui1 ∩ · · · ∩ Uiq)

The differential is induced by the alternating sum of inclusions.

Now note that we can define the de Rham complex for every open subset U ⊂ M. Thus
we can define double complex with ⊕A p(Ui1 ∩ · · · ∩ Uiq) in the (p, q) position and
with vertical differential given by the de Rham differential and horizontal differential
given by the Čech differential.

By the Poincaré lemma IEr degenerates on the second page, E1 is the Čech complex,
and E2 is Čech cohomology.

Next, since A p is a fine sheaf on M, we have that IIEr also collapses on the second
page, E1 is the de Rham complex of M and E2 is de Rham cohomology.

As the spectral sequences converge to the same complex the two cohomologies agree.
This example is nicely explained in Bott and Tu: Differential Forms in Algebraic
Topology.
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10. The Grothendieck spectral sequence

Grothendieck spectral sequence. Cartan-Eilenberg resolutions. Hochschild-
Serre spectral sequence.

10.1. The theorem

Next we prove a result that gives us several important spectral sequences. It answers
that natural question how to compute the composition of derived functors.

Theorem 33 (Grothendieck spectral sequence). Let A
G // B

F // C be left exact
functors between abelian categories. Suppose that A and B have enough injectives
and that G sends injective objects to injective objects. Then for every object A ∈ A
there is a convergent first quadrant spectral sequence Epq

2 = (RpF)(RqG)(A) ⇒
Rp+q(FG)(A).

Remark. We will see in the proof that it is enough to assume G sends injectives to
F-acyclic objects, as defined in Section 3.3.

To simplify life we are still just thinking about spectral sequences in R-Mod, so we
may assume that C = R-Mod for simplicity.

While the statement of the theorem does not involve them, it is clear that the right
context for this theorem are derived functors of complexes. Recall that in the Section
4.2 we extended our definitions of derived functors to complexes. The idea is that
if A has enough injectives then every complex A∗ in Ch≥0 is quasi-isomorphic to a
level-wise injective complex , say A∗ ' I∗. We’ll finally prove that now. Then one can
consider RG(A) B G(I). The cohomology groups are sometimes called hyperderived
functors and written RqG(A) = HqGI.

To deduce the Grothendieck spectral sequence we will construct a resolution that is
pieced together from resolutions of the Ap. Here goes:

Definition. A (right) Cartan-Eilenberg resolution for a cochain complex A∗ in A is a
double complex I∗∗ of injective objects in A together with a map e∗ : A∗ // I∗0 such
that the induced maps Bp(e) and Hp(e) on boundary and cohomology are injective
resolutions.
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We will think of A as aligned vertically in what follows, as in the following diagram.

...
...

...

0 → I10 → I11 → I12 · · ·

↑ ↑ ↑

0 → I00 → I01 → I02 · · ·

↑ ↑ ↑

0 → A0 → A1 → A2 · · ·

↑ ↑ ↑

0 0 0

Lemma 34. In the above setting ep and Zp(e∗) are also injective resolutions. If A is
bounded below then there is a quasi-isomorphism A∗ // Tot

∏
(I∗∗).

Proof. The snake lemma applied to Bp(I) // Zp(I) // Hp(I) augmented by
Bp(A) // Zp(A) // Hp(A) shows that Zp(I) is a resolution of Zp(A). Similarly
considering the obvious augmentation of Zp(I) //I //Bp+1(I) shows that Ip∗ resolves
Ap. Next we will show that e : A // Tot

∏
(I∗∗) is a quasi-isomorphism. We consider

the double complex C given as the augmented double complex with −1st column equal
to A. Filtering the double complex by columns gives a bounded filtration. Hence by
Theorem 28 the spectral sequence converges. Moreover E∞ = 0 as the rows of E1
are exact. So H(Tot

∏
C) = 0, but on the other hand cone(e) is isomorphic to C, by

unwrapping definitions. So e is a quasi-isomorphism by Lemma 3. �

Lemma 35. If A has enough injectives then every bounded below complex A∗ has a
Cartan-Eilenberg resolution.

Proof. Let Bp∗ and Hp∗ denote injective resolutions of Bp(A) and Hp(A). Consider
the short exact sequence Bp(A) //Zp(A) //Hp(A). By Lemma 9 (horseshoe) there is
a compatible injective resolution Zp∗ of Zp(A). Similarly by the short exact sequence
Zp(A) // Ap // Bp+1(A) there is a compatible injective resolution Ip∗. The Ipq will
give us the desired resolution once we define the correct differential.

To define the horizontal differential we multiply the differential of Ip∗ by (−1)p. It re-
mains to define the vertical differential. From Lemma 9 we get natural maps lifting in-
clusion and projection and we piece them together to give Ip−1,∗ //Bp,∗ //Zp,∗ //Ip∗

and this composition is dv. As we can factor d : Ap−1 // Ap similarly we see that
e : A∗ // I∗0 is a chain map. Since the second and third map are injections we also
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have that Bp(I, dv) = Bp. Then the short exact sequences Z //I //B and B //Z //H
imply that Zp(I, dv) = Zp and that Hp(I, dv) = Hp. It follows that Bp(e) and Hp(e) are
injective resolutions. �

Remark. By some twist of fate the boundedness assumption is not needed for left, i.e.
projective, Cartan Eilenberg resolutions. The associated spectral sequence is bounded
above and converges.

Given a bounded below complex A∗ we can now explicitly define its hyperderived
functors RpGA as Hp Tot

∏
GI for any Cartan-Eilenberg resolution A // I.

It follows from Theorem 13 that this is well-defined.

Proof of Theorem 33. Choose an injective resolution A // I and Cartan-Eilenberg
resolution G(I) // J. The first double quadrant double complex F(J) has two
associated (convergent) spectral sequences.

The filtration by rows yields IIEpq
2 = Hp

v Hq
h FJ = HpRqF(GI). As the GI are injective

(or just F-acyclic) we get collapse of the spectral sequence in the row q = 0, to
HpR0FG(I) = Hp(FG)(I). As the spectral sequence converges to Hp+q Tot

∏
FJ =

(Rp+qF)(GI), we have RpF(GI) � Hp(FG)(I) = Rp(FG)(A).

The filtration by columns yields IEpq
2 = Hp

h Hq
v (FJ) = Hp

h FHq
v (J). Since all the

vertical cycles, boundaries and cohomology groups of J are injective, J is vertically
split and the exact functor F commutes with vertical cohomology. Now Hp

h FHq
v J =

RpF(HqGI) as H∗v J is a resolution for H∗GI. Finally RpF(HqGI) = RpFRqG(A)
and since IE∞ must agree with IIE∞ = Rp+q(FG)(A) we have proved Grothendieck’s
spectral sequence. �

10.2. Applications

Corollary 36 (Hochschild-Serre spectral sequence). Let G be a group with normal
subgroup N and let A be a G-module. Then there is a convergent first quadrant
spectral sequence Epq

2 = Hp(G/N,Hq(N, A))⇒ Hp+q(G, A).

Note that −N sends G-modules to G/N-modules, hence so do the derived functors:
Just consider a resolution by G-modules. Even if A is trivial as G-module, its N-
cohomology need not be trivial over G/H. In practise the precise action can be tricky
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to compute. (In particular since the whole point of the spectral sequence was to not
resolve things as G-modules.)

Proof. We apply the Grothendieck spectral sequence to the composition

G-Mod
−N

// G/N-Mod
−G/N

// Ab

Unwrapping the definitions the composition is −G. It remains to show that −N sends
injectives to injectives. We note that it is right adjoint to the forgetful functor, see
Proposition 19, which is exact. (As it has both adjoints, or simply since exactness
in R-modules is determined on the underlying sets.) Hence we are done by the next
lemma. �

Lemma 37. Left adjoints of exact functors preserve projectives and right adjoints of
exact functors preserve injectives.

Proof. Let’s do injectives. Consider an adjunction F a U with F left exact (right
exactness is automatic and irrelevant) and let I be an injective object and A // B
any injection. Then Hom(FB, I) // Hom(FA, I) is onto, and by naturality of the
adjunction isomorphisms Hom(B,UI) // Hom(A,UI) is surjective, showing UI is
injective. �

The next result is about sheaves on topological spaces, but note that the spectral not lectured
sequence we write down is a spectral sequence in Ab.

Corollary (Leray spectral sequence). Let f : X // Y be a continuous map of
topological spaces and let F be a sheaf on X. There is a spectral sequence
Epq

2 = Hp(Y,Rq f∗F )⇒ Hp+q(X,F ).

Proof. The pushforward f∗ has a left adjoint f −1, which is exact, hence it is left-exact
and preserves injectives. Note that ΓX = ΓY ◦ f∗. �
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11. Interlude on simplicial sets

Definitions. Examples. Dold-Kan. Realisation.

11.1. Definition and examples

Simplicial sets are a bit technical, but they are extremely useful tools providing explicit
combinatorial models, both in classical algebraic topology and for higher or derived
algebra and geometry.

Definition. Let us first define the simplex category ∆ which has objects [n] = (0 <

1 < · · · < n), and which has morphisms given by nondecreasing functions. Then we
define a simplicial object in a category C as a functor ∆op // C from the opposite
category of ∆ to C . There is a natural category sC of simplicial objects in C , with
morphisms given by natural transformations.

We can dually define a cosimplicial object in C as a functor from ∆ to C .

Example 27. The most important case is when C is just the category of sets. We
denote the category of simplicial sets by sSet. Also important is sAb the category of
simplicial abelian groups.

Example 28. Given a topological space X you may have met the singular simplicial
set Sing(X).

We write a simplicial set as A∗ where An is A([n]). Next we need to understand the data
coming from morphisms. We notice two families of morphisms in ∆, corresponding
to leaving out respectively repeating the i-ith term.

Definition. Define the i-th face map εi : [n−1] // [n] to be the injection only leaving
out i ∈ [n], and define the i-th degeneracy map ηi : [n + 1] // [n] to be the surjection
mapping two elements to i.
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A straightforward, if tedious, check shows the following identities:

ε jεi = εiε j−1 if i < j

η jηi = ηiη j+1 if i ≤ j

η jεi =


εiη j−1 if i < j

1 if i = j, j + 1
εi−1η j if i > j + 1

Proposition 38. Any map α : [n] // [m] can be factored uniquely as a composition of
degeneracy maps followed by a composition of face maps, i.e. α = εi1 . . . εisη j1 . . . η jt .

Not a proof. E.g. [W] 8.1.2. �

Hence it suffices to understand ∂i B A(εi) : An // An−1 and σi B A(ηi) : An // An+1
to complete our understanding of A. These maps satisfy the following equations.

∂i∂ j = ∂ j−1∂i if i < j

σiσ j = σ j+1σi if i ≤ j

∂iσ j =


σ j−1∂i if i < j

1 if i = j, j + 1
σ j∂i−1 if i > j + 1

Example 29. We define the standard n-simplex ∆[n] as the image in sSet of [n]
under the contravariant Yoneda embedding: ∆[n] = Hom∆(−, [n]). In particular
∆[n]i = Hom∆([i], [n]) and ∂i = Hom∆(εi, [n]). This simplicial set is universal in the
sense that An = HomsSet(∆[n], A), by the Yoneda lemma. We call An the n-simplices
of A.

Example 30. Let us consider ∆[1] in a little more detail. Any map [n] // [1] in ∆
sends the first k terms to 0 and the remaining n − k terms to 1 and we write it as a
sequence of k zeros and n − k ones. So

∆[1]0 = {0, 1}

∆[1]1 = {00, 01, 11}

∆[1]2 = {000, 001, 011, 111}

∆[1]3 = {0000, 0001, 0011, 0111, 1111}
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All elements except 0, 1 and 01 have repeats and hence occur in the image of some σ j.
These are called degenerate simplices. We think of ∆[1] as consisting of 2 vertices, 1
edge, and a lot of degenerate simplices.

Similarly we find 7 nondegenerate simplices in ∆[2]: 3 vertices, 3 edges and 1 face.

11.2. Chain complexes

Many useful chain complexes can be seen as arising from simplicial abelian groups.
Let us make that precise.

Definition. Let A∗ be a simplicial object in A . We define the associated chain
complex CA∗ as follows: CAn B An and dn =

∑
(−1)i∂i. The simplicial identities

imply that d2 = 0.

Example 31. Given a topological space X we can view singular chains as associated
to the simplicial abelian group ZSing∗(X), which is just the free group on Singn(X) in
every degree, with face and degeneracy maps extended in the obvious way.

Remark. The Čech complex and the Koszul complex come from semi-simplicial sets,
which are just simplicial sets without the degeneracy maps. They are sometimes easier
to understand.

Definition. The normalised chain complex NA of An is defined as follows: NAn =

∩n−1
i=0 ker(∂i) ⊂ An and the differential is dn = (−1)n∂n.

Theorem 39 (Dold-Kan). If A is an abelian category then N : sA // Ch≥0(A ) is
part of an equivalence of categories.

About the proof. The idea of the proof is to explicitly write down a functor Γ :
Ch≥0(A ) // sA and check that Γ ◦ N and N ◦ Γ are naturally equivalent to the
identity functors. To get started, let Γ(A)n = ⊕n→kAk where the direct sum is over all
surjections. �

11.3. Topological spaces and more examples

Next we consider a cosimplicial topological space, i.e. a functor ∆ // Top.
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Example 32. Consider the geometric n-simplices ∆n = {(x0, . . . , xn) ∈ Rn+1
≥0 |

∑
xi =

1). Picking standard bases for all Rn we can number the elements of all ∆n
0. Then

any map α : [m] // [n] ∈ ∆ induces a map α∗ : ∆m // ∆n by using α on the set of
vertices and extending linearly. Hence the ∆n form a cosimplicial topological space in
a natural way.

We can now view Sing(X) as the simplicial set we obtain by applying the functor
Hom(∆∗,−) to X. (Hom-sets out of a cosimplicial set naturally form a simplicial set!)

Definition. There is a functor from simplicial sets to topological spaces called
realisation defined as follows. We will again use ∆∗, the cosimplicial topological
space of geometric n-simplices. As An is just a set we can write An × ∆m for the
topological space obtained by taking a disjoint union of ∆m’s, indexed by An.

Then define |A| = qnAn × ∆n/ ∼ where the equivalence relation identifies (α∗(x), y) ∈
Am × ∆m and (x, α∗(y)) ∈ Ak × ∆k for any α : [m] // [k]. Here α∗ is the map defined
in the example above, and α∗ is the map A(α) : Ak // Am that is part of the structure
of A as a simplicial set. We can concisely write this definition as follows:

|A| = coeq
(
qα:m→k∆

m × Ak ⇒ qn∆n × An
)

Example 33. The realisation of ∆[n] is ∆n.

Remark. Simplicial sets are a combinatorial model for topological spaces. In fact,
realisation and the singular simplicial set functor give an adjunction | · | a Sing and
induce a kind of equivalence between topological spaces and simplicial sets. We’ll
define the precise kind of equivalence later.

Here is one of the most important classes of simplicial sets.

Example 34. Let G be a group. We define a simplicial set BG by BGn = G×n with
faces and degeneracies given as follows:

σi(g1, . . . , gn) = (g1, . . . , gi, 1, gi+1, . . . , gn)

and

∂i(g1, . . . , gn) =


(g2, . . . , gn) if i = 0

(g1, . . . , gigi+1, . . . , gn) if i = 1, . . . , n − 1
(g1, . . . , gn−1) if i = n

The realisation of this simplicial set is called the classifying space of G and is a
K(G, 1). Also note that the chain complex associated to the free Z-module on BG∗
is the complex Z ⊗ZG Bu

∗(G) used to compute homology of G in Section 6.2.
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Example 35. One can generalise this construction. A group is nothing but a category
with one object all of whose morphisms are isomorphisms. So let C be an arbitrary
(small) category. We define BC0 to be the set of objects of C and BCn to be the set
of all composable n-tuples of morphisms in C . Then there are face and degeneracy
maps as above! This construction is called the nerve of a category, and after applying
the realisation functor we obtain the classifying space of a category.

This is a rather crude functor from categories to simplicial sets. There are many more
sophisticated connections and the use of simplicial sets to study categories has been
extremely fruitful.
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12. Introducing Model Cats

Definition. Chain complexes as a model category. Small object argument.

12.1. Definition

In this course we have been doing homotopy theory, just with chain complexes rather
than spaces. We have been working with abelian and derived categories. Many of the
key ideas work in more general, less abelian setting: Model categories.

The definitions are involved, so it is useful to keep in mind the basic example, which
is our basic example throughout the course: Bounded below chain complexes over
a ring R. If you know some homotopy theory, you can think of model categories as
formalising the common homotopy theory of chain complexes and topological spaces.

We will need the following definitions:

Definition. A map i has the left lifting property (LLP) with respect to a map p if given
any f , g with p f = ig there is a lift h with hi = f and ph = g. In the same situation we
say p has the right lifting property (RLP) with respect to i

A X
f //A

B

i

��

X

B

??

�
�

�
�

�
�

B Yg
//

X

B

??

h

�
�

�
�

�
�

X

Y

p

��

(IV.1)

For example, in an abelian category, the map from 0 to a projective module has the
LLP with respect to all surjections.

Definition. A map f : A // B is a retract of a map g : A′ // B′ if there exist
factorisations of the identity A // A′ // A and B // B′ // B making the obvious
diagram commute.

Now we can define model categories:
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Definition. A model category is a category M with special classes W (weak
equivalences), F (fibrations) and C (cofibrations) of morphisms such that the axioms
MC1 to MC5 hold. We call F ∩ W the acyclic fibrations and C ∩ W the acyclic
cofibrations.

MC 1 Small limits and colimits exist in M .

MC 2 If f and g are maps such that g f is defined and if two out of f , g, g f are in W
then so is the third. (This is called the “two-out-of-three” property.)

MC 3 If f is a retract of g and g is in F , C or W then so is f .

MC 4 (i) Any cofibration has the LLP with respect to all acyclic fibrations and (ii) any
acyclic cofibration has the LLP with respect to all fibrations.

MC 5 Any map f can be functorially factored in two ways: (i) f = pi, where p is a
acyclic fibration and i is a cofibration. (ii) f = q j where q is a fibration and j is
a acyclic cofibration.

Note that MC4(i) is equivalent to saying any acyclic fibration has RLP with respect to
all cofibrations, similarly for MC4(ii).

Functorial factorisation means that there is a functor from the category M Iof
morphisms in M , with morphisms given by commutative diagrams, to the category
M I ×M I satisfying the above condition.

Here is our main example:

Example 36. The category ChR of nonnegative chain complexes of R-modules is a
model category if we define the following:

• W is the class of all quasi-isomorphisms,

• F consists of all chain maps f such that fn is surjective whenever n > 0

• C consists of all chain maps f such that every fn is injective with projective
cokernel.

Note that fibrations need not be surjective in degree 0.

There is some redundancy in our definition:

Lemma 40. Let M be a model category. Then the cofibrations are precisely the maps
which have the LLP with respect to acyclic fibrations.
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The three analogous versions are also true.

Proof. Let f : K // L have LLP with respect to all acyclic fibrations. By MC5(i) we
can write f = pi : K // L′ // L where i is a cofibration and p an acyclic fibration.
By assumption we can lift 1 : L // L to a map h : L // L′ with ph = 1. But then f
is a retract of i and hence a cofibration by MC3. �

Next we will do our main example in some detail.

Remark. All three classes of maps are in fact closed under composition and contain not lectured
the identity maps. For F and C this follows from Lemma 40. It follows from MC2
that W is closed under compositions. To show 1A is a weak equivalence use MC5 to
write 1A = pi where p ∈ W . Then p = 1A · p and we can apply MC2.

12.2. Chain complexes as a model category

Theorem 41. The category ChR with the model structure defined in Example 36 is
indeed a model category.

Remark. This is called the projective model structure.

For nonpositive chain complexes (or nonnegative cochain complexes) we use the dual
injective model structure: cofibrations are monic in nonzero degrees and fibrations are
level-wise epic with injective kernel.

One can also put an injective or projective model structure on unbounded chain
complexes, but the definition, due to Spaltenstein, is more subtle. See [Hov].

Partial proof. MC1: Construct limits and colimits levelwise.

MC2: Clear.

MC3: Retracts of isomorphisms, monics and epics are isomorphisms, monics and
epics, respectively, by the 5-lemma. Retracts of projectives are projectives as a retract
is a direct summand.

MC4: The crucial ingredient is of course the lifting property of projectives, but we
need to do some technical work, see [DS].

MC5: This is by far the hardest axiom to check. We will use the small object
argument, which generalises far beyond chain complexes.
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The idea is that there are sets (not classes!) of generating cofibrations I and
generating acyclic cofibrations J and to see if p is a fibration, respectively an acyclic
fibration, it is enough to check the RLP with respect to J , respectively I .

More precisely: Define S (n) for n ≥ 0 to be the chain complex which is R in degree n
and 0 elsewhere. Let S (−1) = 0. Let D(n) for n ≥ 1 be the chain complex which is R
in degrees n − 1 and n and 0 elsewhere, with dn = 1R. Let D(0) = R concentrated in
degree 0. Then define I = {in : S (n − 1) // D(n)}n≥0 and J = { jn : 0 // D(n)}n≥1
to be the families of the obvious maps. The following is not hard to check.

Lemma 42. A map p is a fibration if and only if it has RLP with respect to J . It is
an acyclic fibration if and only if it has RLP with respect to I .

Proof. 3rd example sheet. �

Now consider a map a : X // Y . We want to factor as X
ι∞ // Y∞

π∞ // Y where π∞

has the RLP with respect to I . We enforce this by attaching extra cells to X for every
possible diagram like IV.1 with i ∈ I !

The attachment will be in the form of a huge colimit of colimits, and it will only have
the correct lifting property if the domains of I and J are small objects. Hence the
method of proof is called the small object argument.

Let’s define what we mean by “small”. Consider a diagram B : N // C
from the category of natural numbers with morphisms given by the relation “≤”.
Then colimN = lim

−−→
. Then by the universal property of colim there is a natural

morphism colimn HomC (A, B(n)) // HomC (A, colimn B(n)) which is not in general
an isomorphism.

Definition. An object A ∈ C is called sequentially small if

colim
n

HomC (A, B(n)) // HomC (A, colim
n

B(n))

is an isomorphism for all diagrams B.

Lemma 43. The S (n) are sequentially small.

Proof. 3rd example sheet. Think of colimn as a union to get some intuition. �
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Now we fix a : X // Y and consider, for every in : S (n − 1) // D(n) ∈ I all of the
following diagrams:

D(n) Yg
//

S (n − 1)

D(n)

in

��

S (n − 1) X
f // X

Y

a

��

We write M(n) for the set of all f , g making this diagram commute. We now take a
very large coproduct. For every I we take a copy of S (n − 1) and a copy of D(n) for
every ( f , g) ∈ M(n). We take the coproduct over all I over all M(n) and there is a
natural map from qS (n − 1) to qD(n). Moreover, the f induce a natural map, which
we write as

∑
f , from the domain to X. Then we form the pushout.

qin∈I qM(n) D(n) Y1
G

//

qin∈I qM(n) S (n − 1)

qin∈I qM(n) D(n)

qIqM(n)in

��

qin∈I qM(n) S (n − 1) X
∑

f // X

Y1

ι1

��

Note that Y1 comes with a natural map π1 to Y , and for every pair ( f , g) in M(n), the
map g =

∑
g ◦ incg : B(n) // Y factors as π1 ◦G ◦ incg, where incg is the inclusion

of D(n) in the ( f , g)-th place of qIqM(n), and
∑

g is the canonical map qD(n) // Y .
So any map g : D(n) // Y lifts through π1.

D(n) qD(n)
incg

//

S (n − 1)

D(n)

in

��

S (n − 1) qS (n − 1)
inc f // qS (n − 1)

qD(n)

qin

��
qD(n) Y1

G
//

qS (n − 1)

qD(n)

qS (n − 1) X
∑

f // X

Y1

ι1

��

Y

∑
g

$$JJJJJJJJJJJJJJJJ

Y

π1

��
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Then we repeat the procedure with Y1 in place of X, to obtain another pushout
ι2 : Y1 // Y2. We repeat to obtain a family Yn and take the direct limit over all of
them, Y∞ B colimn Yn. By the universal property this comes with maps ι∞ : X //Y∞

and π∞ : Y∞ // Y such that a = π∞ ◦ ι∞

New we show that π∞ has the RLP with respect to any in : S (n − 1) // D(n). Indeed,
any map f : S (n−1) // Y∞ must factor through some Y k, as S (n−1) is small. Then
we have the following diagram:

D(n) Yg
//

S (n − 1)

D(n)

in

��

S (n − 1) Ykf ′ // Yk

Y

πk

��
Y Y=

//

Yk

Y

Yk Yk+1ιk+1
// Yk+1

Y

πk+1

��

As described above, by construction g : D(n) // Y lifts to a map h′ =
∑

g ◦ incg :
D(n) // Yn+1, which gives h : D(n) // Y∞ with π∞ ◦ h = g

It remains to show that X // Y∞ is a cofibration. But each Yk+1 is in every degree
the direct sum of Yk with copies of R. Similarly for the colimit Y∞. Alternatively we
can observe that cofibrations are closed under pushouts and direct limits, see the 3rd
example sheet.

Note that our construction in terms of colimits was entirely functorial as colim is a
functor.

Replacing I by J we can prove MC5(ii) in exactly the same manner. �
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13. Homotopies and the homotopy category

Homotopy via cylinder objects. Sketch of the homotopy category.

Definition. We say an object is fibrant if the canonical map to the terminal object is a
fibration, and cofibrant if the canonical map from the initial object is a cofibration.

By MC5 we can functorially replace any object by a fibrant object, call this functor
R. Similarly we call cofibrant replacement Q. We have natural transformations
pX : QX // X and iX : X // RX. Also notice that RQX and QRX are both fibrant
and cofibrant, e.g. 0 // QX // RQX is a composition of cofibrations.

Now we will address the question how to do homotopy theory in a model category.
Unfortunately I only have time to sketch the theory and will not prove the results.
See [DS] for all the details. (Note that [DS] do not use functorial factorisation, which
makes some of their proofs a bit more involved than they need to be.)

We need a notion for two maps to be homotopic. Recall that f , g : A // B between
topological spaces are homotopic if there is a certain map H : A × [0, 1] // B. To
generalise this we need a generalisation of the construction of A × [0, 1] from A.

Definition. A cylinder object for an object A in a model category M is an object A∧ I

such that the natural map Aq A // A factors as Aq A
i // A∧ I

q
// A such that q

is a weak equivalence. We say A ∧ I is a very good cylinder object if i is a cofibration
and q is an acyclic fibration.

Convention. Given maps f , g : A // B we write f + g for the canonical map
A q A // B.

Example 37. A cylinder object for M in ChR is given by the mapping cylinder cyl(M),
defined as follows. We define cyl(M)n to be Mn ⊕ Mn−1 ⊕ Mn and let the differential
be d 1

−d
−1 d

 : Mn ⊕ Mn−1 ⊕ Mn−1 // Mn−1 ⊕ Mn−2 ⊕ Mn−1

This is the special case of a construction in Section 4.3.

Definition. A left homotopy between two maps f , g : A // B in M via a cylinder
object A ∧ I is map H : A ∧ I // B such that H ◦ i = f + g. Two maps are left
homotopic, written f l

∼ g if there is a left homotopy between them.
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We can define πl(A, X), the equivalence classes of maps from A to B under the
equivalence relation generated by left homotopy.

Lemma 44. 1. Left homotopy is an equivalence relation on Hom(A, B) if A is
cofibrant.

2. If A is cofibrant and f : X // Y is an acyclic fibration then φ∗ : f 7→ φ ◦ f
indices a bijection πl(A, X) // πl(A,Y).

3. If X is fibrant and f , g are left homotopic maps A // X then f h and gh are left
homotopic for any h : B // A.

4. If X is fibrant then there is a composition map πl(B, A) × πl(A, X) // πl(B, X).

5. If X is fibrant and f l
∼ g we may assume the homotopy can be realised via a

very good cylinder object.

Dually we can define path objects, typically written X // XI // X × X, and right
homotopies.The dual results hold for right homotopies. We say f and g are homotopic
and write f ∼ g if they are both left and right homotopic.

The next lemma relates the two notions:

Lemma 45. : Let f , g : A // X be maps. Then if A is cofibrant f l
∼ g implies f r

∼ g.
Dually, if X is fibrant f r

∼ g implies f l
∼ g.

Hence if A is cofibrant and X is fibrant, f and g are homotopic if they are left or right
homotopic. We write π(A, X) for maps up to homotopy. (If A is not cofibrant or X is
not fibrant we let this be the set of maps up to the equivalence relation generated by
homotopy.)

Theorem 46. A map f : A // X between fibrant and cofibrant objects is a weak
equivalence if and only if it has a homotopy inverse

Definition. The homotopy category Ho(M ) of a model category M is defined to have
the same objects as M , and with HomHo(M )(X,Y) = π(QRX,QRY).

Recall that given a category M and a class of morphisms W we define the localization
of M at W to be a category B with a functor Q : M // B such that Q(w) is an
isomorphism for any w ∈ W and which is universal with this property: Any M // C
that sends all w ∈ W to isomorphisms factors through Q.
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Theorem 47. The homotopy category Ho(M ) is a localization of M at to the class
of weak equivalences. We write γ : M // Ho(M ) for the natural functor.

Sketch of proof. First we have to show Ho takes weak equivalences to isomorphisms,
the main ingredient is Theorem 46. Then we need to establish the universal property.
Given some G : M // C sending W to isomorphisms we need to construct
G̃ : Ho(M ) // C . On objects we may just use G, on morphisms we use the
fact that G sends the cofibrant and fibrant replacement functors to isomorphisms
and given f : G // A represented by f ′ : RQ(A) // RQ(B) we define G̃( f ) =

G(pB)G(iQB)−1G( f ′)G(iQA)G(pA)−1. We have to work to make sure this is well-
defined. For details see [DS] 6.2. �

Example 38. So what are maps in Ho(Ch≥0(R))? Consider objects A, B concentrated
in degree 0 and n, say. So A and B[−n] are R-modules. Let A, B have cofibrant
replacements QA,QB. These are in particular projective resolutions. (Every object is
fibrant, so we need not worry about that.) Since left homotopies in M are just chain
homotopies, as you show on the example sheet, we have the following:

HomHo(Ch)(A, B) = π(QA,QB) = HomK(R)(QA,QB) = ExtnR(A, B[−n])

Similarly we can see that Ho(Ch≥(R)) � D≥0(R).

In the next section we will lift functors to the homotopy category.
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14. Derived functors

Total derived functors and universal property. Existence. Quillen
functors.

Definition. Let F : M // N be functor where M is a model category. A left
derived functor is a pair (LF, t) where LF : Ho(M ) // N and t : LFγ // F is
a natural transformation, which is terminal among such pairs, also called “universal
from the left”. Explicitly, whenever G : Ho(M ) // N is a functor with a natural
transformation s : Gγ // F then there is a natural transformation θ : G // LF such
that s = t ◦ θγ.

Theorem 48. Let F be a functor from a model category that sends weak equivalences
between cofibrant objects to isomorphisms. Then the left derived functor of F exists
and tX : LFX // FX is an isomorphism for every cofibrant object X.

Proof. Recall that we have a cofibrant replacement functor Q : M // M . So let
us consider the composition FQ. We have to show this descends to the homotopy
category. But by MC2 we know that Q sends weak equivalences to weak equivalences,
so FQ sends weak equivalences to isomorphisms and by Theorem 47, i.e. the universal
property of Ho(M ), we have a factorization FQ = LF ◦ γ.

Next we define a natural transformation t : LF ◦ γ // F by assigning to X ∈ M
the map F(px) : LFγ(X) = FQ(X) // F(X). Recall pX : QX // X is the natural
transformation from cofibrant replacement to the identity. In particular if X is cofibrant
F(pX) is an isomorphism by assumption.

Now we need to show universality. Let G : Ho(M ) // N be any functor
and s : Gγ // F a natural transformation. We are looking for a unique natural
transformation θ : G // LF such that s = t ◦ θγ. Consider the following diagram:

Gγ(X) FXsX
//

GγQ(X)

Gγ(X)

Gγ(pX)

��

GγQ(X) LFγ(X) = FQ(X)
sQX // LFγ(X) = FQ(X)

FX

tX=F(pX)

��
Gγ(X)

θγX

77ooooooooo

We are looking for a lift θγX : GγX // LFγX and since γ sends weak equivalences
to isomorphisms we can just define θX = sQX ◦ (Gγ(pX))−1. This is a natural
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transformation G // LF since s and γ(p) are natural transformations of functors
on the homotopy category. If X is cofibrant then pX is an isomorphism and the lift is
unique. But in the homotopy category γ(X) � γ(QX), so the lift is unique. �

Example 39. Let us apply this to one of our favourite functors, T = γ ◦ (N ⊗ −) :
Ch≥0(R) // Ho(Ch≥0(S )) � D≥0(S ) for an S ⊗Rop-module N. We have to check that
this preserves weak equivalences between cofibrant objects, and actually it suffices to
check T preserves acyclic cofibrations between cofibrants, see Lemma 49 below.

Consider f : A // B an acyclic cofibration. Then C = B/A is levelwise projective
and acyclic. Hence d1 is surjective and C0 = Z0(C) is projective, giving a splitting
and an isomorphism C � τ≥1(C) ⊕ D1(Z0(C)) and inductively C � ⊕Dn(Zn−1(C)).
Here we write Dn(M) for D(n) ⊗R M. But all Dn(M) are projective in Ch(R) if M
is projective. Hence B � A ⊕ C. Moreover T (Dn(M)) is clearly acyclic. Hence
T (B) � T (A) ⊕ T (C) � T (A).

Remark. Note that we cannot compute right derived functors in this way, which makes
the injective model structure relevant.

Definition. The total left derived functor of a functor F is the left derived functor of
γ ◦ F.

Remark. We have been overloading the term “derived functor”. The similarity to
the total derived functor between derived categories is quite clear. But note that not
every model category comes from chain complexes on an abelian category, and not
every derived category comes from a model category. (Not all abelian categories are
complete and cocomplete!)

We have just used the following, and we are about to use it again.

Lemma 49 (Ken Brown’s Lemma.). Suppose a functor F : M // C sends acyclic
cofibrations between cofibrant objects to isomorphisms. Then it sends all weak
equivalences between cofibrant objects to isomorphisms.

Proof. This is just playing around with factorisations. Consider f : A // B a weak
equivalence between cofibrant objects. Then consider the map f + 1B : A q B // B
and factor it as a cofibration j followed by an acyclic fibration p. As A and B are
cofibrant the inclusions iA, iB of A and B into A q B are cofibrations.
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Now observe f = p ◦ jiA, hence jiA is a weak equivalence by MC2, and it’s a
cofibration. The same holds for jiB. Hence F( jiB) is invertible and then F(p) =

F(1B)F( jiB)−1 is invertible. Finally F( f ) = F(p)F( jiA) is invertible, too. �

Theorem 50. Assume given a pair of adjoint functors F : M � N between model
categories such that F preserves cofibrations and G preserves fibrations. Then the
total derived functors LF and RG exist and form an adjunction LF : Ho(M ) �
Ho(N ) : RG.

Idea of proof. For the existence of the derived functors we need to know that our
condition imply the conditions of Theorem 48. This is exactly the content of Lemma
49.

To show there is an adjunction on the level of homotopy categories it is crucial to
observe that F(A∧ I) is a cylinder object for FA in N if A∧ I is a very good cylinder
object for A. For details see [DS] 9.7. �

We can now define the most interesting notion of functor between model categories.

Definition. An adjunction as in the theorem is called a Quillen adjunction, and F a
left Quillen functor. If the adjunction induces an equivalence Ho(M ) � Ho(N ) we
call it a Quillen equivalence.

Note that tensoring with an S ⊗ Rop-module M is not in general a left Quillen functor
unless M is cofibrant as an S -module.
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15. More model categories

Topological spaces. Simplicial sets. Quasi-categories.

We now collect some more examples. Sadly, we will not have time to prove anything.

We will mention generating (acyclic) cofibrations in a few cases. The small object
argument is used extensively throughout the subject.

Example 40. The category of topological spaces has a model structure defined as
follows:

• Weak equivalences are given by weak homotopy equivalences, i.e. maps
inducing isomorphisms on all homotopy groups.

• Fibrations are given by Serre fibrations, i.e. maps which have the RLP with
respect to all inclusions A // A × [0, 1], where A is a CW-complex.

• Cofibrations are maps with the LLP with respect to all Serre fibrations which
are also weak equivalences.

To see if f is a fibration it suffices to check the right lifting property with respect to
J = {Dn //Dn×I}, and to check f is an acyclic fibration we check RLP with respect
to I = {S n−1 // Dn}.

Example 41. There is a model structure on simplicial sets closely related to the one
on topological spaces. Define the following classes of maps:

• Weak equivalences are those maps whose realisations are weak homotopy
equivalences.

• Cofibrations are inclusions.

• Fibrations are defined via the lifting property.

Again we can make this more concrete by exhibiting sets of generating (acyclic)
cofibrations. We need to define the following special simplicial sets:

Definition. We define the boundary ∂∆[n] of the standard n-simplex by leaving out the
non-degenerate n-simplex s corresponding to 1[n] (and its degeneracies). Concretely
∂∆[n]k consists of non-surjective maps [k] // [n].

We define the k-th horn Λk[n] by leaving out the nondegenerate n-simplex s ∈ ∆[n]n

and the k-th nondegenerate n − 1-simplex, ∂k(s) from ∆[n]. (Of course we also leave
out all their degeneracies.)
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A simplicial set K is called a Kan complex if any map Λk[n] // K extends to a map
∆[n] // K. The slogan is: “Every horn can be filled.”

Then we take generating acyclic cofibrations to be the set of all Λk[n] // ∆[n]. In
particular, Kan complexes are fibrant objects. We take generating cofibrations to be
∂∆[n] // ∆[n].

It is unsurprising that |∂∆[n]| is the boundary of ∆n and |Λk[n]| is the boundary of ∆n

with the interior of one face removed. So they are homeomorphic to S n−1 and Dn−1

respectively.

Then | − | : sSet � CGHauss : Sing is a Quillen adjunction and in fact a Quillen
equivalence. Here CGHauss is the subcategory of topological spaces consisting of
compactly generated Hausdorff spaces. It’s a large sub-model category containing
almost all the spaces homotopy theorists care about.

Remark. Our definition of weak equivalences might seem a bit disingenuous, but
there are several entirely simplicial characterisations of weak equivalences that are
equivalent to the one we just gave. For example we can define homotopies between
maps of simplicial sets and a weak equivalence is precisely a map A // B inducing
an isomorphism between homotopy classes of maps B // K and A // K for any Kan
complex K, see e.g. [GM].

Example 42. Interestingly, there are other model category structures on simplicial
sets. For example there is Joyal’s model structure which has fewer weak equivalences.
Fibrant objects are now weak Kan complexes, where we only demand that inner horns
can be filled (all but Λ0[n] and Λn[n]). Weak Kan-complexes are also called quasi-
categories or just ∞-categories and they form the building blocks of Jacob Lurie’s
work on higher toposses and higher algebra. not lectured
Remark. Quasi-categories are one of several sensible model for (∞, 1)-categories,
i.e. categories with (invertible) morphisms between morphisms and (invertible)
morphisms between morphisms between morphisms, etc.

We need a language to compare different categories of (∞, 1)-categories, and Quillen
equivalence of model categories is exactly the right language to use.

Simplicial sets with the Joyal model structure are Quillen equivalent to a suitable
model structure on categories enriched in simplicial sets or topological spaces. For
a category enriched in topological spaces we can think of morphisms between
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morphisms as paths in the space of morphisms, and of morphisms between morphisms
between morphisms as homotopies.
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16. Rational homotopy theory

Commutative differential graded algebras. Rational homotopy theory.

This is a slightly extended version of the last lecture of the course, none of the material
is examinable.

In this lecture will see a rather surprising equivalence of homotopy categories, that
makes parts of algebraic topology completely algebraic. This is Quillen’s and
Sullivan’s rational homotopy theory, cleanly exposited in Bousfield and Gugenheim’s
AMS Memoir.

Definition. A commutative differential graded algebra or cdga over a field k, also
called a cdga, is a chain complex with a graded commutative algebra structure
compatible with the differential via a Leibniz-rule: d(ab) = da.b + (−1)|a|a.db.

Remark. This is a badly behaved notion if k has positive characteristic.

Example 43. Let M be a differentiable manifold, then the de Rham complex Ω∗M of
differential forms on M with the wedge product is a cdga.

Example 44. Ω∗(S 2) ' H∗(S 2) and H∗(S 2) is a cdga with generators the constant
function in degree 0 and the volume form in degree 2.

Consider the category cdga of commutative differential graded algebras over Q. With
the following classes of morphisms it becomes a model category.

• Weak equivalences are given by quasi-isomorphisms.

• Fibrations are given by surjections.

• Cofibrations are given by the lifting property.

Remark. In fact, many other algebraic structures on chain complexes obtain a model
category structure by transfer of model structure from chain complexes.

Example 45. Examples of cofibration of cdga’s are as follows:

• We write Λ(xn1 , xn2 , . . . , xnk ) for the free cdga on k generators in degrees ni. For
example Λ(x2) is a polynomial algebra on a generator in degree 2 and Λ(x5) is
an exterior algebra on a generator in degree 5. This is a cofibrant cdga. For
example on the second example sheet you have computed cohomology of the
Eilenberg-MacLane space as Λ(xn), a free cdga on a single generator in degree
n.
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• The maps Λ(x) // Λ(y, dy) given by x 7→ dy are cofibrations, where Λ(y, dy)
has two generators and differential d : y 7→ dy.

We can make the homotopy theory of cdgas explicit with the following observation:

Path objects in cdga are given by B ⊗ Λ(t, dt) where |t| = 0. I.e. a homotopy between
maps f and g from A to B are maps H : A // B ⊗ Λ(t, dt) such that ∂0H = f and
∂1H = g where ∂0t = 0, ∂1t = 1.

Now we recall the model category of simplicial sets or equivalently (compactly
generated Hausdorff) topological spaces.

We want to define a functor between cdga’s and sSet. The categories are obviously
not Quillen equivalent, but miraculously they are up to torsion.

The idea is to generalise the de Rham functor that sends a manifold to the algebra of
differential forms. To extend this to all topological spaces we will define polynomial
differential forms an simplicial sets. These can naturally be defined using the
simplicial dg-algebras ∇(n, ∗).

Definition. For every n define ∇(n, ∗) to be the dg-algebra over Q generated by
t0, . . . , tn, dt0, . . . , dtn subject to the relations

∑
ti = 1 and

∑
dti = 0, and with

differential ti 7→ dti. We can think of these as polynomial differential forms on the
n-simplex in Rn+1.

Now the face and degeneracy maps between n-simplices induce face and degeneracy
maps on ∇(∗, ∗) and make it into a simplicial dg-algebra.

Remark. The precise face and degeneracy maps are:

∂it j =


t j−1 if i < j
0 if i = j
t j if i > j

sit j =


t j+1 if i < j

t j + t j+1 if i = j
t j if i > j

Definition. For a simplicial set K define A(K) to be HomsSet(K,∇). To be precise,
Ap(K) = HomsSet(K,∇(∗, p)) and the differential and multiplication on ∇ induce the
structure of a cdga on A(K). We call this the dg-algebra of polynomial differential
forms on K. Conversely associate to any dg-algebra D the simplicial set S (D) B
Homcdga(D,∇).
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Note these are contravariant functors.

First it is reassuring that H∗(AK) � H∗(|K|) as rings and if M is a manifold AM '

Ω∗M.

Theorem 51. The functors A and S form a Quillen adjunction A a S between cdgaop

and sSet.

About the proof. To check we have an adjunction write down the natural map on hom-
spaces and it is a bijection.

Then we need to check that A sends (acyclic) cofibrations to (acyclic) fibrations.
This is equivalent to checking S sends (acyclic) generating cofibrations to (acyclic)
fibrations. But that is not hard to check. �

The proof extends to an adjunction between pointed simplicial sets and augmented
cdgas, i.e. cdgas A equipped with a map ε : A // Q. We will talk about the
pointed/augmented case from now on.

Cofibrant replacement in the category of cdgas are very useful for computations, so
let us look at some examples.

Example 46. First we’ll describe a cofibrant cdga quasi-isomorphic to AS n or
equivalently to the de Rham complex Ω∗(S n) of S n. (As S n is a manifold we may as
well use the usual de Rham complex.) If n is odd we note the map Λ(xn) // Ω∗(S n)
that sends xn to the volume form on S n is a quasi-isomorphism.

If n is even Λ(xn) is a polynomial algebra, so there is no quasi-isomorphism. If we
demand x2

n = 0 the algebra would no longer be cofibrant. What we can do instead is

consider Λ(xn, y2n−1
d
7→ x2

n). The map sending xn to the volume form on y2n−1 to 0 is
a quasi-isomorphism.

It follows from our computation on the second example sheet that AK(Q, n) ' Λ(xn),
and this is already cofibrant.

Remark. In fact any nice cdga has a canonical cofibrant replacement, unique up to
isomorphism, called its minimal model.

After this detour we will state the main theorem. The aim is to show that we can
restrict to nice subcategories N and D where A induces an equivalence. The correct
categories are as follows:
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Definition. Let D be the category of cofibrant, homologically connected algebras of
finite Q-type. A is homologically connected if H0(A) = Q and H<0(A) = 0. It is of
finite Q-type if it satisfies some finiteness condition. (In language to be defined later:
if πk(A) is finite-dimensional over Q for all k.)

Let N be the category of connected spaces which are nilpotent, rational and of finite
Q-type.

We’ll define the conditions on N as we talk about the proof. Roughly speaking:
Nilpotent says the fundamental group is nilpotent and acts nilpotently on other
homotopy groups. Finite Q-type is again some finiteness-condition. The most
interesting condition is rationality, which roughly means that homotopy and integral
cohomology groups are actually Q-vector spaces. This seems an odd and strange
requirement, an example would be a K(Q, 1), a space with π1 � Q and no higher
homotopy. We can glue such a space out of infinitely many S 1, but it does not
seem natural. However, we can think of any space X as being equivalent “up to
torsion” to some rational space XQ, its rationalisation. In fact it follows from Quillen’s
theory that the unit of our adjunction X // S A(X) is such a rationalisation of X if
X is connected nilpotent. That means it is a map from X to a rational space which
induces isomorphisms on rational cohomology and on the nilpotent completions of
the fundamental group. We can think of it as replacing X by a rational space with the
same rational invariants.

Theorem 52. The adjunction A a S induces an equivalence of the homotopy
categories Ho(N ) and Ho(Dop).

The proof comes down to checking K ' S A(K) and D ' AS (D) for K ∈ N and
D ∈ D . Let us get a feel for the proof that K ' S A(K) for K ∈ S . The most
important topological input is the Postnikov tower for K. Writing a space as a cell
complex is building it up out of spheres, building the homology groups of X step by
step. The Postnikov tower builds K out of Eilenberg-MacLane spaces, synthesising
the homotopy groups.

To be precise we write X = lim
←−−

Xn where X0 is a point and every Xn // Xn−1 is a
fibration with fiber K(πn(X), n).

Definition. A space is nilpotent if the fundamental group is nilpotent and acts
nilpotently on higher homotopy groups.
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This is equivalent to the condition that in the Postnikov tower of X we can factor each
Xn // Xn−1 as a finite sequence of principal fibrations Xn,i // Xn,i−1, i.e. pull-backs
of the canonical path fibration PK(B, n) // K(B, n) for an abelian group B. Here
Xn,0 = lim

←−−i
Xn−1,i.

Definition. Now we can define a space to be rational if X � lim
←−−n,i

Xn,i where each
Xn,i // Xn,i−1 is a principal fibration with fiber K(Q, n).

Let us now also note that a nilpotent connected space is of finite Q-type if all Hn(X,Q)
are finite-dimensional Q-vector spaces.

The theorem is proven by taking the tower of fibrations that is the Postnikov tower
and turning it into a tower of cofibrations whose limit is a cofibrant model for AX
Concretely, we have to consider the image of a principal fibration under A.

Y K(Q, n)//

X

Y
��

X PK(Q, n)// PK(Q, n)

K(Q, n)
��

corresponds to

Y AK(Q, n)oo

AX

Y

OOAX APoo AP

AK(Q, n)

OO

AK(Q, n) Λ(x)oo
∼

AP

AK(Q, n)

AP Λ(y, dy)oo ∼
Λ(y, dy)

Λ(x)

OO

Where we attach a cofibrant replacement of both objects and the map between them
on the right. (A does not send fibrations to cofibrations!)

To finish the proof one can inductively prove that our adjunction maps induce weak
equivalences at each stage of the process. The so-called Eilenberg-Moore spectral
sequence allows us to put these together, but there is some subtlety involved, as the
natural map AK // C∗K is not an algebra map. (One side is commutative, one isn’t!)
But there is an algebra structure that is commutative up to homotopy, which suffices
to prove some equality of Tors.

Proposition 53. For a nilpotent connected CW-complex X with minimal model M we
can compute πn(X) ⊗ Q in terms of M.
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About the proof. This comes down to the fact that X // S A(X) is a rationalisation,
so πn(X) ⊗ Q � πn(S A(X)). But the latter is just the space of homotopy classes of
maps S n // S AX, equivalent to homotopy classes of maps AX // AS n, which can
be computed in terms of a cofibrant replacement, see below. �

In fact the πn(X) ⊗Q are dual to πnM, if n ≥ 2 which are defined as follows. Together
with the augmentation ε : A // Q comes the augmentation ideal IA = ker(ε) ⊂ A.
We define the indecomposables of A to be QA = IA/IA.IA.

Using the indecomposables we define homotopy groups πk(B) = Hk(QB) of B.
And indeed it follows from the proof of the proposition that these are dual to the
(rationalised) homotopy groups of X!

By inspecting our example computation we find the following:

Corollary 54. Let k ≥ 1. The homotopy group πk(S n) has rank 0 unless k = n or n is
even and k = 2n − 1, in which case it has rank 1.
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