

Exercise sheet 9

Question 9.1

Recall that for any n, k there is a map $S^n \to S^n$ of degree k. For which values of n and k can this map be chosen fixed point free?

Question 9.2

Calculate $H^m(\mathbb{R}P^n;\mathbb{Z}/2\mathbb{Z})$ and $H^m(\mathbb{R}P^n;\mathbb{Z})$ for all $m \ge 0$ and $n \ge 1$.

Question 9.3

Compute the chomology groups of the Moore space M(A, n) for A a finitely generated abelian group.

Can you construct a CW complex which has cohomology isomorphic to A concentrated in degree n?

Question 9.4

- a) Check that $\operatorname{Hom}_{Ab}(-, G)$ is left exact for any abelian group G,
- b) Determine Ext(A, B) if A is a finitely generated abelian group.
- c) For natural numbers n and m give an explicit formula for $\text{Ext}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z})$.

Question 9.5

* Prove Corollary 17.6: Let f be a simplicial homeomorphism of a finite simplicial complex K. Then $\tau(f) = \chi(K^f)$ where K^f is the subspace of fixed points of |K|.

These questions will be discussed in the class on 14/6/23. You may hand in your solutions the day before.

Questions with an asterisk are more challenging.