

Exercise sheet 8

Question 8.1

Let A and B be finitely generated abelian groups. Determine the homology groups of the product of the Moore spaces M(A,n) and M(B,m), $H_*(M(A,n) \times M(B,m))$, for arbitrary natural numbers $n, m \geq 1$.

Question 8.2

Compute the homology of $\mathbb{R}P^2 \times \mathbb{R}P^3$ with coefficients in \mathbb{Z} and with coefficients in $\mathbb{Z}/2$.

Question 8.3

Use a suitable simplicial complex to compute the homology of S^2 .

Question 8.4

A Δ -complex is a generalization of a simplicial complex. A Δ -complex consists of collections K_n of *n*-simplices for all $n \geq 0$ together with face maps $d_i : K_n \to K_{n-1}$ for $i = 0, \ldots, n$, which satisfy $d_i \circ d_j = d_{j-1} \circ d_i$ whenever i < j.

The main difference to a simplicial complex is that a simplex is no longer determined by its vertices.

For a Δ -complex K we may define |K| as the quotient of $\bigcup_n K_n \times \Delta^n$ where we identify $(d_i \sigma, t) \simeq (\sigma, d^i t)$ where $d^i : \Delta^n \to \Delta^{n+1}$ is the inclusion of the *i*-th face.

Simplicial homology for a Δ -complex is defined in the same way as for a simplicial complex, with $C_i = \bigoplus_{K_i} \mathbb{Z}$ and $d = \sum_{i=1}^{i} (-1)^i d_i$.

- a) Represent the circle as a Δ -complex K with two 1-simplices and two 0-simplices. Verify that |K| constructed as above is S^1 . Compute the simplicial homology of K.
- b) Do the same for the sphere S^2 .
- c) Represent the torus and the Klein bottle as Δ -complexes with two 2-simplices and compute their simplicial homology.

These questions will be discussed in the class on 7/6/2023. You may hand in your solutions the day before.

Questions with an asterisk are more challenging.