Julian Holstein
Algebraic Topology (Master)

Exercise sheet 8

Question 8.1

Let A and B be finitely generated abelian groups. Determine the homology groups of the product of the Moore spaces $M(A, n)$ and $M(B, m), H_{*}(M(A, n) \times M(B, m)$), for arbitrary natural numbers $n, m \geq 1$.

Question 8.2

Compute the homology of $\mathbb{R} P^{2} \times \mathbb{R} P^{3}$ with coefficients in \mathbb{Z} and with coefficients in $\mathbb{Z} / 2$.

Question 8.3

Use a suitable simplicial complex to compute the homology of S^{2}.

Question 8.4

A Δ-complex is a generalization of a simplicial complex. A Δ-complex consists of collections K_{n} of n-simplices for all $n \geq 0$ together with face maps $d_{i}: K_{n} \rightarrow K_{n-1}$ for $i=0, \ldots, n$, which satisfy $d_{i} \circ d_{j}=d_{j-1} \circ d_{i}$ whenever $i<j$.
The main difference to a simplicial complex is that a simplex is no longer determined by its vertices.

For a Δ-complex K we may define $|K|$ as the quotient of $\cup_{n} K_{n} \times \Delta^{n}$ where we identify $\left(d_{i} \sigma, t\right) \simeq\left(\sigma, d^{i} t\right)$ where $d^{i}: \Delta^{n} \rightarrow \Delta^{n+1}$ is the inclusion of the i-th face.
Simplicial homology for a Δ-complex is defined in the same way as for a simplicial complex, with $C_{i}=\oplus_{K_{i}} \mathbb{Z}$ and $d=\sum(-1)^{i} d_{i}$.
a) Represent the circle as a Δ-complex K with two 1 -simplices and two 0 -simplices. Verify that $|K|$ constructed as above is S^{1}. Compute the simplicial homology of K.
b) Do the same for the sphere S^{2}.
c) Represent the torus and the Klein bottle as Δ-complexes with two 2 -simplices and compute their simplicial homology.

These questions will be discussed in the class on $7 / 6 / 2023$. You may hand in your solutions the day before.
Questions with an asterisk are more challenging.

