Exercise sheet 12

Question 12.1

You know the spaces N_{g} from Exercise 6.4. We called N_{g} the non-orientable surface of genus g. Justify that name.

Question 12.2

Let M be an m-dimensional connected topological manifold.
a) Prove that there is an oriented manifold \hat{M} and a 2-fold covering $p: \hat{M} \rightarrow M$ called the orientation covering.
b) Are the following statements equivalent?

- M is orientable.
- The orientation covering is a trivial covering, i.e. $\hat{M} \cong M \times \mathbb{Z} / 2 \mathbb{Z}$ as spaces over M.
c) Assume that M is finite dimensional, path connected with $\pi_{1}(M)=1$. Is M orientable?
d) What is the orientation covering of $\mathbb{R} P^{n}$ for even n ? What about the Klein bottle and the open Möbius strip?

Question 12.3

Let M and N be two oriented compact connected manifolds of the same dimension $m \geq 1$ and let $f: M \rightarrow N$ be continuous. Define the degree of f.
a) Consider the projection map $\pi: \mathbb{S}^{1} \times \mathbb{S}^{1} \rightarrow \mathbb{S}^{1} \times \mathbb{S}^{1} / \mathbb{S}^{1} \vee \mathbb{S}^{1} \cong \mathbb{S}^{2}$. What is the degree?
b) Let $f: M \rightarrow N, g: N \rightarrow L$ be continuous maps between oriented compact connected manifolds and let Show that degree is multiplicative, i.e.

$$
\operatorname{deg}(g \circ f)=\operatorname{deg}(g) \operatorname{deg}(f)
$$

c) If \bar{M} is the same manifold as M but with opposite orientation, then

$$
\operatorname{deg}(f)=\operatorname{deg}\left(f: \bar{M} \rightarrow \bar{N}_{1}\right)=-\operatorname{deg}\left(f: \bar{M} \rightarrow N_{1}\right)=-\operatorname{deg}\left(f: M \rightarrow \bar{N}_{1}\right)
$$

d) If the degree of f is not trivial, then f is surjective.

Question 12.4

Let M be a compact connected 3-manifold. Its first homology group is a finitely generated abelian group and is hence of the form

$$
H_{1}(M) \cong \mathbb{Z}^{n} \oplus T
$$

where T denotes the finite torsion part of $H_{1}(M)$.
a) Determine $H_{2}(M)$ if M is orientable.
b) Does $\pi_{1}(M)$ determine $H_{*}(M)$ in this case?
c) What happens if we drop the assumption that M is orientable? Can you still say something about $H_{2}(M)$?

Question 12.5

Compute $H_{c}^{*}(X, \mathbb{Z})$ for
a) X equal to the open cylinder,
b) X equal to the open Möbius band.

These questions will be discussed in the class on 5 July 23. You may hand in your solutions the day before.
Questions with an asterisk are more challenging.

