Exercise sheet 11

Question 11.1

a) Let $\alpha \in H^{1}\left(\mathbb{R} P^{2} ; \mathbb{Z} / 2 \mathbb{Z}\right)$ and $a \in H_{1}\left(\mathbb{R} P^{2} ; \mathbb{Z} / 2 \mathbb{Z}\right)$ be generators. What is $\alpha \cap a$?
b) Let a and b be the 1 -cycles corresponding to meridian and longitude of the torus T^{2}. Let α, β be the dual classes in cohomology. Compute directly the cup products $\alpha \cup \beta$ and $\beta \cup \alpha$. You may want to use the 2-cycle from Example 6.6.

Question 11.2

Let Σ_{g} be the surface of genus g. Construct a natural quotient map $\Sigma_{g} \rightarrow \vee_{g} \Sigma_{1}$ by contracting a subspace homeomorphic to a sphere with g holes down to a point.
Compute the cohomology ring of the right hand side and use it to compute the cohomology ring on the left hand side.

Question 11.3

Show that for $\partial: H^{*}(A) \rightarrow H^{*+1}(X, A), \alpha \in H^{*}(A)$ and $\beta \in H^{*}(X)$ the cup product satisfies:

$$
\partial\left(\alpha \cup i^{*} \beta\right)=(\partial \alpha) \cup \beta \in H^{*}(X, A)
$$

Question 11.4

Show that the suspension of a CW complex is a CW complex.

Question 11.5

Is $\Sigma\left(S^{1} \times S^{1}\right)$ homotopy equivalent to $S^{2} \vee S^{2} \vee S^{3}$? You may assume that the homotopy classes of pointed maps from S^{2} into any space, $\pi_{2}(X)$ form an abelian group under concatenation.

* What about $\Sigma(X \times Y)$ and $\Sigma X \vee \Sigma Y \vee \Sigma(X \wedge Y)$ in general? (Here \wedge denotes the smash product $X \times Y / X \vee Y$ of well-pointed spaces.)

These questions will be discussed in the class on $28 / 6 / 23$. You may hand in your solutions the day before.
Questions with an asterisk are more challenging.

