

Exercise sheet 11

Question 11.1

- a) Let $\alpha \in H^1(\mathbb{R}P^2; \mathbb{Z}/2\mathbb{Z})$ and $a \in H_1(\mathbb{R}P^2; \mathbb{Z}/2\mathbb{Z})$ be generators. What is $\alpha \cap a$?
- b) Let a and b be the 1-cycles corresponding to meridian and longitude of the torus T^2 . Let α, β be the dual classes in cohomology. Compute directly the cup products $\alpha \cup \beta$ and $\beta \cup \alpha$. You may want to use the 2-cycle from Example 6.6.

Question 11.2

Let Σ_g be the surface of genus g. Construct a natural quotient map $\Sigma_g \to \bigvee_g \Sigma_1$ by contracting a subspace homeomorphic to a sphere with g holes down to a point.

Compute the cohomology ring of the right hand side and use it to compute the cohomology ring on the left hand side.

Question 11.3

Show that for $\partial: H^*(A) \to H^{*+1}(X, A), \ \alpha \in H^*(A) \text{ and } \beta \in H^*(X) \text{ the cup product satisfies:}$

$$\partial(\alpha \cup i^*\beta) = (\partial\alpha) \cup \beta \in H^*(X, A).$$

Question 11.4

Show that the suspension of a CW complex is a CW complex.

Question 11.5

Is $\Sigma(S^1 \times S^1)$ homotopy equivalent to $S^2 \vee S^2 \vee S^3$? You may assume that the homotopy classes of pointed maps from S^2 into any space, $\pi_2(X)$ form an abelian group under concatenation.

* What about $\Sigma(X \times Y)$ and $\Sigma X \vee \Sigma Y \vee \Sigma(X \wedge Y)$ in general? (Here \wedge denotes the *smash* product $X \times Y/X \vee Y$ of well-pointed spaces.)

These questions will be discussed in the class on 28/6/23. You may hand in your solutions the day before.

Questions with an asterisk are more challenging.