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14. Algebraic Künneth theorem 54
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CHAPTER 1

Introduction

This is a second course on topology with a focus on homology and cohomology theory.
I will assume you have taken a first course in topology (or done some equivalent reading)

and know about

• Topological spaces, continuous maps, homeomorphisms,
• examples like Euclidean space Rn, closed balls Dn, spheres Sn, surfaces Σg, real

projective space RP n,
• compactness and (path) connectedness,
• building topological spaces out of other spaces and maps by products, gluing along

a map and taking the suspension,
• homotopies between continuous maps and homotopy equivalences between spaces
• the fundamental group of a space X with base point x as the set of homotopy

classes of pointed maps from S1 to X, made into a group with the operation of
concatenation,
• ideally you know the category of topological spaces and homotopy classes of maps

between them and know that the fundamental group is a functor from the pointed
homotopy category to the category of groups

If you know about these things you know how to show that the circle S1 is not homotopy
equivalent to the point and the torus T 2 ∼= S1 × S1 ∼= Σ1 is not homotopy equivalent to the
genus 2 surface Σ2.

You probably don’t know how to show that the sphere S2 is not homotopy equivalent to
the point.

One way to prove that is to generalize the definition of the fundamental group to the
higher homotopy groups, but they are very hard to compute.

To illustrate this, here are some homotopy groups of the 2-sphere S2 (writing Zn for the
cyclic groups Z/nZ.):

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
πn(S2) Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2 Z2 × Z2 Z12 × Z2 Z84 × Z2 × Z2 Z2 × Z2

Instead of studying homotopy groups we will try to count holes in a computable way by
linearizing the problem. (This sentence may not make sense right now.)

The basic idea is that when a loop γ in X is contractible we can extend γ : S1 → X to
a map θ : D2 → X. Then the loop γ may be considered as the boundary of the disk θ. The
boundary of γ itself is trivial as it is a loop. If instead we consider a general path β : I → X
the boundary would be given by the restriction {0, 1} → X. If these two points are the same
the path is a loop and the boundary should be considered empty. So we say the boundary
of β is the formal sum β(1)− β(0) and it is 0 exactly if β is a loop.
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A disk does not have a nice discrete boundary, but we can replace it (homeomorphically!)
by a triangle with three sides. Then we define the boundary to be the alternating sum of the
three sides, and if their concatenation is a given loop γ then γ is the boundary of the disk.

We will now develop this theory systematically.
In particular, if this motivational detour was mysterious to you, do not worry.

1. Chain complexes

Definition 1.1. A chain complex is a sequence of abelian groups, (Cn)n∈Z, together
with homomorphisms dn : Cn → Cn−1 for n ∈ Z, such that dn−1 ◦ dn = 0.

Let R be an associative ring with unit 1R. A chain complex of R-modules can analogu-
ously be defined as a sequence of R-modules (Cn)n∈Z with R-linear maps dn : Cn → Cn−1

with dn−1 ◦ dn = 0.

Definition 1.2.
• The dn are differentials or boundary operators.
• x ∈ Cn is called an n-chain and n is the degree of x.
• An x ∈ Cn with dnx = 0 is called an n-cycle.

Zn(C) := {x ∈ Cn | dnx = 0}.
• If x ∈ Cn is of the form x = dn+1y for some y ∈ Cn+1, then x is an n-boundary.

Bn(C) := Im(dn+1) = {dn+1y | y ∈ Cn+1}.

Note that the cycles and boundaries form subgroups of the chains. As dn ◦ dn+1 = 0, we
know that the image of dn+1 is a subgroup of the kernel of dn and thus

Bn(C) ⊂ Zn(C).

We will often often drop the subscript n from the boundary maps and write d. Other
times we write dC to emphasize that our differential belongs to a complex (Cn)n∈Z, which
we often just write C∗.

Definition 1.3. The abelian group Hn(C) := Zn(C)/Bn(C) is the nth homology group
of the complex C∗.

If Hn(C) = 0 we say C∗ is exact at Cn. So the homology groups measure the extent
to which C∗ is not exact. The idea is that an exact chain complex may be large but it is
boring, much like a contractible space in topology. If some element in C∗ is a cycle it could
be because it is a boundary, but that is not a very interesting reason, any boundary is a
cycle by definition. But if there is an element x that is a cycle, i.e. it has no boundary, such
that x is not itself a boundary, there may be something interesting going on. Much like the
a loop in the fundamental group that cannot by contracted as there is a hole in our space.

If c, c′ ∈ Cn are such that c − c′ is a boundary, then we say c is homologous to c′. We
denote by [c] the equivalence class of a c ∈ Zn(C), or equivalently the image of c in Hn(C).

Example 1.4. (a) Consider

Cn =

{
Z n = 0, 1

0 otherwise
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and let d1 be the multiplication with N ∈ N, then

Hn(C) =

{
Z/NZ n = 0

0 otherwise.

(b) Take Cn = Z for all n ∈ Z and

dn =

{
idZ n odd

0 n even.

What is the homology of this chain complex?
(c) Consider Cn = Z for all n ∈ Z again, but let all boundary maps be trivial. What is

the homology of this chain complex?

Definition 1.5. Let C∗ and D∗ be two chain complexes. A chain map f : C∗ → D∗ is a
sequence of homomorphisms fn : Cn → Dn such that dDn ◦ fn = fn−1 ◦ dCn for all n, i.e., the
diagram

Cn
dCn
//

fn
��

Cn−1

fn−1

��

Dn

dDn
// Dn−1

commutes for all n.

Such an f sends cycles to cycles and boundaries to boundaries. We therefore obtain an
induced map

Hn(f) : Hn(C)→ Hn(D)

via Hn(f)[c] = [fnc].
There is a chain map from the chain complex mentioned in Example a) to the chain

complex D∗ that is concentrated in degree zero and has D0 = Z/NZ. Note, that H0(f) is
an isomorphism on 0th homology groups.

Are there chain maps between the complexes from Examples b) and c)?
Recall that a category is a collection (not necessarily a set) of objects and for every pair

of objects A,B a collection of morphisms Hom(A,B), written f : A→ B, such that there is
an associative composition and for each object there is a unit idA ∈ Hom(A,A).

You know many categories already, even if you don’t know the word. for example you
know the categories of topological spaces and continuous maps, vector spaces and linear
maps or groups and homomorphisms.

Proposition 1.6. There is a category Ch whose objects are chain complexes and whose
morphisms are chain maps.

Proof. To show the proposition we have to check that the composition of two chain
maps is a chain map, and that the degree-wise identity map is a chain map. These are both
immediate. �

From now on any map f : C∗ → D∗ between chain complexes will be assumed to be a
chain map.
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Recall that a functor F : C → D between two categories assigns to every object C of C
a (unique) object F (C) of D and to every morphism f in Hom(C,C ′) a morphism F (f) in
Hom(F (C), F (C ′)), such that composition and unit are respected: F (g) ◦ F (f) = F (g ◦ f)
whenever that is defined, and F (idC) = idF (C).

Lemma 1.7. For all n the rule C∗ 7→ Hn(C) defines a functor from the category of chain
complexes Ch to the category of abelian groups Ab.

Proof. If f : C∗ → D∗ and g : D∗ → E∗ are two chain maps, we have to check that
Hn(g) ◦Hn(f) = Hn(g ◦ f), but this is immediate from the definition: Both sides send [c] to
[g(f(c))]. We also have to check Hn(idC) = idHn(C), which is immediate. �

When do two chain maps induce the same map on homology?

Definition 1.8. A chain homotopy H between two chain maps f, g : C∗ → D∗ is a
sequence of homomorphisms (Hn)n∈Z with Hn : Cn → Dn+1 such that for all n

dDn+1 ◦Hn +Hn−1 ◦ dCn = fn − gn.

. . .
dCn+2

// Cn+1

Hn+1

ww

dCn+1
//

fn+1

��

gn+1





Cn
Hn

ww

dCn
//

fn
��

gn





Cn−1

Hn−1

ww

dCn−1
//

fn−1

��

gn−1





. . .

. . .
dDn+2

// Dn+1

dDn+1
// Dn

dDn
// Dn−1

dDn−1
// . . .

If such an H exists, then f and g are (chain) homotopic: f ' g.

The name is consciously chosen to remind you of homotopies between continuous maps
and we will later see geometrically defined examples of chain homotopies.

Proposition 1.9. (a) Being chain homotopic is an equivalence relation.
(b) If f and g are homotopic, then Hn(f) = Hn(g) for all n.

Proof. (a) If H is a homotopy from f to g, then −H is a homotopy from g to f . Each
f is homotopic to itself with H = 0. If f is homotopic to g via H and g is homotopic to h
via K, then f is homotopic to h via H +K.

(b) We have for every cycle c ∈ Zn(C∗):

Hn(f)[c]−Hn(g)[c] = [fnc− gnc] = [dDn+1 ◦Hn(c)] + [Hn−1 ◦ dCn (c)] = 0.

�

Definition 1.10. Let f : C∗ → D∗ be a chain map. We call f a chain homotopy equiv-
alence, if there is a chain map g : D∗ → C∗ such that g ◦ f ' idC∗ and f ◦ g ' idD∗ . The
chain complexes C∗ and D∗ are then chain homotopy equivalent.

By Proposition 1.9 and functoriality of homology we see that if f is a chain homotopy
equivalence with inverse g then Hn(f) has inverse Hn(g), thus we have:

Corollary 1.11. If f : C∗ → D∗ is a chain homotopy equivalenve then Hn(f) is an
isomorphism for each n.

However, chain complexes with isomorphic homology do not have to be chain homotopi-
cally equivalent. (Can you find a counterexample?)
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Definition 1.12. If C∗ and C ′∗ are chain complexes, then their direct sum, C∗ ⊕ C ′∗, is
the chain complex with

(C∗ ⊕ C ′∗)n = Cn ⊕ C ′n = Cn × C ′n
with differential d = d⊕ given by

d⊕(c, c′) = (dc, dc′).

Similarly, if (C
(j)
∗ , d(j))j∈J is a family of chain complexes, then we can define their direct

sum as follows:

(
⊕
j∈J

C(j)
∗ )n :=

⊕
j∈J

C(j)
n

as abelian groups and the differential d⊕ is defined via the property that its restriction to
the jth summand is d(j).

2. Singular homology

Definition 2.1. For every n we define the (topological) n-simplex ∆n as

∆n = {(t0, . . . , tn) ∈ Rn+1|
∑

ti = 1, ti > 0}.

Example 2.2. ∆0 is a point, ∆1 a line segment, ∆2 a triangle, ∆3 a tetrahedron.

By definition ∆n ⊂ Rn+1, but we may always consider ∆n ⊂ Rn+1 ⊂ Rn+2 ⊂ . . ..
The boundary of ∆1 consists of two copies of ∆0, the boundary of ∆2 consists of three

copies of ∆1. In general, the boundary of ∆n consists of n+ 1 copies of ∆n−1. (Note this is
not the boundary in the topological sense as subspaces of Rn+1, but this is just intuition for
the following formalization.)

We need the following face maps for 0 6 i 6 n

di = dn−1
i : ∆n−1 ↪→ ∆n; (t0, . . . , tn−1) 7→ (t0, . . . , ti−1, 0, ti, . . . , tn−1).

We will write ei for the standard unit vectior that is 1 in the i-th component and 0
otherwise. (We start counting at i = 0.) The image of dn−1

i in ∆n is the face that is opposite
to ei. It is the convex hull of e0, . . . , ei−1, ei+1, . . . , en.

Lemma 2.3. Concerning the composition of face maps, the following rule holds:

dn−1
i ◦ dn−2

j = dn−1
j ◦ dn−2

i−1 , 0 6 j < i 6 n.

For example we may consider the two maps d2 ◦ d0 and d0 ◦ d1from ∆0 to ∆2. We have
∆0 = {e0} = {(1)} and d2(d0((1))) = d2((0, 1)) = (0, 1, 0) and d0(d1(e0)) = d0((1, 0)) =
(0, 1, 0).

Proof. Both expressions yield

dn−1
i ◦ dn−2

j (t0, . . . , tn−2) = (t0, . . . , tj−1, 0, . . . , ti−2, 0, . . . , tn−2) = dn−1
j dn−2

i−1 (t0, . . . , tn−2).

�

Remark 2.4. More generally any injection f : {0, . . . , k} → {0, . . . , n} induces a map
∆k → ∆n by sending ei to ef(i) and extending linearly.

Let X be an arbitrary topological space, X 6= ∅.
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Definition 2.5. A singular n-simplex in X is a continuous map α : ∆n → X.

Definition 2.6. Let Sn(X) be the free abelian group generated by all singular n-
simplices in X. We call Sn(X) the nth singular chain module of X.

Elements of Sn(X) are finite formal sums
∑

i∈I λiαi with λi = 0 for almost all i ∈ I and
αi : ∆n → X.

For all n > 0 there are non-trivial elements in Sn(X), because we assumed that X 6= ∅:
we can always take an x0 ∈ X and the constant map κx0 : ∆n → X as α. By convention, we
define Sn(∅) = 0 for all n > 0. (It’s the free abelian group on no generators.)

If we want to define maps from Sn(X) to some abelian group then it suffices to define
such a map on generators.

Example 2.7. What is S0(X)? A continuous α : ∆0 → X is determined by its value
α(e0) =: xα ∈ X, which is a point in X. A singular 0-simplex

∑
i∈I λiαi can thus be identified

with the formal sum of points
∑

i∈I λixαi .
For instance if you count the zeroes and poles of a meromorphic function with multiplic-

ities then this gives an element in S0(X). In algebraic geometry a divisor on a curve X is
an element in S0(X).

Definition 2.8. We define ∂i : Sn(X)→ Sn−1(X) on generators

∂i(α) = α ◦ dn−1
i

and call it the ith face of α.

On Sn(X) we therefore get ∂i(
∑

j λjαj) =
∑

j λj(αj ◦ d
n−1
i ).

Lemma 2.9. The face maps on Sn(X) satisfy

∂j ◦ ∂i = ∂i−1 ◦ ∂j, 0 6 j < i 6 n.

Proof. This follows directly from Lemma 2.3. �

Definition 2.10. We define the boundary operator on singular chains as ∂ : Sn(X) →
Sn−1(X), ∂ =

∑n
i=0(−1)i∂i.

Lemma 2.11. The map ∂ is a boundary operator, i.e., ∂ ◦ ∂ = 0.

Proof. We calculate

∂ ◦ ∂ = (
n−1∑
j=0

(−1)j∂j) ◦ (
n∑
i=0

(−1)i∂i) =
∑∑

(−1)i+j∂j ◦ ∂i

=
∑

06j<i6n

(−1)i+j∂j ◦ ∂i +
∑

06i6j6n−1

(−1)i+j∂j ◦ ∂i

=
∑

06j<i6n

(−1)i+j∂i−1 ◦ ∂j +
∑

06i6j6n−1

(−1)i+j∂j ◦ ∂i = 0.

Where in the last line we relabelled i− 1 as j and j as i in the first summand to identify it
with the negative of the second summand. �
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We therefore obtain the singular chain complex, S∗(X),

. . . //Sn(X)
∂
//Sn−1(X)

∂
// . . .

∂
//S1(X)

∂
//S0(X) //0.

The singular chain complex is very large and unwieldy! But its homology contains important
information about X and we will find many ways of computing this homology without ever
having to worry about classifying all maps from ∆k to X.

We abbreviate Zn(S(X)) by Zn(X), Bn(S(X)) by Bn(X) and Hn(S(X)) by Hn(X).

Definition 2.12. For a space X, Hn(X) is the nth singular homology group of X.

Note that Z0(X) = S0(X) as S−1(X) = 0.
As an example of a 1-cycle consider a 1-chain c = α+β+ γ where α, β, γ : ∆1 → X such

that α(e1) = β(e0), β(e1) = γ(e0) and γ(e1) = α(e0) and calculate that ∂c = 0. (One way to
obtain such a 1-cycle is to take a loop and divide it into three parts.)

We need to understand how continuous maps of topological spaces interact with singular
chains and singular homology. So let f : X → Y be a continuous map.

Definition 2.13. The map fn = Sn(f) : Sn(X) → Sn(Y ) is defined on generators
α : ∆n → X as

fn(α) = f ◦ α : ∆n α
//X

f
//Y.

Lemma 2.14. The singular chain complex defines a functor S∗ : Top→ Ch. For every n
the singular homology Hn defines a functor Top→ Ab.

Proof. We have to show that for any continuous map f : X → Y the induced map
fn : Sn(X)→ Sn(Y ) assemble into a chain map f∗, i.e. we need

Sn(X)
fn

//

∂X

��

Sn(Y )

∂Y

��

Sn−1(X)
fn−1

// Sn−1(Y ).

But by definition

∂Y (fn(α)) =
n∑
i=0

(−1)i(f ◦ α) ◦ di =
n∑
i=0

(−1)if ◦ (α ◦ di) = fn−1(∂Xα).

The identity map on X induces the identity map on Sn(X) for all n > 0 and if we have
a composition of continuous maps

X
f
//Y

g
//Z,

then Sn(g ◦ f) = Sn(g) ◦ Sn(f).
As f∗ is a chain map it induces a map on homology which is functorial by Lemma 1.7. �

In any category a morphism f with an inverse morphism g such that f ◦ g and g ◦ f
is called an isomorphism. It follows directly from the definition that any functor preserves
isomorphisms. Thus by Lemma 2.14 it follows that homeomorphic spaces have isomorphic
homology groups:

X ∼= Y ⇒ Hn(X) ∼= Hn(Y ) for all n > 0.
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Our first (not too exciting) calculation is the following. We will denote the 1 point space
by ∗.

Proposition 2.15. The homology groups of a one-point space ∗ are trivial but in degree
zero,

Hn(∗) ∼=

{
0, if n > 0,

Z, if n = 0.

Proof. For every n > 0 there is precisely one continuous map α : ∆n → ∗, namely the
constant map. We denote this map by κn. Then the boundary of κn is

∂κn =
n∑
i=0

(−1)iκn ◦ di =
n∑
i=0

(−1)iκn−1 =

{
κn−1, n even,

0, n odd.

For all n we have Sn(pt) ∼= Z generated by κn and therefore the singular chain complex looks
as follows:

. . .
∂=0−−→ Z ∂=idZ−−−→ Z ∂=0−−→ Z. �

3. H0 and H1

Next we will compute the lowest homology groups. We begin by defining a map:

Proposition 3.1. For any topological space X there is a homomorphism ε : H0(X)→ Z
with ε 6= 0 for X 6= ∅.

Proof. For any topological space there is a unique projection map to the 1 point space.
By Lemma 2.14 this induces a map on homology, so H0(X) maps to H0(∗) = Z.

We can also construct ε more explicitly: By definition S0(∅) is zero, so H0(∅) = 0 and
in this case we define ε to be the zero map.

If X 6= ∅, then we define ε(α) = 1 for any α : ∆0 → X, thus ε(
∑

i∈I λiαi) =
∑

i∈I λi on
S0(X). As only finitely many λi are non-trivial, this is in fact a finite sum.

We have to show that this map is well-defined on homology, i.e. that it vanishes on
boundaries. Let S0(X) 3 c = ∂b be a boundary and write b =

∑
i∈I νiβi with βi : ∆1 → X.

Then we get

∂b = ∂
∑
i∈I

νiβi =
∑
i∈I

νi(βi ◦ d0 − βi ◦ d1) =
∑
i∈I

νiβi ◦ d0 −
∑
i∈I

νiβi ◦ d1

and hence

ε(c) = ε(∂b) =
∑
i∈I

νi −
∑
i∈I

νi = 0.

�

If X 6= ∅, then any α : ∆0 → X can be identified with its image point, so the map ε on
S0(X) counts points in X with multiplicities.

Proposition 3.2. If X is a path-connected, non-empty space, then ε : H0(X) ∼= Z.
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Proof. As X is non-empty, there is a point x ∈ X and the constant map κx with value
x is an element in S0(X) with ε(κx) = 1. Therefore ε is surjective. Any other generator of
S0(X) is of the form κy for some point y ∈ X and there is a continuous path ω : [0, 1]→ X
with ω(0) = x and ω(1) = y. We define αω : ∆1 → X as

αω(t0, t1) = ω(1− t0).

Then

∂(αω) = ∂0(αω)− ∂1(αω) = αω(e1)− αω(e0) = αω(0, 1)− αω(1, 0) = κy − κx,
and the two generators κx, κy are homologous. This shows that ε is injective. �

From now on we will identify paths w and their associated 1-simplices αw.

Corollary 3.3. If X is of the form X =
⊔
i∈I Xi such that the Xi are non-empty and

path-connected, then

H0(X) ∼=
⊕
i∈I

Z.

In this case, the zeroth homology group of X is the free abelian group generated by the
path-components.

Proof. As the ∆n are connected the singular chain complex of X splits as the direct
sum of chain complexes of the Xi:

Sn(X) ∼=
⊕
i∈I

Sn(Xi)

for all n. Boundary summands ∂i stay in a component, in particular,

∂ : S1(X) ∼=
⊕
i∈I

S1(Xi)→
⊕
i∈I

S0(Xi) ∼= S0(X)

is the direct sum of the boundary operators ∂ : S1(Xi)→ S0(Xi) and the claim follows. �

In fact the same proof shows that Hn(X) = ⊕i∈IHn(Xi) for all n in the situation of the
corollary.

Next, we want to study H1. I have already been hinting it relates to the fundamental
group. But the fundamental group is not abelian, while H1 is, we have to fix that.

Definition 3.4. Let G be an arbitrary group, then its abelianization, Gab, is G/[G,G].

Recall that [G,G] is the commutator subgroup of G. That is the smallest subgroup of G
containing all commutators ghg−1h−1, g, h ∈ G. It is a normal subgroup of G: If c ∈ [G,G],
then for any g ∈ G the element gcg−1c−1 is a commutator and also by the closure property
of subgroups the element gcg−1c−1c = gcg−1 is in the commutator subgroup. Thus Gab is a
group and since every commutator is contained in [G,G] it is in fact abelian.

Let now X be path-connected and x ∈ X.

Definition 3.5. Let h : π1(X, x) → H1(X) be the map, that sends the homotopy class
of a closed path ω, [ω]π1 , to its homology class [ω] = [ω]H1 . This map is called the Hurewicz-
homomorphism.

We will need a lemma to ensure that this is in fact well-defined!

12



Lemma 3.6. Let ω1, ω2, ω be paths in X.

(a) Constant paths are null-homologous.
(b) If ω1(1) = ω2(0), then ω1∗ω2−ω1−ω2 is a boundary. Here ω1∗ω2 is the concatenation

of ω1 followed by ω2.
(c) If ω1(0) = ω2(0), ω1(1) = ω2(1) and if ω1 is homotopic to ω2 relative to {0, 1}, then

ω1 and ω2 are homologous as singular 1-chains.
(d) Any 1-chain of the form ω̄ ∗ ω is a boundary. Here, ω̄(t) := ω(1− t).

Note that I used the opposite convention for ω1 ∗ ω2 in the lecture.

Proof. For a), consider the constant singular 2-simplex α(t0, t1, t2) = x and cx, the
constant path on x. Then ∂α = cx − cx + cx = cx.

For b), we define a singular 2-simplex β : ∆2 → X as follows.

�
�
�
�
�
��

A
A
A
A
A
AK

-
ω1

ω2ω1 ∗ ω2 Q
QQ

Q
Q
Q

QQ

Q
QQ

e0 e1

e2

We define β on the boundary components of ∆2 as indicated and prolong it constantly
along the sloped inner lines. Then

∂β = β ◦ d0 − β ◦ d1 + β ◦ d2 = ω2 − ω1 ∗ ω2 + ω1.

For c): Let H : [0, 1]× [0, 1]→ X a homotopy from ω1 to ω2. As we have that H(0, t) =
ω1(0) = ω2(0), we can factor H over the quotient [0, 1]× [0, 1]/{0}× [0, 1] ∼= ∆2 with induced
map h : ∆2 → X. Then

∂h = h ◦ d0 − h ◦ d1 + h ◦ d2.

The first summand is null-homologous, because it’s constant (with value ω1(1) = ω2(1)), the
second one is ω2 and the last is ω1, thus ω1 − ω2 is null-homologous.

For d): Consider γ : ∆2 → X as indicated below.

�
�
�
�
�
��

A
A
A
A
A
AK

-
ω̄

ωω(1)

�
�
�
��

�
�
�

��

e0 e1

e2

Alternatively, remember from your topology course that ω̃ ? ω is homotopic to the constant
map and apply (b). �

Corollary 3.7. The Hurewicz map is a well-defined homomorphism.

13



Proof. By Lemma 3.6 (b)

h([ω1][ω2]) = h([ω1 ∗ ω2]) = [ω1] + [ω2] = h([ω1]) + h([ω2])

Well-definedness is Lemma 3.6 (c). �

Proposition 3.8. Let X be path connected and x ∈ X. The Hurewicz homomorphism
induces an isomorphism

π1(X, x)ab
∼= H1(X).

Proof. As H1(X) is abelian the commutator subgroup [π1(X, x), π1(X, x)] must be sent
to 0 and we have the following factorization:

π1(X, x)
h

//

p

��

H1(X)

π1(X, x)ab = π1(X, x)/[π1(X, x), π1(X, x)]

∼=
hab

33

We will construct an inverse to hab. For any y ∈ X we choose a path uy from x to y. For
y = x we take ux to be the constant path on x. Let α be an arbitrary singular 1-simplex
and yi = α(ei). Define φ : S1(X) → π1(X, x)ab on generators as φ(α) = [uy0 ∗ α ∗ ūy1 ] and
extend φ linearly to all of S1(X), keeping in mind that the composition in π1 is written
multiplicatively.

We have to show that φ is trivial on boundaries, so let β : ∆2 → X. Then

φ(∂β) = φ(β ◦ d0 − β ◦ d1 + β ◦ d2) = φ(β ◦ d0)φ(β ◦ d1)−1φ(β ◦ d2).

Abbreviating β ◦ di with αi and writing yi for the vertices of β we get as a result

[uy1 ∗ α0 ∗ ūy2 ][uy0 ∗ α1 ∗ ūy2 ]−1[uy0 ∗ α2 ∗ ūy1 ] = [uy0 ∗ α2 ∗ ūy1 ∗ uy1 ∗ α0 ∗ ūy2 ∗ uy2 ∗ ᾱ1 ∗ ūy0 ].
Here, we’ve used that the image of φ is abelian. We can reduce ūy1 ∗ uy1 and ūy2 ∗ uy2 and
are left with [uy0 ∗α2 ∗α0 ∗ ᾱ1 ∗ ūy0 ] but α2 ∗α0 ∗ ᾱ1 is the closed path tracing the boundary
of β and therefore it is null-homotopic in X. Thus φ(∂β) = 0 and φ passes to a map

φ : H1(X)→ π1(X, x)ab.

The composition φ ◦ hab evaluated on the class of a closed path ω gives

φ ◦ hab[ω]π1 = φ[ω]H1 = [ux ∗ ω ∗ ūx]π1 .
But we chose ux to be constant, thus φ ◦ hab = idπ1(X,x).

If c =
∑
λiαi is a cycle, then hab ◦ φ(c) is of the form [c+Dc] where the Dc-part comes

from the contributions of the uyi . The fact that ∂(c) = 0 implies that the summands in Dc

cancel and thus hab ◦ φ = idH1(X). �

Note, that abelianization doesn’t change anything for abelian groups, i.e., whenever we
have an abelian fundamental group, we know that H1(X) ∼= π1(X, x). In general we lose
some information, which is the result of our linearization procedure.

Example 3.9. Knowledge of π1 immediately gives the following:

(a) H1(Sn) = 0, for n > 1, H1(S1) ∼= Z.
(b) H1(S1 × . . .× S1︸ ︷︷ ︸

n

) ∼= Zn.
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(c) H1(S1 ∨ S1) ∼= (Z ∗ Z)ab
∼= Z ⊕ Z. It is an exercise in group theory to see that the

natural map from Z ∗ Z to Z⊕ Z induces an isomorphism on abelianizations.
(d) For real projective space we have

H1(RP n) ∼=

{
Z, n = 1,

Z/2Z, n > 1.

4. Homotopy invariance

Before exploring higher homology groups we will show that two continuous maps that are
homotopic induce chain homotopic maps on singular chains and thus identical maps on the
level of homology groups. Thus homology is homotopy invariant and a good tool to study
spaces up to homotopy equivalence (rather than up to homeomorphism).

Heuristics: If α : ∆n → X is a singular n-simplex and if f, g are homotopic maps from X
to Y , then the homotopy from f ◦α to g ◦α is a map from ∆n× [0, 1]. We want to translate
this geometric homotopy into a chain homotopy on the singular chain complex. To that end
we have to cut the prism ∆n × [0, 1] into (n+ 1)-simplices.

In low dimensions this is easy: ∆0 × [0, 1] is homeomorphic to ∆1, ∆1 × [0, 1] ∼= [0, 1]2

and this can be cut into two copies of ∆2 and ∆2 × [0, 1] is a 3-dimensional prism and that
can be glued together from three tetrahedra, e.g.

@@

@@

��
���

��
��� @@��

���

�
�
�
��

�
�
�
�
�
�

@@

��
���

�
�
�
��

�
�
�
�
�
�
��

@@��
���

�
�
�
�
�
�
��

�
�
�
�
�
�

As you might guess now, we use n+ 1 copies of ∆n+1 to build ∆n × [0, 1]. We introduce
some notation first. Embedding ∆n × [0, 1] ⊂ Rn+1 × R we denote the vertices (ei, 0) of the
bottom simplex by vi and the vertices (ej, 1) of the top simplex by wj.

Then any ordered subset (q0, . . . , qn+1) of n + 2 of the points {v0, . . . , vn, w0, . . . , wn}
determines a map ∆n+1 → ∆n × [0, 1] by sending ei to the point qi and extending linearly.
(Equivalently we send (t0, . . . , tn+1) to

∑
tiqi.

We denote this map by [q0, . . . , qn+1].
For i = 0, . . . , n define pi : ∆n+1 → ∆n × [0, 1] as the map [v0, . . . , vi, wi, . . . , wn].
We then define maps Pi : Sn(X)→ Sn+1(X × [0, 1]) via Pi(α) = (α× id) ◦ pi:

∆n+1 pi−→ ∆n × [0, 1]
α×id−−−→ X × [0, 1].

For k = 0, 1 let jk : X → X × [0, 1] be the inclusion x 7→ (x, k). We will show that
P =

∑
(−1)iPi gives a chain homotopy between S∗(j0) and S∗(j1).

Lemma 4.1. The maps Pi satisfy the following relations
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(a) ∂0 ◦ P0 = Sn(j1),
(b) ∂n+1 ◦ Pn = Sn(j0),
(c) ∂i ◦ Pi = ∂i ◦ Pi−1 for 1 6 i 6 n.
(d)

∂j ◦ Pi =

{
Pi ◦ ∂j−1, for i 6 j − 2

Pi−1 ◦ ∂j, for i > j + 1.

Proof. Note that it suffices to check the corresponding claims for the pi’s and dj’s, i.e.
∂0 ◦ P0 = Sn(j1) if p0 ◦ d0 = (id∆n , 1) etc.

It also suffices to check the claims on the vertices ei as all maps are linear extensions of
maps on the vertices.

For the first two points, we note that on ∆n we have

p0 ◦ d0(ei) = p0(ei+1) = (ei, 1)

and

pn ◦ dn+1(ei) = pn(ei) = (ei, 0)

for all 0 6 i 6 n.
For c), one checks that pi ◦ di = pi−1 ◦ di on ∆n: both send ej to wj if i 6 j and to vj

otherwise.
For d) we first consider the case i > j+1. We need to compare pi ◦dj and (dj× id)◦pi−1.

In other words, the following diagram commutes:

∆n+1 pi
// ∆n × [0, 1]

∆n

dj
88

pi−1

&&

∆n−1 × [0, 1]
dj×id

// ∆n × [0, 1]

Indeed one checks that by both routes

ek 7→


(ek, 0) for k < j

(ek−1, 0) for j 6 k < i

(ek−1, 1) for i 6 k

The remaining case follows similarly. �

Lemma 4.2. The map P =
∑n

i=0(−1)iPi : Sn(X)→ Sn+1(X × [0, 1] is a chain homotopy
between (Sn(j0))n and (Sn(j1))n, i.e., ∂ ◦ P + P ◦ ∂ = Sn(j1)− Sn(j0).

Proof. We take an α : ∆n → X and calculate

∂Pα + P∂α =
n∑
i=0

n+1∑
j=0

(−1)i+j∂jPiα +
n−1∑
i=0

n∑
j=0

(−1)i+jPi∂jα.
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If we single out the terms involving the pairs of indices (0, 0) and (n, n+ 1) in the first sum
and use Lemma 4.1 (a) and (b), we are left with

Sn(j1)(α)− Sn(j0)(α) +
∑

(i,j)6=(0,0),(n,n+1)

(−1)i+j∂jPiα +
n−1∑
i=0

n∑
j=0

(−1)i+jPi∂jα.

We now split the third sum according to the cases i 6 j − 2, i = j − 1, j and i > j + 1. By
Lemma 4.1 (c) the cases i = j − 1, j cancel and we can use 4.1 (d) to cancel the other two
cases with the last summand of the equation. Thus we see that only the first two summands
survive. �

So, finally we can prove the main result of this section:

Theorem 4.3 (Homotopy invariance). If f, g : X → Y are homotopic maps, then they
induce the same map on homology.

Proof. By Lemma 4.2 we know that S(j0) and S(j1) are chain homotopic. But compos-
ing a chain homotopy with a chain map gives another chain homotopy (check this!). Thus
S(f) = S(H ◦ j0) = S(H) ◦ S(j0) ' S(H) ◦ S(j1) = S(g). �

Corollary 4.4. If two spaces X, Y are homotopy equivalent, then H∗(X) ∼= H∗(Y ). In
particular, if X is contractible, then

H∗(X) ∼=

{
Z, for ∗ = 0,

0, otherwise.

Example 4.5. (a) As Rn, the closed disk Dn and the open disk D̊n are contractible
for all n, the above corollary gives that their homology groups are trivial except in
degree zero where it consists of the integers.

(b) As the Möbius strip is homotopy equivalent to S1, we know that their homology
groups are isomorphic (and we already know H0 and H1).

(c) If you know about vector bundles: the zero section of a vector bundle induces a
homotopy equivalence between the base and the total space, hence these two have
isomorphic homology groups.

5. The long exact sequence in homology

Our next goal is to compute singular homology groups by breaking up spaces into sub-
spaces.

But before we can move on to topological applications we need some more algebra of
chain complexes.

Definition 5.1. A sequence

. . .
fi+1

//Ai
fi
//Ai+1

fi−1
// . . .

of homomorphisms of abelian groups (indexed over the integers) is called exact at Ai if the
image of fi+1 is the kernel of fi.

The sequence is called (long) exact, if it is exact at every Ai.
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An exact sequence of the form

0 //A
f
//B

g
//C //0

is called a short exact sequence.

Example 5.2. The sequence

0 //Z 2·
//Z π

//Z/2Z //0

is a short exact sequence.

A short exact sequence 0→ A→ B → C → 0 is called split if B ∼= A⊕ C.
The following lemma will be useful later.

Lemma 5.3. A short exact sequence 0 → A
f−→ B

g−→ C → 0 is split if and only if there
exists a right inverse r of g if and only if there exists a left inverse s of f .

Proof. Given r we note that rg(b)− b is in the image of A, so we define s : B → A by
b 7→ rg(b)− b. It is a homomorphism and sf(a) = a.

Given s we define r(c) as follows. Pick any b in g−1(c) and let r(c) = b − fs(b). This
is independent of b as g(b′) = g(b) implies b′ − b is in the image of A, und thus equal to
fs(b)− fs(b′). It follows that r(b) = r(b′).

We define homomorphisms f + r : A⊕C → B and (s, g) : B → A⊕C and compute that
(s, g)(f + r)(a, c) = (sf(a), gr(c)) = (a, c) and (f + r)(s, g)(b) = fs(b) + rg(b) = b, providing
the desired isomorphism.

If conversely B ∼= A⊕C we let r be the inclusion from C and s the projection to A. �

By definition a chain complex C∗ (considered as the sequence of homomorphisms dj) is
exact at Ci if Hi(C) = 0. Thus homology measures failure of exactness.

If ι : U → A is an injection/monomorphism, then 0 → U → A is exact at U and
0→ U → A→ A/U → 0 is a short exact sequence.

Similarly, a surjection/epimorphism % : B → Q gives rise to a sequence B → Q → 0
exact at Q.

An isomorphism φ : A ∼= A′ gives rise to an exact sequence 0→ A
φ−→ A′ → 0.

Definition 5.4. If A∗, B∗, C∗ are chain complexes and f∗ : A∗ → B∗, g : B∗ → C∗ are
chain maps, then we call the sequence

A∗
f∗
//B∗

g∗
//C∗

exact a B∗, if the image of fn is the kernel of gn for all n ∈ Z.
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Thus an exact sequence of chain complexes is a commuting double ladder

...

d

��

...

d

��

...

d

��

An+1

fn+1
//

d
��

Bn+1

gn+1
//

d
��

Cn+1

d
��

An
fn

//

d
��

Bn
gn

//

d
��

Cn

d
��

An−1

fn−1
//

d
��

Bn−1

gn−1
//

d
��

Cn+1

d
��

...
...

...

in which every row is exact.

Example 5.5. Let p be a prime, then

0

��

0

��

0

��

Z id
//

p

��

Z 0
//

p2

��

0

��

Z
p

//

π

��

Z π
//

π
��

Z/pZ

id
��

Z/pZ
p
//

��

Z/p2Z π
//

��

Z/pZ

��

0 0 0

has exact rows and columns, in particular it is an exact sequence of chain complexes. Here,
π denotes varying canonical projection maps.

Proposition 5.6. If 0 //A∗
f
//B∗

g
//C∗ //0 is a short exact sequence of chain

complexes, then there exists a homomorphism δ : Hn(C∗)→ Hn−1(A∗) for all n ∈ Z which is
natural, i.e. if

0 // A∗
f
//

α
��

B∗
g
//

β
��

C∗ //

γ

��

0

0 // A′∗
f ′
// B′∗

g′
// C ′∗ // 0
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is a commutative diagram of chain maps in which the rows are exact then Hn−1(α) ◦ δ =
δ ◦Hn(γ),

Hn(C∗)
δ
//

Hn(γ)

��

Hn−1(A∗)

Hn−1(α)

��

Hn(C ′∗)
δ
// Hn−1(A′∗)

The method of proof is an instance of a diagram chase. The homomorphism δ is called
connecting homomorphism.

Proof. We show the existence of a δ first and then prove that the constructed map
satisfies the naturality condition.

a) Definition of δ:
Is c ∈ Cn with d(c) = 0, then we choose a b ∈ Bn with gnb = c. This is possible because

gn is surjective. We know that dgnb = dc = 0 = gn−1db thus db is in the kernel of gn−1,
hence it is in the image of fn−1. Thus there is an a ∈ An−1 with fn−1a = db. We have that
fn−2da = dfn−1a = ddb = 0 and as fn−2 is injective, this shows that a is a cycle.

We define δ[c] := [a].

Bn 3 b � gn
// c ∈ Cn

An−1 3 a � fn−1
// db ∈ Bn−1

In order to check that δ is well-defined, we assume that there are b and b′ with gnb =
gnb
′ = c. Then gn(b − b′) = 0 and thus there is an ã ∈ An with fnã = b − b′. Define a′ as

a− dã. Then
fn−1a

′ = fn−1a− fn−1dã = db− db+ db′ = db′

because fn−1dã = db− db′. As fn−1 is injective, we get that a′ is uniquely determined with
this property. As a is homologous to a′ we get that [a] = [a′] = δ[c], thus the latter is
independent of the choice of b.

In addition, we have to make sure that the value stays the same if we add a boundary
term to c, i.e. take c′ = c + dc̃ for some c̃ ∈ Cn+1. Choose preimages of c, c̃ under gn and
gn+1, i.e. b and b̃ with gnb = c and gn+1b̃ = c̃. Then the element b′ = b + db̃ has boundary
db′ = db and thus both choices will result in the same a.

Therefore δ : Hn(C∗)→ Hn−1(A∗) is well-defined.
b) We have to show that δ is natural with respect to maps of short exact sequences.
Let c ∈ Zn(C∗), then δ[c] = [a] for a b ∈ Bn with gnb = c and an a ∈ An−1 with

fn−1a = db. Therefore, Hn−1(α)(δ[c]) = [αn−1(a)].
On the other hand, we have

f ′n−1(αn−1a) = βn−1(fn−1a) = βn−1(db) = dβnb

and
g′n(βnb) = γngnb = γnc

and we can conclude that by the construction of δ

δ[γn(c)] = [αn−1(a)]
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and this shows δ ◦Hn(γ) = Hn−1(α) ◦ δ. �

With this auxiliary result at hand we can now prove the main result in this section:

Proposition 5.7. For any short exact sequence

0 //A∗
f
//B∗

g
//C∗ //0

of chain complexes we obtain a long exact sequence of homology groups

. . .
δ
//Hn(A∗)

Hn(f)
//Hn(B∗)

Hn(g)
//Hn(C∗)

δ
//Hn−1(A∗)

Hn−1(f)
// . . .

Proof. a) Exactness at Hn(B∗):
We have Hn(g)◦Hn(f)[a] = [gn(fn(a))] = 0 because the composition of gn and fn is zero.

This proves that the image of Hn(f) is contained in the kernel of Hn(g).
For the converse, let [b] ∈ Hn(B∗) with [gnb] = 0. Then there is a c ∈ Cn+1 with dc = gnb.

As gn+1 is surjective, we find a b′ ∈ Bn+1 with gn+1b
′ = c. Hence

gn(b− db′) = gnb− dgn+1b
′ = dc− dc = 0.

Exactness gives an a ∈ An with fna = b − db′ and da = 0 and therefore fna is homologous
to b and Hn(f)[a] = [b] thus the kernel of Hn(g) is contained in the image of Hn(f).

b) Exactness at Hn(C∗):
Let b ∈ Hn(B∗), then δ[gnb] = 0 because b is a cycle, so 0 is the only preimage under

fn−1 of db = 0. Therefore the image of Hn(g) is contained in the kernel of δ.
Now assume that δ[c] = 0, thus in the construction of δ, the a is a boundary, a = dã.

Then for a preimage of c under gn, b, we have by the definition of a

d(b− fnã) = db− dfnã = db− fn−1a = 0.

Thus b − fnã is a cycle and gn(b − fnã) = gnb − gnfnã = gnb − 0 = gnb = c, so we found a
preimage for [c] and the kernel of δ is contained in the image of Hn(g).

c) Exactness at Hn−1(A∗):
Let c be a cycle in Zn(C∗). Again, we choose a preimage b of c under gn and an a with

fn−1(a) = db. Then Hn−1(f)δ[c] = [fn−1(a)] = [db] = 0. Thus the image of δ is contained in
the kernel of Hn−1(f).

If a ∈ Zn−1(A∗) with Hn−1(f)[a] = 0. Then fn−1a = db for some b ∈ Bn. Take c = gnb.
Then by definition δ[c] = [a]. �

6. The long exact sequence of a pair of spaces

Let X be a topological space and A ⊂ X a subspace of X. Consider the inclusion map
i : A → X, i(a) = a. We obtain an induced map Sn(i) : Sn(A) → Sn(X), but we know that
the inclusion of spaces doesn’t have to yield a monomorphism on homology groups. For
instance, we can include A = S1 into X = D2.

We consider pairs of spaces (X,A).

Definition 6.1. The relative chain complex of (X,A) is

S∗(X,A) := S∗(X)/S∗(A)

with differential induced by the differential on S∗(X).
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Note the differential on S∗(X) descends to the quotient as it preserves S∗(A).
Sn(X,A) is isomorphic to the free abelian group generated by all n-simplices β : ∆n → X

whose image is not completely contained in A, i.e., β(∆n) ∩ (X \ A) 6= ∅.

• Elements in Sn(X,A) are called relative chains in (X,A)
• Cycles in Sn(X,A) are represented by chains c whose boundary lies in A. These are

relative cycles.
• Boundaries in Sn(X,A) are chains c in X of the form ∂Xb+ a where a is a chain in
A, these are relative boundaries.

The following facts are immediate from the definition:

(a) Sn(X,∅) ∼= Sn(X).
(b) Sn(X,X) = 0.
(c) Sn(X tX ′, X ′) ∼= Sn(X).

Definition 6.2. The relative homology groups of (X,A) are

Hn(X,A) := Hn(S∗(X,A)).

Theorem 6.3. For any pair of topological spaces A ⊂ X we obtain a long exact sequence

. . .
δ
//Hn(A)

Hn(i)
//Hn(X) //Hn(X,A)

δ
//Hn−1(A)

Hn−1(i)
// . . .

For a map of spaces f : X → Y with f(A) ⊂ B ⊂ Y , we get an induced map of long
exact sequences

. . .
δ
// Hn(A)

Hn(f |A)
��

Hn(i)
// Hn(X)

Hn(f)
��

// Hn(X,A)

Hn(f)
��

δ
// Hn−1(A)

Hn−1(f |A)
��

Hn−1(i)
// . . .

. . .
δ
// Hn(B)

Hn(i)
// Hn(Y ) // Hn(Y,B)

δ
// Hn−1(B)

Hn−1(i)
// . . .

A map f : X → Y with f(A) ⊂ B is denoted by f : (X,A)→ (Y,B).

Proof. By definition of S∗(X,A) the sequence

0 //S∗(A)
S∗(i)

//S∗(X)
π
//S∗(X,A) //0

is an exact sequence of chain complexes and by Proposition 5.7 we obtain the first claim.
For a map f as above the following diagram

0 // Sn(A)

Sn(f |A)
��

Sn(i)
// Sn(X)

Sn(f)
��

π
// Sn(X,A)

Sn(f)/Sn(f |A)
��

// 0

0 // Sn(B)
Sn(i)

// Sn(Y )
π
// Sn(Y,B) // 0

commutes, thus the second claim follows from naturality of the boundary map in Proposition
5.6. �

Example 6.4. Let A = Sn−1 and X = Dn, then we know that Hj(i) is trivial for j > 0.
From the long exact sequence we get that δ : Hj(Dn,Sn−1) ∼= Hj−1(Sn−1) for j > 1 and n > 1.
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Proposition 6.5. If i : A ↪→ X is a weak retract, i.e. if there is an r : X → A with
r ◦ i ' idA, then

Hn(X) ∼= Hn(A)⊕Hn(X,A), 0 6 n.

Proof. From the assumption we get that Hn(r)◦Hn(i) = Hn(idA) = idHn(A) for all n and

hence Hn(i) is injective for all n. Thus all boundary maps are trivial and 0→ Hn(A)
Hn(i)−−−→

Hn(X)→ Hn(X,A)→ 0 is exact for all n.
As Hn(r) is a left-inverse for Hn(i) we obtain a splitting

Hn(X) ∼= Hn(A)⊕Hn(X,A)

by Lemma 5.3. �

Let us now consider the case where A is just a point. In that case the projection X → ∗
makes x : ∗ → X into a weak retract and we have Hn(X) ∼= Hn(X, x)⊕Hn(∗). For a path
connected space this just splits off H0(X) ∼= Z and allows us to concentrate on the more
interesting parts.

In fact H(X, x) is isomorphic to another construction:

Definition 6.6. We define H̃n(X) := ker(Hn(ε) : Hn(X) → Hn(∗)) and call it the
reduced nth homology group of the space X.

We have the following straightforward observations:

• Note that H̃n(X) ∼= Hn(X) for all positive n.

• If X is path-connected, then H̃0(X) = 0.
• For any choice of a base point x ∈ X we get

H̃n(X) ∼= Hn(X, x)

• We can also augment the singular chain complex S∗(X) and consider S̃∗(X):

. . . //S1(X) //S0(X)
ε
//Z //0.

where ε(α) = 1 for every singular 0-simplex α. Then for all n > 0,

H̃n(X) ∼= H∗(S̃n(X)).

Lemma 6.7. The assignment X 7→ H̃n(X)) is a functor Top→ Ab.

Proof. This just means that for a continuous f : X → Y we get an induced map

H̃n(f) : H̃∗(X)→ H̃n(Y ) such that the identity on X induces the identity and composition
of maps is respected.

All maps f : X → Y are compatible with the projections pX : X → ∗, thus f induces

a map H̃(X) → H̃(Y ) on the kernels of H∗(pX). Functoriality follows from functoriality of
Hn. �

We can also define relative reduced homology:

Definition 6.8. For ∅ 6= A ⊂ X we define

H̃n(X,A) := Hn(X,A).
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Proposition 6.9. For each pair of spaces, there is a long exact sequence

. . . // H̃n(A) // H̃n(X) // H̃n(X,A) // H̃n−1(A) // . . . .
ref

Proof. If A = ∅ the result is trivial. If A 6= ∅ we consider the short exact sequence

S̃∗(A)→ S̃∗(X)→ S∗(X,A) (note there is no tilde on the rightmost term) and use Proposi-
tion 5.7. �

We have one more long exact sequene for relative homology:

Definition 6.10. If X has two subspaces A,B ⊂ X, then (X,A,B) is called a triple, if
B ⊂ A ⊂ X.

Any triple gives rise to three pairs of spaces (X,A), (X,B) and (A,B) and accordingly
we have three long exact sequences in homology. But there is another one.

Proposition 6.11. For any triple (X,A,B) there is a natural long exact sequence

. . . //Hn(A,B) //Hn(X,B) //Hn(X,A)
δ
//Hn−1(A,B) // . . .

Proof. Consider the sequence

0 //Sn(A)/Sn(B) //Sn(X)/Sn(B) //Sn(X)/Sn(A) //0.

This sequence is exact by basic algebra, because Sn(B) ⊂ Sn(A) ⊂ Sn(X). �

Corollary 6.12. Let (X,A,B) be a triple with i : B ⊂ A a homotopy equivalence.
Then Hn(X,A) ∼= Hn(X,B) for all n.

Proof. By Theorem 4.3Hn(i) is an isomorphism for all n, thus by Theorem 6.3Hn(A,B) =
0 for all n and by Proposition 6.11 we have Hn(X,B) ∼= Hn(X,A) for all n. �

In fact, the sequence in Proposition 6.11 is part of the following commutative diagram
displaying four long exact sequences braided together.

. . .

&&

. . .

Hn+1(X,A)
��

&&

Hn(A,B)
  

&&

Hn−1(B)

$$

99

. . .

99

%%

Hn(A)

99

%%

Hn(X,B)

88

&&

. . .

Hn(B)
??

88

Hn(X)
>>

88

Hn(X,A)

::

%%. . .

88

. . .

In particular, the connecting homomorphism δ : Hn(X,A)→ Hn−1(A,B) is the composite

δ = π
(A,B)
∗ ◦ δ(X,A) (unravelling definitions).
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7. Barycentric subdivision

We will now simplify relative homology groups in order to compute them. The key will be
to replace spaces by smaller spaces by gluing pieces together or removing (excising) pieces.
The problem is that we might have some “large” singular simplex that does not land neatly
within one of the pieces. The solution is to replace singular simplices by smaller ones by a
process called barycentric subdivision.

We will restrict ourselves to a special kind of simplex first.

Definition 7.1. A singular n-simplex α : ∆n → ∆p is called affine, if

α(
n∑
i=0

tiei) =
n∑
i=0

tiα(ei).

We denote by Saff∗ (∆p) the subcomplex of affine simplices of ∆p.

If we write α(ei) as vi then α(
∑n

i=0 tiei) =
∑n

i=0 tivi. The map α is determind by the vi
which we call the vertices of α.

Similar to Section 4 we also write α = [v0, . . . , vn]. We note that ∂iα = [v0, . . . , v̂i, . . . , vn]
where v̂i indicates the entry with index i is skipped. Note that with this notation [v] is the
constant function with value v.

First, we construct the cone of a simplex. Let v ∈ ∆p and let α : ∆n → ∆p be a singular
n-simplex in ∆p.

Definition 7.2. The cone of α = [v0, . . . , vn] with respect to v is Kv = [v0, . . . , vn, v].

We could also defines this for a general singular simplex as

Kv(α) : (t0, . . . , tn+1) 7→

{
(1− tn+1)α( t0

1−tn+1
, . . . , tn

1−tn+1
) + tn+1v, tn+1 < 1,

v, tn+1 = 1.

Kv(α) is again affine if α is, so extending Kv linearly gives a map

Kv : Saffn (∆p)→ Saffn+1(∆p).

Lemma 7.3. The map Kv satisfies

(a) ∂Kv(c) = ε(c)[v]− c where c ∈ S0(∆p) and ε is the augmentation.
(b) For n > 0 we have that ∂ ◦Kv −Kv ◦ ∂ = (−1)n+1id.

Proof. For a singular 0-simplex [v0] : ∆0 → ∆p we have ε([v1]) = 1 and we calculate
∂[v0, v] = v − v0. The result follows by extending linearly.

For n > 0 we have to calculate ∂iKv(α) and it is straightforward to see that ∂n+1Kv([v0, . . . , vn]) =
∂n+1[v0, . . . , vn, v] = [v0, . . . , vn] and ∂i(Kv([v0, . . . , vn])) = [v0, . . . , v̂i, . . . v] = Kv(∂iα) for all
i < n+ 1. �

Definition 7.4. For α : ∆n → ∆p let b(α) = b := 1
n+1

∑n
i=0 α(ei) be the barycenter of

α. The barycentric subdivision B : Saffn (∆p)→ Saffn (∆p) is defined inductively as B(α) = α
for α ∈ S0(∆p) and B(α) = (−1)nKb(B(∂α)) for n > 0.

For n > 1 this yields B(α) =
∑n

i=0(−1)n+iKb(B(∂iα)).
If we take n = p and α = id∆n , then for small n this looks as follows:
For n = 0 we have B(c) = c, you cannot subdivide a point any further.
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For n = 1 we get
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•

Note here the arrows are the direction of the simplices making up the barycentric subdivision,
in the barycentric subdivision of the 1-simplex considered as a 1-chain the two simplices are
oriented in parallel.

And for n = 2 we get (up to tilting)
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Lemma 7.5. The barycentric subdivision is a chain map.

Proof. We have to show that ∂B = B∂. If α is a singular zero chain, then ∂Bα =
∂α = 0 and B∂α = B(0) = 0.

Let n = 1. Then α = [v0, v1] and

∂B[v0, v1] = −∂KvB([v1]) + ∂KbB([v0]).

But the boundary terms are zero chains and there B is the identity so we get

−∂Kb([v1]) + ∂Kb([v0]) = −[b] + [v1] + [b]− [v0] = ∂α = B∂α

where we used Lemma 7.3 (a). (Note that b is always b(α), not a b(∂iα).)
We prove the claim inductively on n, so let α ∈ Saffn (∆p). Then

∂Bα =(−1)n∂Kb(B∂α)

=(−1)n((−1)nB∂α +Kb∂B∂α)

=B∂α + (−1)nKbB∂∂α = B∂α.

Here, the first equality is by definition, the second one follows by Lemma 7.3 and then we
use the induction hypothesis and the fact that ∂∂ = 0. �

Subdividing chains should not change anything on the level of homology groups and to prove
that we show that B is chain homotopic to the identity.

We construct ψn : Sn(∆p)→ Sn+1(∆p) again inductively by

ψ0([v]) = −Kb(v)([v]) = −[v, v]

and

ψn(α) = (−1)n+1Kb(α− ψn−1∂α)

Lemma 7.6. The sequence (ψn)n is a chain homotopy from B to the identity.
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Proof. So we claim that ∂ψn + ψn−1∂ = id−Bn.
For n = 0 we have ∂ψ0([v]) = −∂([v, v]) = 0 and this agrees with B0 − id.
For n = 1 we compute

∂ψn(α) = (−1)n+1Kb(α− ψn−1∂α)

= α− ψn−1∂α + (−1)n+1Kb∂(α− ψn−1∂α)

= α− ψn−1∂α + (−1)n+1Kb∂(α− (α−Bα− ∂ψn−2α)

by first Lemma 7.3 and then the induction assumption. We cancel α−α and noteKb∂∂ψn−2 =
0. Then using that B is a chain may by Lemma 7.5 we may rearrange and are left with the
identity

∂ψn + ψn−1∂ = id− (−1)n+1KbBn−1∂.

But the rightmost term is −B by definition and we are done. �

Definition 7.7. Let A be a subset of a metric space (X, d). The diameter of A is

sup{d(x, y) | x, y ∈ A}
and we denote it by diam(A).

Accordingly, the diameter of an affine n-simplex α in ∆p is the diameter of its image
(with the metric induced from Rp+1), and we abbreviate that with diam(α).

Lemma 7.8. For any affine α every simplex in the chain Bα has diameter 6 n
n+1

diam(α).

Proof. Do it yourself or see [Bredon], proof of Lemma IV.17.3. �

We may iterate the application of B and find that the k-fold iteration, Bk(α), has diam-

eter at most
(

n
n+1

)k
diam(α).

In the following we use the deceptively easy trick to write α as

α = α ◦ id∆n = Sn(α)(id∆n).

This allows us to use the barycentric subdivision for general simplices in general spaces.

Definition 7.9.
(a) We define BX

n : Sn(X)→ Sn(X) as

BX
n (α) := Sn(α) ◦B(id∆n).

(b) Similarly, ψXn : Sn(X)→ Sn+1(X) is

ψXn (α) := Sn+1(α) ◦ ψn(id∆n).

Lemma 7.10. The maps BX are natural in X and are chain maps homotopic to the
identity on Sn(X) via ψXn .

Proof. Naturality follows directly from the definition, let f : X → Y be a continuous
map. We have

Sn(f)BX
n (α) =Sn(f) ◦ Sn(α) ◦B(id∆n)

=Sn(f ◦ α) ◦B(id∆n)

=BY
n (f ◦ α).
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As α induces a chain map we have

∂ψXn (α) = ∂ ◦ Sn+1(α) ◦ ψn(id∆n) = Sn(α) ◦ ∂ ◦ ψn(id∆n)

and thus we can check the chain homotopy

∂ψXn +ψXn−1∂ = Sn(α)◦(∂ ◦ψn(id∆n)+ψn−1◦∂(id∆n)) = Sn(α)◦(B− id)(id∆n) = BX
n (α)−α.

�

We now drop the superscript X from BX . Now we consider singular n-chains that are
spanned by ’small’ singular n-simplices.

Definition 7.11. Let U = {Ui, i ∈ I} be an open covering of X. Then SU
n(X) is the free

abelian group generated by all α : ∆n → X such that the image of ∆n under α is contained
in one of the Ui ∈ U.

Note that SU
n(X) is an abelian subgroup of Sn(X). As we will see now, these chains see

the whole singular homology of X.

Lemma 7.12. Every chain in Sn(X) is homologous to a chain in SU
n(X) and Hn(X) ∼=

Hn(SU(X)).

Proof. Let α =
∑m

j=1 λjαj ∈ Sn(X) and for each j let Lj for 1 6 j 6 m be the Lebesgue

number for the covering {α−1
j (Ui), i ∈ I} of ∆n. I.e. Lj is such that any ball with diameter

less than Lj is entirely contained in one of the α−1
j (U). It exists as ∆n is compact.

Choose a k, such that
(

n
n+1

)k
6 min(L1, . . . , Lm). Then Bkα1, . . . , B

kαm are all in SU
n(X).

Therefore

Bk(α) =
m∑
j=1

λjB
k(αj) ∈ SU

n(X).

As B is chain homotopic to the identity we see that

α ' Bα ' . . . ' Bkα

are all homologous and we are done.
This shows surjectivity of the natural map i : Hn(SU(X))→ Hn(X). To show injectivity

let i(α) = ∂β in Hn(X). Using the previous argument β = β′ + ∂γ with β′ ∈ SU
n+1(X). But

then [α] = [∂β′] = 0 ∈ Hn(SU(X)). �

8. Excision

With the technical work form the last section we can prove one of the main results of
this part of the course:

Theorem 8.1 (Excision). Let W ⊂ A ⊂ X such that W̄ ⊂ Å. Then the inclusion
i : (X \W,A \W ) ↪→ (X,A) induces an isomorphism

Hn(i) : Hn(X \W,A \W ) ∼= Hn(X,A)

for all n > 0.
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Proof. Consider the open covering U = {Å,X \ W̄} =: {U, V }.
We first prove that Hn(i) is surjective, so consider a relative cycle in Sn(X,A) represented

by c ∈ Sn(X) which satisfies ∂c ∈ Sn−1(A).
By Lemma 7.12 there is a k such that c′ := Bkc is a chain in SU

n(X). We decompose c′

as c′ = cU + cV with cU and cV being elements in the corresponding chain complex. (This
decomposition is not unique.)

We know that the boundary of c′ is ∂c′ = ∂Bkc = Bk∂c and by assumption this is a chain
in Sn−1(A). But ∂c′ = ∂cU + ∂cV with ∂cU ∈ Sn−1(U) ⊂ Sn−1(A). Thus, ∂cV ∈ Sn−1(A)
also, in fact, ∂cV ∈ Sn−1(A \W ) and therefore cV is a relative cycle in Sn(X \W,A \W ).
We compute Hn(i)[cV ] = [c− cU ] = [c] ∈ Hn(X,A) because [cU ] lies in Sn(U) ⊂ Sn(A).

We consider injectivity of Hn(i). Assume that there is a c ∈ Sn(X\W ) with ∂c ∈ Sn−1(A\
W ) and assume Hn(i)[c] = 0, i.e. c is of the form c = ∂b+a′ with b ∈ Sn+1(X) and a′ ∈ Sn(A).
Write b as bU + bV with bU ∈ Sn+1(U) ⊂ Sn+1(A) and bV ∈ Sn+1(V ) ⊂ Sn+1(X \W ). Then

c− ∂bV = ∂bU + a′.

Here ∂bU and a′ are elements in Sn(A) and as the left hand side lies in Sn(X \W ) so does
the right hand side. Thus [c] = [∂bV ] = 0 ∈ Hn(X \W,A \W ). �

Example 8.2. X = Σg and A a subspace homeomorphic to a surface of genus h < g
with one boundary component. We can equip shrink A a little bit to define a subset W .
Then Hn(X,A) ∼= Hn(X \ W,A \ W ). We can also consider Y = Σg−h with a subset B
homeomorphic to a disk. Picking V ⊂ B a smaller disk we see Hn(Y,B) ∼= Hn(Y \V,B \V ).
But the pairs (Y \V,B\V ) and (X\W,A\W ) are homeomorphic, thus Hn(X,A) ∼= Hn(Y,B)
or, in more suggestive notation:

Hn(Σg,Σ
∂
h)
∼= Hn(Σg−h,D2).

Now we can finally compute some relative homology.

Definition 8.3. We call (X,A) a good pair if A ⊂ X is a closed subspace A is a
deformation retract of an open neighbourhood A ⊂ U ⊂ X.

Here we say A is a deformation retract of U if there is r : U → A such that r ◦ i = idA
and i ◦ r ' idU via a homotopy h with ht(a) = a for all t. It then in in particular follows
that U/A deformation retracts to A/A = ∗. This is the key point why good pairs are good,
the proof is a little subtle and many places gloss over it, see Lemma A.1.2 for details.

Proposition 8.4. Let (X,A) be a good pair. Then

Hn(X,A) ∼= H̃n(X/A), 0 6 n.

Proof. Let π : X → X/A be the canonical projection. Let U be a neighbourhood of A
such that A is a deformation retract of U .

Consider the following diagram:

Hn(X,A)
∼=

//

Hn(π)
��

Hn(X,U) Hn(X \ A,U \ A)
∼=

oo

Hn(π)∼=
��

Hn(X/A,A/A)
∼=

// Hn(X/A,U/A) Hn(X/A \ A/A,U/A \ A/A)
∼=

oo
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The upper left arrow is an isomorphism by Corollary 6.12 because A is a deformation retract
of U . The isomorphism in the upper right is a consequence of excision, because A = Ā ⊂ U .
The right vertical map is an isomorphism as π induces a homeomorphis of pairs (X \A,U \
A) ∼= (X/A \ A/A,U/A \ A/A). The lower right map is an isomorphism by excision again.

Finally, for the lower left map we need to use that A is a deformation retract of U . Thus
A/A is homotopy equivalent to U/A and the last map is an isomorphism. �

We now return to Example 6.4. We had shown Hj(Dn, Sn−1) ∼= Hj−1(Sn−1) for all n > 1

and j > 1. But (Dn,Sn−1) is a good pair, so the right hand side is H̃j(Dn/Sn−1) ∼= H̃j(Sn).
So we may compute homology groups of Sn inductively. As S0 is just a disjoint union of

two points we know H̃i(S0) ∼= Z if i = 0 and 0 if i > 0.

Thus H̃i(Sn) is 0 in degrees higher than n and Z in degree n. If 0 < i < n we may reduce

H̃i(Sn) to H̃1(Sn−i+1) which is 0 by the computation in Example 3.9.
In fact, revisiting Example 6.4 and considering the long exact sequence of reduced ho-

mology we can directly compute H1(Dn/Sn−1) ∼= H̃0(Sn−1) ∼= 0.

If we pick a generator µ0 := (1,−1) of H̃0(S0) we may thus define generators µn of

Hn(S2) for all n > 0 by Dµn = µn−1 where D : H̃n(Sn) ∼= H̃n−1(Sn−1) is the isomorphism
we just constructed.

As this is arguably the most important computation in the course we state the result as
a theorem:

Theorem 8.5. For all n > 0 we have

H̃i(Sn) =

{
Z if i = n

0 if i 6= n

We can thus prove topological invariance of dimension:

Corollary 8.6. If Rm ∼= Rn then m = n.

Proof. The case m = 0 is straightforward so assume m > 1 and n > 1. Let f : Rm →
Rn be a homeomorphism, this induces a homeomorphism Rm \ {0} ∼= Rn \ {f(0)} and a
homotopy equivalence Sm−1 ' Sn−1. But reduced homology groups are homotopy invariant,
so Theorem 8.5 implies m = n. �

We can also compute the homology groups of bouquets of spaces. Let (Xi)i∈I be a family
of topological spaces with chosen basepoints xi ∈ Xi. Consider

X =
∨
i∈I

Xi.

Proposition 8.7. If there are open neighbourhoods Ui of xi ∈ Xi together with a defor-
mation of Ui to {xi}, then we have

H̃n(
∨
i∈I

Xi) ∼=
⊕
i∈I

H̃n(Xi).

Proof. We may define a deformation retract of qUi to q{xi}.
We then have H̃n(

∨
iXi) = Hn(qiXi,qi{xi}) as (qXi,q{xi}) is a good pair. But the

right hand side is isomorphic to ⊕iH̃n(Xi) by splitting S∗(qiXi,qi{xi}) into ⊕S∗(Xi, xi) as
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in the proof of Corollary 3.3 and observing that taking homology commutes with taking a
direct sum. (To convince yourself define a comparison map from ⊕iHn(Ci) to Hn(⊕iCi) and
check it is an isomorphism.) �

9. Mayer-Vietoris sequence

We consider the following situation: there are subspaces U, V ⊂ X such that U and V
are open in X and such that X = U ∪ V . We consider the open covering U = {U, V }. We
need the following maps:

U
jU

%%

U ∩ V

iU
;;

iV ##

X = U ∪ V

V
jV

99

Note that by definition, the sequence

(9.1) 0→ S∗(U ∩ V )
(iU∗ ,i

V
∗ )−−−−→ S∗(U)⊕ S∗(V )

jU∗ −jV∗−−−−→ SU
∗ (X)→ 0

is exact. Here we write jU∗ for S∗(j
U) etc. for better legibility.

Theorem 9.1 (The Mayer-Vietoris sequence). There is a long exact sequence

. . .
δ−→ Hn(U ∩ V )

(iU∗ ,i
V
∗ )−−−−→ Hn(U)⊕Hn(V )

jU∗ −jV∗−−−−→ Hn(X)
δ−→ Hn−1(U ∩ V )→ . . .

Proof. By Lemma 7.12 HU
n (X) ∼= Hn(X), thus the theorem follows from Theorem 6.3

and Equation 9.1. �

There is also a short exact sequence

(9.2) 0 //S̃∗(U ∩ V )
(i1,i2)

//S̃∗(U)⊕ S̃∗(V ) //S̃U
∗ (X) //0

which is just Z (1,1)−−→ Z ⊕ Z −−→ Z in degree −1. Thus we similarly obtain a Mayer-Vietoris

sequence in reduced homology (just put H̃ instead of H everywhere in Theorem 9.1).

Example 9.2. We calculate the homology groups of spheres again. Let X = Sm and for
m > 1 let X± := Sm \ {∓em+1} with inclusion i± : X± → Sm. The subspaces X+ and X−

are homeomorphic to open balls and contractible, therefore Hn(X±) = 0 for all positive n.
Moreover. X+ ∩X− ' Sm−1.

The Mayer-Vietoris sequence is as follows

. . .
δ
//Hn(X+ ∩X−) //Hn(X+)⊕Hn(X−) //Hn(Sm)

δ
//Hn−1(X+ ∩X−) // . . .

We consider m = 1 first where Hn(S1) = 0 if n > 1 as it lies between zeros in an exact
sequence. In low degrees we have

0→ H1(S1)
δ−→ H0(S0)

ι−→ H0(X+)⊕H0(X−) ∼= Z2 → H0(S1) ∼= Z1 → 0

which is entirely determined by ι = (i+∗ , i
−
∗ ).
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H0(X+ ∩X−) is Z2 generated by [e1] and [−e1]. The map ι sends both [e1] and [−e1] to
(1, 1) ∈ H0(X+)⊕H0(X−) ∼= Z⊕ Z.

Thus H1(S1) ∼= ker((iU , iV )) ∼= Z is generated by δ−1([e1]− [−e1]).
For n > 1 we can deduce

Hn(Sm) ∼= Hn−1(X+ ∩X−) ∼= Hn−1(Sm−1).

The first map is the connecting homomorphism and the second map is the inverse of
Hn−1(i) : Hn−1(Sm−1) → Hn−1(X+ ∩ X−) where i is the inclusion of Sm−1 into X+ ∩ X−
and this inclusion is a homotopy equivalence. Thus define D′ := Hn−1(i)−1 ◦ δ. This D′ is
an isomorphism for all n > 2.

Thus Hn(Sm) = Hn−m+1(S1) = 0 for n > m and Hm(Sm) ∼= H1(S1) ∼= Z. Finally
Hn(Sm) ∼= H1(Sm−n+1) if 0 < n < m and it remains to compute H1(Sm) for m > 1.

Again we have H1(Sm) ∼= ker(ι : H0(X+ ∩X−)→ H0(X+)⊕H0(X−)) and ι : 1 7→ (1, 1)
is injective.

Thus H1(Sm) = 0 for m > 1, confirming the earlier computation via Hurewicz’ theorem.
We can summarize the result as follows.

Hn(Sm) ∼=


Z⊕ Z, n = m = 0,

Z, n = 0,m > 0,

Z, n = m > 0,

0, otherwise.

Definition 9.3. Let µ′0 := −[e1]+[−e1] ∈ H0(X+∩X−) ∼= H0(S0). Then a diagram chase
shows that µ′1 ∈ H1(S1) given by the loop t 7→ e2πit, aka the identity, satisfies D′µ′1 = µ′0.

We define the higher µ′n via D′µ′n = µ′n−1. Then µ′n is called the fundamental class in
Hn(Sn).

We could have simplified our live by using the reduced Mayer-Vietoris sequence. We
shall do this for our next example.

Example 9.4. Recall that we can express RP 2 as the quotient space of S2 modulo
antipodal points or as a quotient of D2:

RP 2 ∼= S2/± id ∼= D2/z ∼ −z for z ∈ S1.

We use the latter definition and set X = RP 2, U = X \ {[0, 0]} (which is an open Möbius

strip and hence homotopy equivalent to S1) and V = D̊2. Then

U ∩ V = D̊2 \ {[0, 0]} ' S1.

Thus we know that H1(U) ∼= Z, H1(V ) ∼= 0 and H2U = H2V = 0. We choose generators α
for H1(U) and γ for H1(U ∩ V ) as follows:
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α

γ

Let α be the path that runs along the outer circle in mathematical positive direction
half around starting from the point (1, 0). Let γ be the loop that runs along the inner
circle in mathematical positive direction. It thus runs around the boundary of the Möbius
map, which corresponds to running around the equator of the Möbius band twice. Thus the
inclusion i : U ∩ V → U induces

i∗[γ] = 2[α].

This suffices to compute H∗(RP 2) up to degree two because the long exact sequence is

H̃2(U)⊕ H̃2(V )→ H̃2(X)→ H̃1(U ∩ V )
i∗−→ H̃1(U)→ H̃1(X)→ H̃0(U ∩ V )

which becomes
0→ H̃2(X)→ Z 2−→ Z→ H̃1(X)→ 0.

We obtain:

H2(RP 2) ∼= ker(2· : Z→ Z) = 0,

H1(RP 2) ∼= coker(2· : Z→ Z) ∼= Z/2Z,
H0(RP 2) ∼= Z.

The higher homology groups are trivial, because there Hn(RP 2) is located in a long exact
sequence between trivial groups.

We next consider a relative version of the Mayer-Vietoris sequence. For this we need
some tools from homological algebra.

Lemma 9.5 (The 5-lemma). Let

A1
α1
//

f1
��

A2
α2
//

f2
��

A3
α3
//

f3
��

A4
α4
//

f4
��

A5

f5
��

B1
β1
// B2

β2
// B3

β3
// B4

β4
// B5

be a commutative diagram of exact sequences. If f1, f2, f4, f5 are isomorphisms, then so is
f3.

Proof. Again, we are chasing diagrams.
In order to prove that f3 is injective, assume that there is an a ∈ A3 with f3a = 0. Then

β3f3a = f4α3a = 0, as well. But f4 is injective, thus α3a = 0. Exactness of the top row
gives, that there is an a2 ∈ A2 with α2a2 = a. This implies

f3α2a2 = f3a = 0 = β2f2a2.
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Exactness of the bottom row gives us a b ∈ B1 with β1b = f2a2, but f1 is an isomorphism so
we can lift b to a1 ∈ A1 with f1a1 = b.

Thus f2α1a1 = β1b = f2a2 and as f2 is injective, this implies that α1a1 = a2. So finally
we get that a = α2a2 = α2α1a1, but the latter is zero, thus a = 0.

For the surjectivity of f3 assume b ∈ B3 is given. Move b over to B4 via β3 and set
a := f−1

4 β3b. (Note here, that if β3b = 0 we actually get a shortcut: Then there is a b2 ∈ B2

with β2b2 = b and thus an a2 ∈ A2 with f2a2 = b2. Then f3α2a2 = β2b2 = b.)
Consider f5α4a. This is equal to β4β3b and hence trivial. Therefore α4a = 0 and thus

there is an a3 ∈ A3 with α3a3 = a. Then b− f3a3 is in the kernel of β3 because

β3(b− f3a3) = β3b− f4α3a3 = β3b− f4a = 0.

Hence we get a b2 ∈ B2 with β2b2 = b− f3a3. Define a2 as f−1
2 (b2), so a3 +α2a2 is in A3 and

f3(a3 + α2a2) = f3a3 + β2f2a2 = f3a3 + β2b2 = f3a3 + b− f3a3 = b.

�

The next lemma has an easier proof, left as an exercise (on one of the example sheets).

Lemma 9.6 (The 9-lemma). Consider the following commutative diagram such that all
columns and the first two rows are exact.

0

��

0

��

0

��

0 // A1

��

// A2
//

��

A3
//

��

0

0 // B1
//

��

B2
//

��

B3
//

��

0

C1
//

��

C2
//

��

C3

��

0 0 0

Then the bottom row is also exact.

Theorem 9.7 (Relative Mayer-Vietoris sequence). If A,B ⊂ X are open in A∪B, then
the following sequence is exact:

. . .
δ
//Hn(X,A ∩B) //Hn(X,A)⊕Hn(X,B) //Hn(X,A ∪B)

δ
// . . .

Proof. Set U := {A,B}. This is an open covering of A ∪B.
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The following diagram of exact sequences combines absolute chains with relative ones:

0

��

0

��

0

��

0

��

Sn(A ∪B)

��

0 // Sn(A ∩B)

��

// Sn(A)⊕ Sn(B)

��

// SU
n(A ∪B)

ϕ
44

��

// 0

��

Sn(X)

��

0 // Sn(X)

��

∆
// Sn(X)⊕ Sn(X)

��

−
// Sn(X)

��

// 0

��

Sn(X,A ∪B)

��

0 // Sn(X,A ∩B)

��

// Sn(X,A)⊕ Sn(X,B) //

��

Sn(X)/SU
n(A ∪B)

��

//

ψ
44

0 0

0 0 0

Here, ψ is induced by the inclusion ϕ : SU
n(A∪B)→ Sn(A∪B), ∆ denotes the diagonal map

and − the difference map. It is clear that the first two rows are exact, thus the third row is
exact by Lemma 9.6.

Consider the two right-most non-trivial columns in this diagram. Each gives a long exact
sequence in homology and we focus on five terms.

Hn(SU
∗ (A ∪B)) //

ϕ∗

��

Hn(X) // Hn(S∗(X)/SU
∗ (A ∪B))

ψ∗
��

δ
// Hn−1(SU

∗ (A ∪B)) //

ϕ∗

��

Hn−1(X)

Hn(A ∪B) // Hn(X) // Hn(X,A ∪B)
δ

// Hn−1(A ∪B) // Hn−1(X)

Then by the five-lemma 9.5, as Hn(ϕ) and Hn−1(ϕ) are isomorphisms, so is Hn(ψ). Thus
the bottom row gives a short exact sequence

0→ S∗(X,A ∩B)→ S∗(X,A)⊕ S∗(X,B)→ S∗(X,A ∪B)→ 0

which gives the theorem by Proposition 5.7. �

Example 9.8. We compute the homologyHn(S3,S1). Let A,B be two arcs homeomorphc
to [0, 1] connecting the two points of a copy of S0 in S3. We really want to take open
neighbourhoods, but this won’t affect the homotopy type and thus won’t affect the homology
groups.

· · · → Hn(S3,S0)→ Hn(S3, B)⊕Hn(S3, A])→ Hn(S3,S1)→ Hn−1(S3,S0)→ . . .

From the relative homology sequence Hn(S3,S0) is Z in degrees 3 and 1. Thus we have

0→ 0→ H4(S3,S1)
δ−→ Z ι−→ Z⊕ Z→ H3(S3,S1)

δ−→ 0→ 0→ H2(S3,S1)
δ−→ Z→ 0→ H1(S3,S1)

δ−→ 0→ 0→ H0(S3,S1)

Thus we immediately see that Hn(S3,S1) = Z if n = 2 and 0 if n 6= 2, 3, 4.
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To further analyze this we need to work out ι. It is induced by the inclusions of (S3, S0)
into (S3, A) and (S3, A). But H3

∼= Z is generated by the image of the generator µ3 of S3 for
all of these spaces (the subspace does not have any influence on H3). Thus ι(µ̄3) = (µ̄3, µ̄3)
and H4(S3,S1) ∼= 0, H3(S3, S1) = Z.

We check that this makes sense topologically: S3/S1 squeezes a loop in S3 down to a
point, thus the interior of the loop bubbles out to give a copy of S2, wedged together with

S3/D2 ∼= S3. By our computation of the homology group of wedge sums H̃n(S3/S1) =

H̃n(S3)⊕ H̃2(S2), which agrees with our Mayer-Vietoris computation.

10. Mapping degree

Recall that we defined fundamental classes µn ∈ H̃n(Sn) for all n > 0. In fact there are
two reasonable solutions: By the boundary map of the Mayer-Vietoris sequence and by the
boundary map of the relative homology exact sequence.

Definition 10.1. Let µ0 := [e1]− [−e1] ∈ H0(S0). We define the the fundamental class
µn ∈ Hn(Sn) via Dµn = µn−1.

Here we used

D : H̃n(Sn) ∼= H̃n(Dn/Sn−1) ∼= H̃n(Dn,Sn−1)
δ−→ Hn−1(Sn−1)

and then let the fundamental class be µn = D−1µn−1.
Here we have to fix the first isomorphism, and we choose it to be induced by the map

from Dn ⊂ Rn to Sn+en+1Rn+1 that wraps the disk around the ball in an upwards direction.
As a formula (x1, . . . , xn, 0) 7→ (ux1, . . . , uxn, 2t) where t =

∑
x2
i and u =

√
1− (2t− 1)2.

Call this map un : Dn/Sn−1 → Sn for future reference.

Remark 10.2. With our conventions the closed interval [−1, 1] in D1 generates the loop
e2πi in mathematically positive direction and by a diagram chase this is sent to µ0 by D.
Contrast this with the situation in Definition 9.3!

Let f : Sn → Sn be any continuous map.

Definition 10.3. The map f induces a homomorphism

H̃n(f) : H̃n(Sn)→ H̃n(Sn)

and therefore we get

H̃n(f)µn = deg(f)µn

with deg(f) ∈ Z. We call this integer the degree of f .

In the case n = 1 we can relate this notion of a mapping degree to the one defined via
the fundamental group of the 1-sphere: if we represent the generator of π1(S1, 1) as the class
given by the loop

ω : [0, 1]→ S1, t 7→ e2πit,
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then the abelianized Hurewicz, hab : π1(S1, 1)→ H1(S1), sends the class of ω precisely to µ1

and therefore the naturality of hab

π1(S1, 1)
π1(f)

//

hab
��

π1(S1, 1)

hab
��

H1(S1)
H1(f)

// H1(S1)

shows that

deg(f)µ1 = H1(f)µ1 = hab(π1(f)[w]) = hab(degπ(f)[w]) = degπ(f) µ1.

where degπ(f) is the degree of f defined via the fundamental group. Thus both notions
coincide for n = 1.

The degree of self-maps of Sn satisfies the following properties:

Proposition 10.4.
(a) If f is homotopic to g, then deg(f) = deg(g).
(b) The degree of the identity on Sn is one.
(c) The degree is multiplicative, i.e. deg(g ◦ f) = deg(g)deg(f).
(d) If f is not surjective, then deg(f) = 0.

Proof. The first three properties follow directly from the definition of the degree. If f is
not surjective, then it is homotopic to a constant map and this has degree zero. Alternatively
we have a factorization of f through Sn \ {x}), which has no n-th homology, thus f∗is0 on

H̃n. �

It is true that the group of (pointed) homotopy classes of self-maps of Sn is isomorphic
to Z and thus the first property can be upgraded to an ’if and only if’, but we won’t prove
that here.

We use the mapping degree to show some geometric properties of self-maps of spheres.

Proposition 10.5. Let f (n) : Sn → Sn be the map

(x0, x1, . . . , xn) 7→ (−x0, x1, . . . , xn).

Then f (n) has degree −1.

Proof. We prove the claim by induction. µ0 was the difference class [+1]− [−1], and

f (0)([+1]− [−1]) = [−1]− [+1] = −µ0.

We defined µn in such a way that Dµn = µn−1. Therefore, as D is natural and f (n)|Sn−1 =
f (n−1) we have

Hn(f (n))µn = Hn(f (n))D−1µn−1 = D−1Hn−1(f (n−1))µn−1 = D−1(−µn−1) = −µn.

�

Corollary 10.6. The antipodal map A : Sn → Sn, A(x) = −x, has degree (−1)n+1.
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Proof. Let f
(n)
i : Sn → Sn be the map (x0, . . . , xn) 7→ (x0, . . . , xi−1,−xi, xi+1, . . . , xn).

As all f
(n)
i are homotopic to each other (by continuously varying the plane of reflection) we

see that by Proposition 10.5 the degree of f
(n)
i is −1. As A = f

(n)
n ◦ . . . ◦ f (n)

0 , the claim
follows. �

In particular, the antipodal map cannot be homotopic to the identity as long as n is
even!

Proposition 10.7. Let f, g : Sn → Sn with f(x) 6= g(x) for all x ∈ Sn, then f is
homotopic to A ◦ g. In particular,

deg(f) = (−1)n+1deg(g).

Proof. By assumption the segment t 7→ (1 − t)f(x) − tg(x) doesn’t pass through the
origin for 0 6 t 6 1. Thus the homotopy

H(x, t) =
(1− t)f(x)− tg(x)

||(1− t)f(x)− tg(x)||
connects f to −g = A ◦ g. �

Corollary 10.8. For any f : Sn → Sn with deg(f) = 0 there is an x+ ∈ Sn with
f(x+) = x+ and an x− with f(x−) = −x−.

Proof. If f(x) 6= x for all x, then deg(f) = deg(A) 6= 0. If f(x) 6= −x for all x, then
deg(f) = (−1)n+1deg(A) 6= 0. �

Corollary 10.9. Assume that n is even and let f : Sn → Sn be any continuous map.
Then there is an x ∈ Sn with f(x) = x or f(x) = −x.

Proof. Assume f(x) 6= x for all n. Then by Proposition 10.7 f is homotopic to A◦ idSn .
If f(x) 6= −x for all n then f is also homotopy to A ◦ A = id. As n is even this is a
contradiction. �

Finally, we can say the following about hairstyles of hedgehogs of arbitrary even dimen-
sion. For this we need to define a hairstyle, aka a tangential vector field.

The tangent bundle of a manifold M ⊂ RN is the subspace of M ×RN consisting of pairs
(m,T ) with m ∈M and T a vector in RN tangent to M at m. See your differential geometry
course for what that means in general, in the case of the sphere it gives

TSn = {x, v | x ∈ Sn & (x, v) = 0} ⊂ Rn+1 × Rn+1

The tangent space ot x is TxSn = {v | (x, v) = 0}. The tangent bundle has a natural
projection TSn → Sn and a tangential vector field is a section x 7→ (x, V (x)) : Sn → TSn.

Proposition 10.10. Any tangential vector field on S2k is trivial in at least one point.

Proof. Assume that V is a tangential vector field which does not vanish, i.e., V (x) 6= 0
for all x ∈ S2k and V (x) ∈ Tx(S2k) ⊂ R2k+1 for all x.

Define f : S2k → S2k by k 7→ V (x)
||V (x)|| . Assume f(x) = x, hence V (x) = ||V (x)||x. But this

means that V (x) points into the direction of x and thus it cannot be tangential. Similarly,
f(x) = −x yields the same contradiction. Thus such a V cannot exist. �
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We now consider a way of determining the degree, which depends globally on the map
f by a local computation, just considering what happens in the neighbourhoods of some
points.

Definition 10.11. For any topological space X and x ∈ X we call Hn(X,X \ {x}) the
local homology groups of X at x.

By excision this really only depends on an open neighbourhood of x in X.
If X = Sn then by excision Hi(Sn,Sn \ {x}) ∼= Hi(Dn,Sn−1) is Z if i = n and 0 otherwise.

Assume f : Sn → Sn and y ∈ Sn are such that there is y ∈ V ⊂ Sn and U ⊂ Sn with
f(U) ⊂ V and f−1(y) ∩ U = {x}. Then there is an induced map

fx : H̃n(Sn) ∼= Hn(Sn, Sn\{x}) ∼= Hn(U,U\{x}) f∗−→ Hn(V, V \{y}) ∼= Hn(Sn,Sn\{y}) ∼= H̃n(Sn)

which is given by multiplication of some integer d.

Definition 10.12. In the situation as above we call the integer d the local degree of f
at x and denote it by deg(f)|xi .

Proposition 10.13. Let f : Sn → Sn be a map and y ∈ Sn is such that f−1(y) is finite.
Then deg(f) =

∑
xi∈f−1(y) deg(f)|xi.

Proof. By excision

Hn(Sn,Sn \ f−1Y ) ∼= Hn(qUi,qUi \ {xi}) ∼= ⊕iHn(Ui, Ui \ {xi})
for some collection of disjoint neighbourhoods of the xi ∈ f−1(y).

In the following diagram the horizontal maps are induced by the long exact sequence of
relative homology and by excision and all vertical maps are induced by f . Thus by naturality
it commutes (the rightmost square commutes by definition).

H̃n(Sn) //

f∗
��

Hn(Sn,Sn \ f−1(y))
∼=
//

f∗

��

⊕Hn(Ui, Ui \ {xi}

f∗

��

∼=
// ⊕H̃n(Sn)

(deg f |xi )
��

H̃n(Sn)
∼=
// Hn(Sn,Sn \ {y}

∼=
// Hn(V, V \ {y})

∼=
// H̃n(Sn)

We denote the composition of isomorphisms at the bottom by v. (It can only by +1 or −1
and in fact it is the identity as the composition of inverse isomorphisms but that is not needed
for the proof.) The composition of the top maps induces the diagonal map 1 7→ (v, . . . , v)
as it is equal to the map v on each summand as it is constructed in exactly the same way as
the map on the bottom.

The rightmost map is just the local degree at xi in the i-th coordinate. Thus commuta-
tivity of the diagram then gives deg(f) =

∑
deg(f)|xi (as the v’s cancel). �

Example 10.14. Let f, g : Sn → Sn be maps that fix a point (which we will declare to
be the base-point). Then we have an induced map f ∨ g : Sn ∨ Sn → Sn ∨ Sn. We consider
the pinch map P : Sn → Sn ∨ Sn that contracts the equator down to a point and the fold
map ∇ : Sn ∨ Sn induced by identity map on both summands.

We define f+g := ∇◦(f∨g)◦P . Then it follows from Proposition 10.13 that deg(f+g) =
deg f+deg g: Any non-base point has two pre-images x, y under the fold map and we compute
the degree of f and g by considerinng their preimages {xi} respectively {yi} under f and g
respectively. Then deg(f + g) =

∑
xi

deg f |xi +
∑

yi
deg g|yi = deg f + deg g.
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11. CW complexes

We now define an important class of topological spaces. They are flexible enough to
cover most reasonable spaces, in particular all the spaces we are interested in in this course.
At the same time they have very useful inductive description.

First we recall the notion of a colimit of topological spaces. (Replacing Top by another
category we obtain the general definition of colimits.)

Definition 11.1. Let I be a small category (i.e. a collection of objects and morphisms).
Then a diagram of topological spaces of shape I is a functor I → Top.

Example 11.2. A map of topological spaces is nothing but a diagram in the shape of
the category • → • of two objects and non non-identity morphism.

Definition 11.3. Let X : I → Top be a diagram. The colimit colimI X of the diagram
is a topological space C together with maps ιi : X(i)→ C for all objects i of I such that

(a) ιj ◦X(f) = ιi for any morphism f : i→ j in I
(b) for any other topological spaceD with a maps φi : X(i)→ Y satisfying φj◦X(f) = φi

there is a unique map c : C → D satisfying φi = φ ◦ ιi for all i.

We say C is the universal object under the diagram X.

The corresponding diagram looks like this:

X(i)
X(f)

yy

ιi

�� φi

��

X(j) ιj
//

φj ,,

colimI X

∃!ϕ
$$

D

Let I = • ← • → • be a category with three objects and two non-identity morphisms.
A diagram of shape I is called a pushout diagram and its colimit a pushout.

Proposition 11.4. Pushouts exist in Top.

Proof. Let I → Top be pushout diagram, we write it as Y
f←− X

g−→ Z. Consider
C = Y q Z/ ∼ where y ∼ z if there is x such that f(x) = y and g(x) = z and equip it with
the quotient topology.

Let D be some other object under the pushout diagram, with maps ψX , ψY , ψZ to B. It is
easy to see from the definition that there is a unique map of sets C → B making everything
commute, just define ψ by ψY on [y] and ψZ on [z], it is well defined as ψY (f(x)) = ψX(x) =
ψZ(g(z)).

Moreover ψ is continuous by the universal property of the disjoint union and quotient
topology on C (these are final topologies, the finest topologies making all the canonical
incoming maps continuous). �

Example 11.5. (a) The colimit of a discrete diagram (where I only has identity
morphisms) is called a coproduct. In the category Top this is the disjoint union
qiXi.
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(b) The colimit over the empty diagram is an object with a unique morphism to every
other object. In Top this is the empty space.

(c) You have probably met some version of the gluing X ∪f Y where f : A → Y . This

is just the pushout of X
ι←− A

f−→ Y .
In particular Sn is the pushout of Dn ← Sn−1 → Dn.

(d) Let I now be the category N with one object for every natural number and a unique
morphism i → j if and only if i 6 j. A colimit of a diagram I → Top is called a
direct limit (my apologies, this is a terrible name).

Proposition 11.6. Direct limits exist in Top.

Proof. Let X : N → Top and define colimNX by qnX(n)/ ∼ with xn ∼ xm if xn =
X(m 6 n)xn for xi ∈ X(i).

The proof now proceeds as for pushouts. �

Remark 11.7. In fact, all colimits exist in Top, and they may be constructed in a similar
fashion to pushouts and direct limits.

Remark 11.8. One may dualize the notion of a colimit to define a limit. For example
the limit over a discrete diagram of topological spaces is their product.

Definition 11.9. An CW complex is a topological space X with a filtration by subspaces
∅ = X−1 ⊂ X0 ⊂ X1 ⊂ X2 . . . such that

(a) every Xk is a pushout of a diagram

Xk−1 qk←− qi∈Ik ∂Dk → qi∈Ik Dk,

where Ik is some (possibly empty) indexing set and q : qi∈Ik∂Dk
i → Xk−1 is a

continuous map on the boundaries
(b) X = colimkX

k.

In particular by this definition X0 = (qI0D0) q∅ ∅ is a disjoint union of points, or a

discrete topological space. (Noting D0 = D̊0 = ∗ and ∂D0 = ∅.)
Next we introduce some vocabulary:

Definition 11.10. (a) We call Xn the n-skeleton of X. If X = Xn for some n
but X 6= Xn−1 we say X is n-dimensional. A CW complex is called finite if it has
finitely many cells.

(b) We call the maps qki : Sn−1 → Xk−1 making up qk the attachment maps.
(c) The induced maps Qk

i : Dk → Xk are called characteristic maps. We observe that the

composition with the natural inclusion of the interior D̊k
i gives a a homeomorphism

onto a subset eki of X that we call an k-cell. By construction X has a (set-theoretic!)
cell decomposition

X =
⊔
k>0

⊔
i∈Ik

eki , eki
∼= Rk.

(d) A closed subspace A ⊂ X of a CW complex is called a subcomplex if it is a union
of cells of X. In particular every n-skeleton Xn of X is a subcomplex of X (and of
every m-skeleton with m > n).
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Example 11.11. Sn has many cell decompositions. We can have Sn = e0 ∪ en with the
unique attachment map Sn−1 → ∗.

Alternatively we can inductively define Sn as Sn−1∪en∪en where both n-cells are attached
via the identity map to Sn−1.

Taking the colimit as n→∞ we obtain the infinite CW complex S∞.
In the case n = 2 we can also obtain a CW structure by projecting our favourite dice

out to S2, the vertices give X0, adding the the edges gives X1 and adding the faces gives
X2 = S2.

Example 11.12. RP n is a CW complex with Xk = RP k and the attachment map qk is
the canonical 2:1 map Sk−1 → RP k−1. Then RP n = e0 ∪ e1 · · · ∪ en.

One can relate this to other definitions of RP n for example by considering the cell struc-
ture on Sn with Xk = Sk and taking the image in RP n under the canonical map.

Remark 11.13. CW stands for closure-finite weak-topology. Closure-finite means that
the closure of each cell is covered by finitely many open cells. This follows from a general
result that any compact subspace of a CW complex (like the closure of a cell) is contained
in a finite subcomplex.

Weak topology denotes the following equivalent definition of the topology on the colimit:
A subset A ⊂ X is closed if and only if it intersect each closure of a cell in a closed set.

Remark 11.14. The characteristic maps Qk
i satisfy the following properties:

(a) Qk
i |D̊k is a homeomorphism onto its image, the cell eki , and the eki are disjoint and

exhaust X.
(b) Qk

i (∂Dk) is contained in the union of a finite number of cells of dimension less than
k.

(c) A subset of X is closed iff it meets the closure of each cell in a closed set.

In fact a Hausdorff space X together with a collection of characteristic maps Qk
i : Dk → X

is a CW complex if and only if these conditions hold. See Proposition A.2 in [Hatcher].

Example 11.15. The unit interval [0, 1] has a CW structure with two zero cells and one
1-cell. But for instance the decomposition σ0

0 = {0}, σ0
k = { 1

k
}, k > 0 and σ1

k = ( 1
k+1

, 1
k
) does

not give a CW structure on [0, 1]. The 0-skeleton is not discrete.
Another way to see this is to cconsider the A ⊂ [0, 1] given by

A :=

{
1

2

(
1

k
+

1

k + 1

)
|k ∈ N

}
.

Then A∩ σ̄1
k is precisely the point 1

2
( 1
k

+ 1
k+1

) and this is closed, but A isn’t. Thus [0, 1] does
not have the weak topology.

Let X and Y be CW complexes. A continuous map f : X → Y is called cellular if it is
compatible with the filtration, i.e. f(Xn) ⊂ Y n for all n > 0.

The category of CW complexes together with cellular maps is rather flexible. Most of
the classical constructions don’t lead out of it (except mapping spaces), but one has to be
careful with respect to products.

Example 11.16. Whenever X and Y are CW complexes and Y is locally compact then
X × Y is a CW complex.

42



We can always define a cell decomposition of X × Y with n-cells given by the products
of cells of X and Y , i.e. if ekX is a k-cell of X and , en−kY an (n− k)-cell of Y , then ekX × en−kY

is an n-cell of the product.
We have to be careful though, the product X × Y is only guaranteed to carry the weak

topology if X or Y is locally compact or has countably many cells! If X and Y don’t satisfy
these conditions it is best to re-topologize X × Y with the weak topology. So there is a
product of CW spaces, it is just not the naive product in topological spaces.

Lemma 11.17. For any CW complex X we get for the skeleta:

(a)

Xn \Xn−1 ∼=
⊔
In

D̊n.

(b)

Xn/Xn−1 ∼=
∨
In

Sn.

Proof. The first claim follows directly from the definition of a CW complex. For the
second claim note that the characteristic maps send the boundary ∂Dn to the n− 1-skeleton
and hence for every n-cell we get a copy of Sn in the quotient. �

Example 11.18. Consider the hollow cube W 2 as a cell complex. Then W 2/W 1 ∼=∨6
i=1 S2 and W 1/W 0 ∼=

∨12
i=1 S1.

The following is a key fact about the topology of CW complexes, that I won’t prove:

Lemma 11.19. Let X be a CW complex. Then (X,A) is a good pair for any subcomplex
A ⊂ X. In particular, for each skeleton (Xn, Xn−1) is a good pair. Recall that this means A
has a neighbourhood in X which deformation retracts onto A.

Proof. Proposition A.5 in [Hatcher]. �

Remark 11.20. CW complexes are nice topological spaces in the following sense: They
are normal (and thus Hausdorff), locally contractible, locally path-connected and paracom-
pact. This is all shown in Appendix A of [Hatcher].

12. Cellular homology

In the following, X will always be a CW complex.

Lemma 12.1. For all q 6= n > 1, Hq(X
n, Xn−1) = 0. For q = n Hq(X

n, Xn−1) is a free
abelian group with one generator of each n-cell of X.

Proof. By Lemma 11.19 we may use Proposition 8.4 to compute relative homology via
the quotient, which is determined by Lemma 11.17 and Proposition 8.7:

Hq(X
n, Xn−1) ∼= H̃q(X

n/Xn−1) ∼=
⊕
In

H̃q(Sn). �

Lemma 12.2. Consider the inclusion in : Xn → X and let q 6 n.

(a) The induced map iq∗ : Hq(X
n)→ Hq(X) is surjective.
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(b) On the (n+ 1)-skeleton we get an isomorphism

iq∗ : Hq(X
n+1) ∼= Hq(X).

Proof. (a) We can factor in as

Xn in
//

α1

��

X

Xn+1

in+1

33

α2

// Xn+2
in+2

55

α3

// Xn+3
in+3

;;

α4

// . . .

The map Hq(α1) : Hq(X
n)→ Hq(X

n+1) is surjective, because Hq(X
n+1, Xn) = 0. For i > 1

we have the following piece of the long exact sequence of the pair (Xn+i, Xn+i−1)

0 ∼= Hq+1(Xn+i, Xn+i−1) //Hq(X
n+i−1)

Hq(αi)
//Hq(X

n+i) //Hq(X
n+i, Xn+i−1) ∼= 0.

Therefore Hq(αi) is an isomorphism in this range. If X is finite-dimensional, this already
proves the claim.

Every singular simplex in X has an image that is contained in one of the Xn because the
standard simplices are compact. If a ∈ Sq(X) is a chain, a =

∑m
i=1 λiβi then we can find an

M such that the images of all the βi’s are contained in XM , say for M = n + k. Therefore
every [a] ∈ Hq(X) can be written as iM [b], but αk ◦ . . . ◦ α1 is surjective, hence [b] is of the
form αk ◦ . . . ◦ α1[c] but then

[a] = iM ◦ αk ◦ . . . ◦ α1[c] = iq[c]

thus iq is surjective.
(b) If [a] = in+1

∗ [u] = 0, then we have a = dc and as c can be defined on some M -skeleton
of X as in (a) we have c = iMc′ and a = iM ◦αq ◦ . . . ◦α2[u] where αq ◦ . . . ◦α2[u] = dc′ = [0].
As the αi are injective [u] = 0 also and in∗ is injective.

�

Corollary 12.3. For CW complexes X, Y we have

(a) If the n-skeleta Xn and Y n are homeomorphic, then Hq(X) ∼= Hq(Y ), for all q < n.
(b) If X has no q-cells, then Hq(X) ∼= 0.
(c) In particular, if q exceeds the dimension of X, then Hq(X) ∼= 0.

Proof. The first claim is a direct consequence of the lemma above.
By assumption in (b) Xq−1 = Xq, therefore we have Hq(X

q−1) ∼= Hq(X
q) and the latter

surjects onto Hq(X). We show that Hn(Xr) ∼= 0 for n > r. To that end we use the chain of
isomorphisms

Hn(Xr) ∼= Hn(Xr−1) ∼= . . . ∼= Hn(X0)

which holds because the adjacent relative groups Hn(X i, X i−1) are trivial for i < n. �

Again, X is a CW complex.

Definition 12.4. The cellular chain complex C∗(X) consists of Cn(X) := Hn(Xn, Xn−1)
with boundary operator

d : Hn(Xn, Xn−1)
δ
//Hn−1(Xn−1)

%
//Hn−1(Xn−1, Xn−2)

where % is the map induced by the projection map Sn−1(Xn−1)→ Sn−1(Xn−1, Xn−2).
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We have observed that Cn(X) is a free abelian group with

Cn(X) ∼=
⊕
In

H̃n(Sn) ∼=
⊕
In

Z.

For n < 0, Cn(X) is trivial. If X has only finitely many n-cells, then Cn(X) is finitely
generated. If X has finitely many n-cells and (n− 1)-cells the boundary operator dn can be
calculated using matrices over the integers. We will soon analyze it.

Let us first check that our definition is right.

Lemma 12.5. The map d is a boundary operator.

Proof. The composition d2 is %◦δ◦%◦δ, but δ◦% is a composition in an exact sequence,
the homology exact sequence of the pair (Xn−1, Xn−2). �

Theorem 12.6 (Comparison of cellular and singular homology). For every CW complex
X, there is an isomorphism Υ: H∗(C∗(X), d) ∼= H∗(X).

Proof. Consider the diagram

Cn+1(X)

d

��

Hn+1(Xn+1, Xn)

λ
��

δ

))

Hn+1(X,Xn)
δ′

// Hn(Xn)
in∗

//

%
uu

Hn(X)

Cn(X)

d

��

Hn(Xn, Xn−1)

λ
��

δ

))

Hn(X,Xn−1)
δ′

// Hn−1(Xn−1)
in−1
∗

//

%
uu

Hn−1(X)

Cn−1(X)

d

��

Hn−1(Xn−1, Xn−2)

λ
��

δ

))

Hn−1(X,Xn−1)
δ′

// Hn−2(Xn−2)
in−2
∗

//

%
uu

Hn−2(X)

. . . . . .

We now make the following series of observations:

• All occurring %-maps are injective because Hk(X
k−1) ∼= 0 for all k.

• For every a ∈ Hn(Xn) %(a) is a cycle for d:

d%(a) = %δ%(a) = 0.

• Let c ∈ Cn(X) be a d-cycle, thus 0 = dc = %δc and as % is injective we obtain
δc = 0. Exactness for the homology of the pair (Xn, Xn−1) yields that c = %(a) for
an a ∈ Hn(Xn). Hence,

Hn(Xn) ∼= ker(d : Cn(X)→ Cn−1(X)).

45



• We define Υ: ker(d) → Hn(X) as Υ[c] = in∗ (a) for c = %(a) and in∗ : Hn(Xn) →
Hn(X).
• The map Υ is surjective because in∗ is surjective.
• In the diagram, the triangles commute, i.e. δ = δ′ ◦ λ by naturality of the boundary

map.
• The sequence

Hn+1(Xn+1) // //Hn+1(X) //Hn+1(X,Xn+1) //Hn(Xn+1)
∼=
//Hn(X)

tells us that Hn+1(X,Xn+1) = 0 and this in turn implies that λ is surjective.
• Using this we obtain

im(δ) = im(δ′) = ker(in∗ ).

As d = %◦δ and ρ is injective, the map % induces an isomorphism between the image
of d and the image of δ.
• Thus we have determined both the kernel and the image of d in terms of expressions

on the right of our diagram. Taking quotients % induces an isomorphism

ker(d : Cn(X)→ Cn−1(X))

im(d : Cn+1(X)→ Cn(X))
∼=
Hn(Xn)

ker(in∗ )

But the exact sequence

0 //ker(in∗ ) //Hn(Xn) // im(in∗ ) //0

gives us
Hn(Xn)/ker(in∗ )

∼= im(in∗ )
∼= Hn(X). �

It is clear from the definition that any cellular map f : X → Y induces a map f∗ of
cellular homology H∗(C∗(X), d)→ H∗(C∗(Y ), d).

Lemma 12.7. The isomorphism in Theorem 12.6 is natural, i.e. Υ ◦ f∗ = f∗ ◦Υ.

Proof. Observe that every map in the large diagram in the proof of Theorem 12.6 is
natural. �

To use cellular homology we next need to be able to compute d. We’ve already observed
that the (closed) n-cells give a natural basis of Cn(X) = Hn(Xn, Xn−1) and the (closed)
(n− 1)-cells give a basis of Cn−1(X). So the question is what happens to an n-cell under d.

We consider the following diagram:

H̃n(Sn)
∼=
// Hn(Dn, ∂Dn)

δ
//

(Qi)∗
��

H̃n−1(Sn−1)

(qi)∗
��

Hn(Xn, Xn−1)
δ
// Hn−1(Xn−1)

ρ
//

(pj)∗

44
Hn−1(Xn−1, Xn−2)

πj
// H̃n−1(Sn−1)

Here Qi is the canonical map of pairs from from the i-th n-cell (and its boundary) to
(Xn, Xn−1). The map πj is projection onto the j-th factor. Geometrically we may describe
the map pj as projection onto the j-th (n−1)-cell (i.e. we collapse the n−2-skeleton and all
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other (n− 1)-cells to a point and are left witth one copy of Sn−1). The square in the middle
commutes by naturality of the connecting homomorphism δ.

The generator µn for H̃n(Sn) is sent by Qi to one of the generators of Cn(X), and the
image under ρδ may be computed as (qi)∗ ◦ δ(µn) = (qi)∗(µn−1). Projecting to the j-th
(n− 1)-cell gives (pj ◦ ji)∗(µn−1).

Thus the (i, j)-component of the boundary map d : ⊕InZ → ⊕In−1Z is the degree of
pj ◦ qi.

As we compute d on the boundary of the cell representing the n-th homology it is indeed
a boundary operator in the topological sense and does provide a nice conceptual description
of homology.

Example 12.8. We compute the homology of projective Spaces.
Let K be the reals R, complex numbers C or quoternions H with m := dimR(K) and let

K∗ = K \ {0}. We let K∗ act on Kn+1 via

K∗ ×Kn+1 \ {0} → Kn+1 \ {0}, (λ, v) 7→ λv.

We define KP n = (Kn+1 \ {0})/K∗ (with the quotient topology) and we denote the equiva-
lence class of (x0, . . . , xn) in KP n by [x0 : . . . : xn].

We define a filtration by

Xmi := {[x0 : . . . : xn] | xi+1 = . . . = xn = 0}
and note that Xmi ∼= KP i. We see that {[x0 : . . . : xn] | xi 6= 0, xi+1 = . . . = xn = 0} is an
open mi-cell.

An explicit characteristic map is Qi : Dmi → KP n given by (y0, . . . , yi−1) 7→ [y0 : · · · :
yi−1 : 1− ||y|| : 0 : · · · : 0].

Thus attachment map ∂Dmi → Xm(i−1) is given by the composition Smi−1 → Ki \ {0} →
KP i−1 ∼= Xm(i−1).

Here the map from the sphhere to projective space is well known in some examples: It
specializes to the 2:1 map Si−1 → RP i−1 if K = R and to the quotient map by the U(1)
action from S2i−1 → CP i−1 if K = C.. (The case i = 2 is the Hopf fibration.)

(a) First we consider the case K = C. Here, we have a cell in each even dimension
0, 2, 4, . . . , 2n for CP n. Therefore the cellular chain complex is

Ck(CP n) =

{
Z k = 2i, 0 6 i 6 n,

0 k = 2i− 1 or k > 2n.

The boundary operator is zero in each degree (as it always has source or target equal
to 0) and thus

Hk(CP n) =

{
Z, k = 2i, 0 6 k 6 2n,

0, otherwise.

(b) The case of the quaternions is similar. Here the cells are spread in degrees congruent
to zero modulo four, thus

Hk(HP n) =

{
Z, k = 4i, 0 6 k 6 4n,

0, otherwise.
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(c) Non-trivial boundary operators occur in the case of the real numbers. Here, we have
a cell in each dimension up to n and thus the homology of RP n is the homology of
the chain complex

0 //Cn ∼= Z d
//Cn−1

∼= Z d
// . . .

d
//C0
∼= Z.

For the computation of dn we have to compute the degree of φ := p◦q in the diagram

Sn−1 q−→ RP n−1 p−→ Sn−1 where q is the canonical quotient map and p is obtained by
collapsing the subcomplex RP n−2 to a point.

In coordinates we send (x1, . . . , xn) to [x1 : x2 · · · : xn] where we moreover identify
all points with xn = 0. The point [en] has thus preimage en and −en and we may
use the local formula for degrees: In the neighbourhood {xn > 0} of en the map φ
is a local homeomorphism so we must have deg(φ)en = ±1. As the sign of d will be
irrelevant for our computations we just assume the degree is +1. (Or we check it is
indeed +1.) But φ|xn>0 = φ|xn<0 ◦ A thus deg(φ)|−en = deg(φ)|en deg(A) = (−1)n.

Together we have deg(φ) = deg(id) + deg(A) = 1 + (−1)n.
Thus d[ei] = 2[ei−1] if i is even and 0 if i is odd.
Thus, depending on n we compute

Hk(RP n) =


Z k = 0

Z/2Z k 6 n, k odd

0 otherwise.

for n even.
For odd dimensions n we get

Hk(RP n) =


Z k = 0, n

Z/2Z 0 < k < n, k odd

0 otherwise.

Note that RP 1 ∼= S1 and RP 3 ∼= SO(3).

13. Homology with coefficients

Let G be an arbitrary abelian group.

Definition 13.1. The singular chain complex of a topological space X with coefficients
in G, S∗(X;G), has as elements in Sn(X;G) finite sums of the form

∑N
i=1 giαi with gi in G

and αi : ∆n → X. Addition in Sn(X;G) is given by

N∑
i=1

giαi +
N∑
i=1

hiαi =
N∑
i=1

(gi + hi)αi.

The nth (singular) homology group of X with coefficients in G is

Hn(X;G) := Hn(S∗(X;G))

where the boundary operator ∂ : Sn(X;G)→ Sn−1(X;G) is given by

∂(
N∑
i=1

giαi) =
n∑
j=0

(−1)j(
N∑
i=1

gi(αi ◦ dj)).
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We use a similar definition for cellular homology of a CW complex X with coefficients in
G. Recall, that Cn(X) = Hn(Xn, Xn−1) ∼=

⊕
σ an n-cell Z.

Definition 13.2. We define Cn(X;G) =
⊕

σ an n-cell G. On c ∈ Cn(X;G) written as

c =
∑N

i=1 giσi we define the boundary operator d̃ by d̃c =
∑N

i=1 gid(σi) where d : Cn(X) →
Cn−1(X) is the boundary in the cellular chain complex of X.

We can transfer Theorem 12.6 (and every other general theorem we have proven, like
Excision and Mayer-Vietoris) to the case of homology with coefficients:

Hn(X;G) ∼= Hn(C∗(X;G), d̃)

for every CW complex X and therefore we denote the latter by Hn(X;G) as well.
Note, that Hn(X;Z) = Hn(X) for every space X.

Example 13.3. If we consider the case X = RP 2, then we see that coefficients really
make a difference. Thus while theorems translate, computations have to be re-checked.

Recall that for G = Z we had that H0(RP 2) ∼= Z, H1(RP 2) ∼= Z/2Z and H2(RP 2) = 0.
However, for G = Z/2Z the cellular chain complex looks as follows:

0 //Z/2Z 2=0
//Z/2Z 0

//Z/2Z //0

and therefore Hi(RP 2;Z/2Z) ∼= Z/2Z for 0 6 i 6 2.
If we consider H∗(RP 2;Q) we obtain the cellular complex

0 //Q 2
//Q 0

//Q //0

But here, multiplication by 2 is an isomorphism and we get H0(RP 2;Q) = Q, H1(RP 2;Q) =
Q/2Q = 0 and H2(RP 2;Q) = 0.

Thus we see that homology with coefficients can be very different from the homology
with integer coefficients we first met.

However, somewhat surprisingly, H∗(X,G) is computable from H∗(X) and G. But we
need some basics from algebra to see that.

Let A and B be abelian groups.

Definition 13.4. The tensor product of A and B, A ⊗ B, is the quotient of the free
abelian group generated by A×B by the subgroup generated by

(a) (a1 + a2, b)− (a1, b)− (a2, b),
(b) (a, b1 + b2)− (a, b1)− (a, b2)

for a1, a1, a ∈ A and b1, b2, b ∈ B.
We denote an equivalence class of (a, b) in A⊗B by a⊗ b.

Note, that relations (a) and (b) imply that λ(a ⊗ b) = (λa) ⊗ b = a ⊗ (λb) for any
integer λ ∈ Z and a ∈ A, b ∈ B. Elements in A ⊗ B are finite sums of equivalence classes∑n

i=1 λiai ⊗ bi.

• Of course, A⊗B is generated by a⊗ b with a ∈ A, b ∈ B.

49



• The tensor product is symmetric up to isomorphism and the isomorphism A⊗B ∼=
B ⊗ A is given by

n∑
i=1

λiai ⊗ bi 7→
n∑
i=1

λibi ⊗ ai.

• It is associative up to isomorphism:

A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C
for all abelian groups A,B,C.
• For homomorphisms f : A→ A′ and g : B → B′ we get an induced homomorphism

f ⊗ g : A⊗B → A′ ⊗B′

which is given by (f ⊗ g)(a⊗ b) = f(a)⊗ g(b) on generators.
• In particular we may tensor a chain complex C∗ with an abelian group G by defining

(C⊗G)n = Cn⊗G and setting the differential to be d⊗ id. We’ve already seen this
tensor product: Sn(X)⊗G is isomorphic to Sn(X,G).

Remark 13.5. The tensor product has the following universal property. For abelian
groups A,B,C, the bilinear maps from A × B to C are in bijection with the linear maps
from A⊗B to C.

There is another closely related universal property. For two abelian groups A,B the set
of homomorphisms has a natural structure of abelian group by pointwise addition. Denoting
this abelian group by Hom we have

HomAb(A⊗B,C) = HomAb(A,Hom(B,C))

We collect the following properties of tensor products:

(a) For every abelian group A, we have

A⊗ Z ∼= A ∼= Z⊗ A.
(b) For every abelian group A, we have

A⊗ Z/nZ ∼= A/nA.

Here, note that nA = {na | a ∈ A} makes sense in any abelian group. The isomor-
phism above is given by

a⊗ ī 7→ īa

where ī denotes an equivalence class of i ∈ Z in Z/nZ and īa the class of ia ∈ A in
A/nA.

(c) If 0 //A
α
//B

β
//C //0 is a short exact sequence, then in general,

0 //A⊗D α⊗id
//B ⊗D β⊗id

//C ⊗ id //0

is not exact for D abelian. For example,

0→ Z −→ Q −→ Q/Z→ 0

is exact, but

0→ Z⊗ Z/2Z −→ Q⊗ Z/2Z −→ Q/Z⊗ Z/2Z→ 0
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isn’t, because Q⊗ Z/2Z ∼= 0.

When tensoring complexes with G it is often interesting to ask when a complex stays
exact.

Lemma 13.6. For every abelian group D, (−)⊗D is right exact, i.e., if 0 //A
α
//B

β
//C //0

is a short exact sequence, then

A⊗D α⊗id
//B ⊗D β⊗id

//C ⊗D //0

is exact. If the exact sequence 0 //A
α
//B

β
//C //0 is a split short exact sequence,

then

0 //A⊗D α⊗id
//B ⊗D β⊗id

//C ⊗D //0

is exact.

Proof. It is easy to check surjectivity of β ⊗ id: It is enough to show that c ⊗ d is in
the image, so just b ∈ β−1(c) and by definition β ⊗ id(b⊗ d) = c⊗ d.

It is a non-trivial exercise to directly show that −⊗D is also exact in the middle. Instead
we can use some abstract machinery (feel free to ignore this if you haven’t seen the categorical
tools before). We need to show that ker(β⊗ id) = im(α⊗ id). That means we want to show
B ⊗D/im(A⊗D) ∼= C ⊗D.

The left hand side is a colimit in abelian groups of the diagram (0, α⊗id) : A⊗D ⇒ B⊗D.
By the universal property in Remark 13.5 we have that −⊗D commutes with all colimits,

as it follows directly from unravelling definitions that

Hom(colim(Ai ⊗D), B) ∼= lim Hom(Ai ⊗D,B) ∼= lim Hom(Ai,Hom(D,B))
∼= Hom(colimAi,Hom(D,B)) ∼= Hom(colimAi ⊗D,B)

holds for all B. Thus maps out of colimAi ⊗D agree with maps out of colim(Ai ⊗D). As
everything is natural under the colimit diagram this implies that colimAi⊗D is a colimit of
the diagram Ai⊗D. Alternatively it follows from the Yoneda lemma that the two expressions
agree.

The second part is left as an exercise. �

The failure of the functor (−)⊗D to be exact on the left hand side means thatHn(X,G) =
Hn(S∗(X)⊗G) is not always isomorphic to Hn(X)⊗G = Hn(S∗(X))⊗G.

Definition 13.7. Let A be an abelian group. A short exact sequence 0 → F1 −→
F0 −→ A→ 0 with F0 and F1 free abelian groups is called a free resolution of A.

Note that whenever F0 is free then F1 is automatically free abelian because it can be
identified with a subgroup of F0, recalling from algebra that a subgroup of a free abelian
group is free. (This is not true for modules over a general ring R!)

Here we may see F1 → F0 as a chain complex with homology A concentrated in degree
0. We replace A by the complex with the same homology.

Example 13.8. For every n > 1, the sequence 0 → Z n−→ Z π−→ Z/nZ → 0 is a free
resolution of Z/nZ.

Proposition 13.9. Every abelian group possesses a free resolution.
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The resolution that we will construct in the proof is called the standard resolution of A.

Proof. Let F0 be the free abelian group generated by the elements of the underlying
set of A. We denote by ya the basis element in F0 corresponding to a ∈ A. Define a
homomorphism

p : F0 → A, p

(∑
a∈A

λaya

)
=
∑
a∈A

λaa.

Here, λa ∈ Z and this integer is non-trivial for only finitely many a ∈ A. By construction, p
is an epimorphism. We set F1 to be the kernel of p and in that way obtain the desired free
resolution of A. �

Definition 13.10. For two abelian groupsA andB and for 0 //F1
i
//F0

//A //0
the standard resolution of A we define

Tor(A,B) := ker(i⊗ id : F1 ⊗B → F0 ⊗B) = H1(F∗ ⊗B)).

Here we write F∗ ⊗B for the complex F1 ⊗B
i⊗id−−→ F0 ⊗B.

As i⊗ id doesn’t have to be injective, thus Tor(A,B) need not be trivial.
We will show that we can calculate Tor(A,B) via an arbitrary free resolution of A. To

that end we prove the following result.

Proposition 13.11. For every homomorphism f : A → B and for free resolutions

0 //F1
i
//F0

//A //0 and 0 //F ′1
i′
//F ′0 //B //0 we have:

(a) There is achain map g : F∗ → F∗ such that the diagram

0 // F1
i
//

g1
��

F0
p
//

g0
��

A //

f

��

0

0 // F ′1
i′
// F ′0

p′
// B // 0

commutes.
Any two such chain maps are chain homotopic, i.e. if h0, h1 are also homomor-

phisms with this property, then there is an α : F0 → F ′1 with i′ ◦ α = g0 − h0 and
α ◦ i = g1 − h1.

(b) For every abelian group D the map g1⊗ id induces a map H1(F∗⊗D)→ H1(F ′∗⊗D)
that is independent of the choice of g. We denote this map by ϕ(f, F, F ′).

(c) For a homomorphism f ′ : B → C the map ϕ(f ′◦f, F, F ′′) is equal to the composition
ϕ(f ′, F ′, F ′′) ◦ ϕ(f, F, F ′).

Proof. For (a) let {xi} be a basis of F0 and choose yi ∈ F ′0 with p′(yi) = fp(xi). We
define g0 : F0 → F ′0 via g0(xi) = yi. For every r ∈ F1 we obtain p′ ◦ g0(i(r)) = f ◦ p ◦ i(r) = 0
and therefore g0(i(r)) is contained in the kernel of p′ which is equal to the image of i′. As i′

is injective we may define g1(r) as the unique preimage of g(i(r)) under i′.
For h and g as in (a) we get for x ∈ F0 that g0(x)− h0(x) is in the kernel of p′ which is

the image of the injection i′. Define α as (i′)−1(h0−h0). Then by construction i′α = g0−h0

and

i′(g1 − h1) = (g0 − h0)i = i′αi.

52



As i′ is injective, this yields g1 − h1 = αi.
For (b) it is easy to see that g ⊗ id defines a chain map and thus induces a map on H1

and that g ⊗ id is chain homotopic to h⊗ id via α⊗ id.
For (c) we note that the uniqueness in (b) implies (c). �

Corollary 13.12. For every free resolution 0 //F ′1
i′
//F ′0 //A //0 we get a

unique isomorphism
ϕ(idA, F

′, F ) : ker(i′ ⊗ id)→ Tor(A,D).

Proof. By the proposition we obtain φ(idA, F, F
′) which is an inverse of φ(idA, F, F

′).
�

Thus we can calculate Tor(A,D) with every free resolution of A.

Example 13.13. (a) Tor(Z/nZ, D) ∼= {d ∈ D | nd = 0} for all n > 1. That’s why
Tor is sometimes called torsion product. For the calculation we use the resolution

0 //Z n
//Z π

//Z/nZ //0. By definition and by Corollary 13.12 we have

Tor(Z/nZ, D) ∼= ker(n⊗ id : Z⊗D → Z⊗D).

As Z⊗D ∼= D and as n⊗ id induces the multiplication by n, we get the claim.
(b) From the first example we obtain Tor(Z/nZ,Z/mZ) ∼= Z/gcd(m,n)Z because the

n-torsion subgroup in Z/mZ is Z/gcd(m,n)Z.
(c) For A free abelian, Tor(A,D) ∼= 0 for arbitrary D. For this note that 0→ 0→ A =

A→ 0 is a free resolution of A and the kernel is a subgroup of 0⊗D = 0 and hence
trivial.

(d) For two abelian groups A1, A2, D there is an isomorphism

Tor(A1 ⊕ A2, D) ∼= Tor(A1, D)⊕ Tor(A2, D).

If we have free resolutions

0→ F i
1 → F i

0 → Ai → 0

for i = 1, 2 then the direct sum is a free resolution of A1 ⊕ A2 and

ker((i1 ⊕ i2)⊗ id) = ker(i1 ⊗ id)⊕ ker(i2 ⊗ id).

It follows that tensoring with a free abelian group preserves exact sequences.

From Example (c) we get the following useful corallary:

Lemma 13.14. Let C∗ be a chain complex and A a free abelian group. Then Hn(C∗⊗A) =
Hn(C)⊗ A.

Proof. The proof is left as an exercise. �

We can now state the following powerful theorem:

Theorem 13.15 (Universal coefficient theorem). For every space X there is a split short
exact sequence

0→ Hn(X)⊗G→ Hn(X;G)→ Tor(Hn−1(X), G)→ 0,

and therefore we get an isomorphism

Hn(X;G) ∼= Hn(X)⊗G⊕ Tor(Hn−1(X), G).
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The proof will need some further work in algebra.

Example 13.16. For X = RP 2 we obtain

Hn(RP 2;G) ∼= Hn(RP 2)⊗G⊕ Tor(Hn−1(RP 2), G)

thus
H0(RP 2;G) ∼= H0(RP 2)⊗G⊕ Tor(H−1(RP 2), G) ∼= G,

H1(RP 2;G) ∼= H1(RP 2)⊗G⊕ Tor(H0(RP 2), G) ∼= G/2G⊕ 0 ∼= G/2G,

and
H2(RP 2;G) ∼= H2(RP 2)⊗G⊕ Tor(H1(RP 2), G) ∼= Tor(Z/2Z, G).

And this agrees with our earlier computations!

Remark 13.17. Note that the splitting in the unvirsal coefficient theorem is not natural.
This means for example that a map f : X → Y may induce the zero map on Hn(X)⊗G→
Hn(Y )⊗G and on Tor(Hn−1(X), G)→ Tor(Hn−1(Y ), G) yet be nonzero on Hn(−, G)! (This
situation is compatible with the short exact sequence being natural, but not the splitting
being natural.)

For example consider the map RP 2 → S2 collapsing the 1-cell. It is non-trivial on
homology with Z/2 coefficients (as is apparent from cellular homology), yet on H1 and H2

with integer coefficients, and thus on the outer terms of the short exact sequence, it must
induce the zero map.

14. Algebraic Künneth theorem

We extend the definition of tensor products to chain complexes.

Definition 14.1. Are (C∗, d) and (C ′∗, d
′) two chain complexes, then (C∗⊗C ′∗, d⊗) is the

chain complex with

(C∗ ⊗ C ′∗)n =
⊕
p+q=n

Cp ⊗ C ′q

and with d⊗(cp ⊗ c′q) = (dcp)⊗ c′q + (−1)pcp ⊗ d′c′q.

Note the sign in the definition, which is needed to make d⊗ a differential:

Lemma 14.2. The map d⊗ is a differential.

Proof. The composition is

d⊗((dcp)⊗ c′q + (−1)pcp ⊗ d′c′q) = 0 + (−1)p−1(dcp)⊗ (d′c′q) + (−1)p(dcp)⊗ (d′c′q) + 0 = 0.

�

In particular the abelian group G may be viewed as a chain complex that is G in degree
0 and 0 in all other degrees. We will abuse notation and denote the chain complex and
the abelian group by the same letter. Then for every chain complex (C∗, d) we recover our
definition

(C∗ ⊗G)n = Cn ⊗G, d⊗ = d⊗ id.

In particular, for every topological space X,

S∗(X)⊗G ∼= S∗(X,G).
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Similarly, for a CW complex X we get C∗(X;G) = C∗(X)⊗G.
For every pair of spaces (X,A) we have

S∗(X,A;G) := S∗(X,A)⊗G.
As tensoring with G is right exact this is equivalent to defining it as the quotient of S∗(X;G)
by S∗(A;G)

A map f : (C∗, dC)→ (D∗, dD) induces a map of chain complexes

f ⊗ id : C∗ ⊗ C ′∗ → D∗ ⊗ C ′∗.
In particular, for every continuous (cellular) map we get induced maps on singular (cellular)
homology with coefficients.

We may similarly define f ⊗ g : C⊗C ′ → D⊗D′ for f : C → C ′, g : D → D′ by sending
c⊗ c′ to f(c)⊗ g(c′).

Definition 14.3. A chain complex C∗ is called free, if Cn is a free abelian group for all
n ∈ Z.

The complexes S∗(X,A) and C∗(X) are free.

Theorem 14.4 (Universal coefficient theorem (algebraic version)). Let C∗ be a free chain
complex and G an abelian group, then for all n ∈ Z we have a split short exact sequence

0→ Hn(C∗)⊗G→ Hn(C∗ ⊗G)→ Tor(Hn−1(C∗), G)→ 0,

in particular

Hn(C∗ ⊗G) ∼= Hn(C∗)⊗G⊕ Tor(Hn−1(C∗), G).

Unravelling the definitions we can deduce the topological universal coefficient theorem
form the algebraic version.

The algebraic universal coefficient theorems itself is a corollary of the following more
general statement.

Theorem 14.5. (Künneth formula) For a free chain complex C∗ and a chain complex
C ′∗ we have the following split exact sequence for every integer n

0 //
⊕

p+q=nHp(C∗)⊗Hq(C
′
∗)

λ
//Hn(C∗ ⊗ C ′∗) //

⊕
p+q=n−1 Tor(Hp(C∗), Hq(C

′
∗)) //0,

i.e.,

Hn(C∗ ⊗ C ′∗) ∼=
⊕
p+q=n

Hp(C∗)⊗Hq(C
′
∗)⊕

⊕
p+q=n−1

Tor(Hp(C∗), Hq(C
′
∗)).

The map λ :
⊕

p+q=nHp(C∗) ⊗ Hq(C
′
∗) → Hn(C∗ ⊗ C ′∗) in the theorem is given on the

(p, q)-summand by

λ([cp]⊗ [c′q]) := [cp ⊗ c′q]
for cp ∈ Cp and c′q ∈ C ′q. By the definition of the tensor product of complexes, this map is
well-defined.

Proof of Theorems 13.15 and 14.4. To recover the algebraic universal coefficient
theorem we just set C ′∗ = G. To recover the topological version we set C∗ = S∗(X), which is
free by definition. �
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Lemma 14.6. Let 0→ A→ B
g−→ C → 0 be a short exact sequence where C is free. Then

the short exact sequence is split.

Proof. By Lemma 5.3 it suffices to provide a right inverse r of g : B → C. But as C is
free we may just pick a basis {c} of C, let r(c) to be an arbitrary element of g−1(c) for each
c and extend to all of C. �

Lemma 14.7. For any free chain complex C∗ with trivial differential and an arbitrary
chain complex, C ′∗, λ is an isomorphism

λ :
⊕
p+q=n

Hp(C∗)⊗Hq(C
′
∗)
∼= Hn(C∗ ⊗ C ′∗).

Proof. We note C∗ ∼=
⊕

Cp[−p] where Cp[−p] denotes the chain complex which is Cp
in degree p and 0 otherwise.

It is easy to show from the definition of the tensor product that it commutes with direct
sums. As homology also commutes with direct sums we find Hn(C⊗C ′) = Hn((⊕pCp[−p])⊗
C ′∗)
∼= ⊕pHn(Cp[−p]⊗ C ′∗).
As Cp is free we have Hn(Cp[−p] ⊗ C ′∗)

∼= Cp ⊗ Hn−p(C
′
∗) by Lemma 13.14 and this

completes the proof. �

Proof of Theorem 14.5. We abbreviate the subgroup of cycles in C ′q with Z ′q and
the subgroup of boundaries in C ′q with B′q and use analogous abbreviations for C∗. As Cp is
free so are the subgroups Zp and Bp.

We consider the short exact sequence 0 → Zp −→ Cp −→ Bp−1 → 0 and tensor it with
C ′q and sum over p+ q = n. Since Bp−1 is free, the original sequence is split by Lemma 14.6
and hence the resulting sequence is exact by Lemma 13.6.

We define two free chain complexes Z∗ and D∗ via

(Z∗)p = Zp, (D∗)p = Bp−1

with trivial differential.
Collecting our short exact sequences for all values of n we obtain a short exact sequence

of complexes

0 //
⊕

p+q=n Zp ⊗ C ′q //

(−1)pid⊗d′

��

⊕
p+q=nCp ⊗ C ′q //

d⊗id
//

d⊗id+(−1)pid⊗d′

��

⊕
p+q=nBp−1 ⊗ C ′q //

(−1)pid⊗d′

��

0

0 //
⊕

p+q=n−1 Zp ⊗ C ′q //
⊕

p+q=n−1Cp ⊗ C ′q d⊗id
//
⊕

p+q=n−1Bp−1 ⊗ C ′q // 0

We have to verify that the two squares commute. This is clear for the left one and a quick
computation for the right one. Note that as Bp−1 is the degree p part of D we do indeed
have the sign (−1)p in front of the rightmost differential.

This gives a long exact sequence

. . . //Hn+1(D∗ ⊗ C ′∗)
δn+1

//Hn(Z∗ ⊗ C ′∗) //Hn(C∗ ⊗ C ′∗) //Hn(D∗ ⊗ C ′∗)
δn
//Hn−1(Z∗ ⊗ C ′∗) // . . .
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As Z∗ and D∗ satisfy the conditions of Lemma 14.7 we get a description of H∗(D∗⊗C ′∗) and
H∗(Z∗ ⊗ C ′∗) and therefore we can consider δn+1 as a map⊕

p+q=n+1 Hp(D∗)⊗Hq(C
′
∗) =

⊕
p+q=n+1 Bp−1 ⊗Hq(C

′
∗)

j⊗id
��⊕

p+q=n Zp ⊗Hq(C
′
∗) =

⊕
p+q=nHp(Z∗)⊗Hq(C

′
∗)

which is just induced by the inclusion j : Bp ↪→ Zp (unravelling the definition of the boundary
map). We can cut the long exact sequence in homology into short exact pieces and obtain
that

0→ coker(δn+1) −→ Hn(C∗ ⊗ C ′∗) −→ ker(δn)→ 0

is exact. The cokernel of δn+1 is isomorphic to
⊕

p+q=n(Zp/Bp)⊗Hq(C
′
∗) because the tensor

functor is right exact, thus

coker(δn+1) ∼=
⊕
p+q=n

Hp(C∗)⊗Hq(C
′
∗).

As 0→ Bp −→ Zp −→ Hp(C∗)→ 0 is a free resolution of Hp(C∗) we obtain that

Tor(Hp(C∗), Hq(C
′
∗))
∼= ker(j ⊗ id : Bp ⊗Hq(C

′
∗)→ Zp ⊗Hq(C

′
∗))

and therefore

ker(δn) ∼=
⊕

p+q=n−1

Tor(Hp(C∗), Hq(C
′
∗))

noting that the kernel of δn is a subspace of
⊕

p+q=nBp−1 ⊗Hq(C
′) and relabelling indices.

This proves the exactness of the Künneth sequence.
We will prove that the Künneth sequence is split in the case where both chain complexes,

C∗ and C ′∗, are free. In that case the sequences

0→ Zp → Cp → Bp−1 → 0, 0→ Z ′q → C ′q → B′q−1 → 0

are split by Lemma 14.6 and we denote by r : Cp → Zp and r′ : C ′q → Z ′q chosen retractions.
Consider the two compositions

Cp
r
//Zp // //Hp(C∗), C ′q

r′
//Z ′q // //Hq(C

′
∗)

and view H∗(C∗) and H∗(C
′
∗) as chain complexes with trivial differential. Then these com-

positions yield a chain map

r ⊗ r′ : C∗ ⊗ C ′∗ → H∗(C∗)⊗H∗(C ′∗)
This is indeed a chain map as the diagram

Cp
r
//

d
��

Zp // Hp

0

��

Cp−1
r
// Zp−1

// Hp−1

commutes, which follows as r sends boundaries in Cp to boundaries in Zp, which get sent to
0 in homology.
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On homology we get

r ⊗ r′ : Hn(C∗ ⊗ C ′∗) −→ Hn(H∗(C∗)⊗H∗(C ′∗)) =
⊕
p+q=n

Hp(C∗)⊗Hq(C
′
∗).

This map gives the desired splitting; it is easy to check it is left inverse to λ. �

In the cases we are interested in (singular or cellular chains), the complexes will be free.
As we have seen for the universal coefficient theorem the splitting of the Künneth sequence

is not natural. We have chosen a splitting of the short exact sequences in the proof and
usually, there is no canonical choice possible.

15. Künneth theorem in topology

What does the Künneth formula give for two topological spaces and their chain com-
plexes? The Künneth sequence for C∗ = S∗(X) and C ′∗ = S∗(Y ) yields that

0→
⊕
p+q=n

Hp(X)⊗Hq(Y ) −→ Hn(S∗(X)⊗ S∗(Y )) −→
⊕

p+q=n−1

Tor(Hp(X), Hq(Y ))→ 0

is exact. But what is Hn(S∗(X)⊗ S∗(Y ))? In the following we will show that this group is
actually isomorphic to Hn(X ×Y ), thus the Künneth Theorem has some geometric content!
First of all, we define a map.

Lemma 15.1. There is a homomorphism × : Sp(X) ⊗ Sq(Y ) −→ Sp+q(X × Y ) for all
p, q > 0 with the following properties.

(a) For all points x0 ∈ X viewed as zero chains

(x0 × β)(t0, . . . , tq) = (x0, β(t0, . . . , tq))

for β : ∆q → Y . Analogously, for all y0 ∈ Y and α : ∆p → X

(α× y0)(t0, . . . , tp) = (α(t0, . . . , tp), y0).

(b) The map × is natural in X and Y , so for f : X → X ′ and g : Y → Y ′

Sp+q(f, g) ◦ (α× β) = (Sp(f) ◦ α)× (Sq(g) ◦ β).

(c) The Leibniz rule holds

∂(α× β) = ∂(α)× β + (−1)pα× ∂(β).

The map × is called the homology cross product.

Proof. For p or q equal to zero, we define × as dictated by property (a). Therefore we
can assume that p, q > 1 and induct on p+ q. The method of proof that we will apply here
is called method of acyclic models – you’ll see why. Let X = ∆p, Y = ∆q, α = id∆p , and
β = id∆q . If id∆p × id∆q were already defined, then property (c) would force

∂(id∆p × id∆q) = ∂(id∆p)× id∆q + (−1)pid∆p × ∂(id∆q) =: R ∈ Sp+q−1(∆p ×∆q).

For this element R (which is already defined) we get

∂R = ∂2(id∆p)×id∆q+(−1)p−1∂(id∆p)×∂(id∆q)+(−1)p∂(id∆p)×∂(id∆q)+(−1)2p−1id∆p×∂2(id∆q) = 0
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so R is a cycle. But Hp+q−1(∆p×∆q) = 0 because p+ q− 1 > 1 and ∆p×∆q is contractible
and therefore S∗(∆

p × ∆q) has no homology. Thus R has to be a boundary, so there is a
c ∈ Sp+q(∆p ×∆q) with ∂c = R.

We fix such a c and define

id∆p × id∆q := c.

Now let X and Y be arbitrary spaces and α : ∆p → X, β : ∆q → Y . Then Sp(α)(id∆p) =
α and Sq(β)(id∆q) = β and therefore binaturality dictates

α× β = Sp(α)(id∆p)× Sq(β)(id∆q) = Sp+q(α, β)(id∆p × id∆q).

By construction, this definition satisfies all desired properties. �

Note that for spacesX, Y with trivial homology in positive degrees, the Künneth Theorem
yields that Hn(S∗(X)⊗ S∗(Y )) = 0 for positive n.

Lemma 15.2. Let C∗ and C ′∗ be two chain complexes which are trivial in negative degrees
and such that Cn is free abelian for all n and HnC

′
∗ = 0 for all positive n, then we have

(a) Any two chain maps f∗, g∗ : C∗ → C ′∗ with f0 = g0 are chain homotopic.
(b) Is f0 : C0 → C ′0 a homomorphism with f0(∂C1) ⊂ ∂C ′1 then there is a chain map

f∗ : C∗ → C ′∗ extending f0.

Proof. For (a) we will define a map Hn : Cn → C ′n+1 for all n > 0 with ∂Hn +Hn−1∂ =
fn − gn inductively. For n = 0 we can take zero because f0 = g0 by assumption. Assume
that we have Hk for k 6 n− 1. Let {xi} be a basis of the free abelian group Cn and define

yi := fn(xi)− gn(xi)−Hn−1∂(xi) ∈ C ′n.

Then

∂yi =∂fn(xi)− ∂gn(xi)− ∂Hn−1∂(xi)

=∂fn(xi)− ∂gn(xi)−Hn−2∂
2(xi)− fn−1∂(xi) + gn−1∂(xi)

=0.

But C ′∗ is acyclic by assumption and therefore yi has to be a boundary and we define Hn(xi) =
zi for some z satisfying ∂zi = yi. Then

(∂Hn +Hn−1∂)(xi) = yi +Hn−1∂(xi) = fn(xi)− gn(xi).

For (b) we define fn : Cn → C ′n inductively with ∂fn = fn−1∂. Assume that {xi} is a
basis of Cn. Then fn−1∂(xi) is a cycle and thus there is a yi with ∂yi = fn−1∂(xi) due to the
acyclicity of C ′∗. We define fn(xi) as yi. Then

∂fn(xi) = ∂yi = fn−1∂(xi). �

Proposition 15.3. Any two binatural chain maps fX,Y , gX,Y from S∗(X) ⊗ S∗(Y ) to
S∗(X ×Y ) which agree in degree zero and send the zero chain x0⊗ y0 ∈ (S∗(X)⊗S∗(Y ))0 =
S0(X)⊗ S0(Y ) to (x0, y0) ∈ S0(X × Y ) are chain homotopic.
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Here by fX,Y being a binatural chain map we mean that any pair of maps f : X → X ′

and g : Y → Y ′ we have a commutative diagram

S∗(X)⊗ S∗(Y )
fX,Y

//

f∗⊗g∗
��

S∗(X × Y )

(f×g)∗
��

S∗(X
′)⊗ S∗(Y ′)

fX′,Y ′
// S∗(X

′ × Y ′)

Proof. First we deal with the case X = ∆p and Y = ∆q for p, q > 0. If f, g : S∗(∆
p)⊗

S∗(∆
q) −→ S∗(∆

p × ∆q) are two chain maps then S∗(∆
p) ⊗ S∗(∆

q) is free abelian and
S∗(∆

p ×∆q) is acyclic so we can apply Lemma 15.2 and get a chain homotopy (H ′n)n,

H ′n : (S∗(∆
p)⊗ S∗(∆q))n −→ Sn+1(∆p ×∆q)

with ∂H ′n +H ′n−1∂ = fn − gn.
Note that for arbitrary X and Y binaturality implies

fX,Y ◦ (S∗(α)⊗ S∗(β)) = S∗(α, β) ◦ f∆p,∆q , gX,Y ◦ (S∗(α)⊗ S∗(β)) = S∗(α, β) ◦ g∆p,∆q

for all α : ∆p → X, β : ∆q → Y .
We define

Hn : (S∗(X)⊗ S∗(Y ))n −→ Sn+1(X × Y )

as

Hn(α⊗ β) = Sn+1(α, β) ◦H ′n(id∆p ⊗ id∆q).

This is well-defined and by construction:

∂Hn(α⊗ β) = ∂Sn+1(α, β) ◦H ′n(id∆p ⊗ id∆q)

= Sn(α, β)∂H ′n(id∆p ⊗ id∆q)

= Sn(α, β) ◦ (−H ′n−1∂(id∆p ⊗ id∆q) + fn(id∆p ⊗ id∆q)− gn(id∆p ⊗ id∆q))

= fn(α⊗ β)− gn(α⊗ β)−Hn−1∂(α⊗ β).

For the last step use that we can rewrite

Hn−1∂(α⊗ β) = Hn−1(S∗(α)⊗ S∗(β∗))∂(id∆p ⊗ id∆q)

as S∗(α) is a chain map, and the left hand side is Sn(α, β)H ′n−1(∂(id∆p ⊗ id∆q) by definition.
�

Next we need existence and essential uniqueness of a suitable map from S∗(X × Y ) to
S∗(X)⊗ S∗(Y ).

Proposition 15.4. (a) There is a chain map S∗(X ×Y ) −→ S∗(X)⊗S∗(Y ) for all
spaces X and Y such that this map is natural in X and Y and such that in degree
zero this map sends (x0, y0) to x0 ⊗ y0 for all x0 ∈ X and y0 ∈ Y .

(b) Any two such maps are chain homotopic.

Proof. Let X = ∆n = Y for n > 0 and set C∗ = S∗(∆
n × ∆n) and C ′∗ = S∗(∆

n) ⊗
S∗(∆

n). Set f0 : C0 → C ′0 as dictated by condition (a). Then by Lemma 15.2 there is
a chain map (fm)m, fm : Sm(∆n × ∆n) → (S∗(∆

n) ⊗ S∗(∆
n))m. We need to check the

condition f(∂C1) ⊂ ∂C ′1. Consider a boundary (x0, y0) − (x1, y1) ∈ S0(X × Y ), so there is
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(σ, τ) : ∆1 → X × Y with ∂σ = x0 − x1 and ∂τ = y0 − y1. Then one can check that the
image x0 ⊗ y0 − x1 ⊗ y1 is of the form d⊗(σ ⊗ y0 + x0 ⊗ τ).

Now for α : ∆n → X × Y we define

f̃n(α) := (S∗(p1 ◦ α))⊗ S∗((p2 ◦ α)) ◦ f(∆∆n).

Here, ∆∆n : ∆n −→ ∆n × ∆n is the diagonal map viewed as a singular simplex ∆∆n ∈
Sn(∆n ×∆n) and the pi are the projection maps X X × Yp1

oo
p2

//Y :

Sn(∆n ×∆n)
fn
// (S∗(∆

n)⊗ S∗(∆n))n

S∗(α)⊗S∗(α)

��

(S∗(X × Y )⊗ S∗(X × Y ))n

S∗(p1)⊗S∗(p2)

��

(S∗(X)⊗ S∗(Y ))n.

It is easy to check that this map sends (x0, y0) to x0 ⊗ y0.
Claim (b) follows as in Proposition 15.3. �

Theorem 15.5 (Eilenberg-Zilber). The homology cross product × : S∗(X) ⊗ S∗(Y ) −→
S∗(X × Y ) is a homotopy equivalence of chain complexes.

Proof. Using Proposition 15.4 let f be any natural chain map S∗(X × Y )→ S∗(X)⊗
S∗(Y ) with f0(x0, y0) = x0 ⊗ y0 for any pair of points. Then

f ◦ (−×−) : S∗(X)⊗ S∗(Y )→ S∗(X)⊗ S∗(Y )

and this composition sends x0 ⊗ y0 to itself. We now proceed exactly as in the proof of
Proposition 15.3: By Lemma 15.2 for X = ∆p and Y = ∆q there is a chain homotopy H ′

between f ◦ (− × −) and the identitiy map on S∗(∆
p) ⊗ S∗(∆

q). We then define a chain
homotopy by H(α⊗β) = Sn+1(α, β)◦H ′(id∆p⊗ id∆q). Similarly we get that the composition
(−×−) ◦ f is homotopic to the identity. �

Corollary 15.6 (Topological Künneth formula). For any pair of spaces X and Y the
following sequence is split short exact

0→
⊕
p+q=n

Hp(X)⊗Hq(Y ) −→ Hn(X × Y ) −→
⊕

p+q=n−1

Tor(Hp(X), Hq(Y ))→ 0.

The sequence is natural in X and Y but the splitting is not.

Example 15.7. (a) For the n-torus T n = (S1)n we get

Hi(T
n) ∼= Z(ni)

where we can identify the rank of the homology in degree i as the coefficient of xi

in (1 + x)i (the two numbers are given by the same combinatorics).
(b) For a space of the form X × Sn we obtain

Hq(X × Sn) ∼= Hq(X)⊕Hq−n(X).
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There is also a relative version of the Künneth formula. The homology cross product in
its relative form is a map

× : Hp(X,A)⊗Hq(Y,B) −→ Hp+q(X × Y,A× Y ∪X ×B).

In particular for A and B a point we get a reduced Künneth formula which yields

H̃p(X)⊗ H̃q(Y ) −→ H̃p+q(X × Y,X ∨ Y )

and in good cases (see Proposition 8.4) the latter is isomorphic to H̃p+q(X ∧ Y ) where
X ∧ Y = X × Y/X ∨ Y .

16. Simplicial homology

Singular homology has a very unwieldy definition which gives good formal properties,
but it may only be computed using general theorem.

Cellular homology gives a very small chain complex computing homology, but determin-
ing the differentials in terms of degree copmutations is highly non-trivial.

There is a third approach called simplicial homology which is also historically the first
definition of homology.

It is defined not for arbitrary topological spaces but for simplicial complexes, which are
glued out of the standard simplices ∆n. We restrict ourselves to finite ones.

Recall that an affine simplex, denoted [v0, . . . , vn] is a singular simplex of the form
(t0, . . . , tn) 7→

∑
i tivi where {vi} is some set of points. (This makes sense in any affine

target space.)
In this section we will mean by a simplex an affine simplex in R∞ sucht that all vi are

affinely independent. Here R∞ = colimnRn, although in pratictice it is enough to consider
RN for some very large N .

The faces of a simplex [v0, . . . , vn] are all simplices spanned by a subset of {vi}. The i-th
face of σ = [v0, . . . , vn], denoted by diσ is [v0, . . . , v̂i, . . . , vn] where v̂i denotes that the vertex
vi is left out.

Definition 16.1. A finite simplicial complex is a a collection K of simplices {σ} such
that

(a) if σ ∈ K then so are all the faces of σ,
(b) if σ, τ ∈ K then σ ∩ τ is a face of both σ and τ .

We call the associated topological space |K| = ∪Kσ the polyhedron of K.
Given a topological space X a homeomorphism X ∼= |K| for some simplicial complex K

is a triangulation.

Importantly, any finite simplical complex gives rise to a finite CW complex if we filter
|K| it by the dimension of the simplices, noting ∆n ∼= Dn.

Example 16.2. The torus has a triangulation given by the following simplicial complex
with 9 0-simplices, 27 1-simplices and 18 2-simplices. A smaller triangulation would not
satisfy that every simplex is determined by its vertices (which is necessary for a simplicial
complex).

Recall that the barycenter of a simplex σ = [v0, . . . , vn] is defiend as σ̂ = 1
n+1

∑
vi.
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Definition 16.3. The barycentric subdivison K(1) of a simplicial complex K has vertices
σ̂ for all σ ∈ K and simplices [σ̂0, . . . , σ̂k] for any sequence of simplices σ0, . . . , σk where σi
is a proper face of σi+1.

We have met the linear version of this construction in Definition 7.4. The barycentric
subdivision of ∆2 is the following simplicial complex:

@
@

@
@

@
@@
@
@

•

•

•

�
�
�
�
�
��

�
�•

•

• •��
��

��
��
�

PP
PP

PP
PP

P •

One can check that |K(1)| ∼= |K|.
We will denote iterated barycentric subdivision by K(r).

Remark 16.4. If you are put off by the size of this triangulation you may want to consider
∆-complexes, which are somewhere between CW complexes and simplicial complexes and
are used extensively in Hatcher’s book.

Remark 16.5. In the beginnings of the subject of topology people assumed any reason-
able space could be given a triangulation, and any two triangulations of a space would have
some common refinement, thus allowing us to reduce the study of homology to the study of
simplicial complexes.

The latter was called the Hauptvermutung. It is very false, even for manifolds. In
dimensions greater or equal to 4 there are always manifolds with multiple inequivalent trian-
gulations. In dimensions greater or equal to 4 there are also manifolds which do not admit
any triangulation at all!

Incidentally, in dimension 4 it is unknown if every manifold is homeomorphic to a CW
complex. (This is known to be true in all other dimensions.)

Note that differentiable manifolds always admit a triangulation (and thus a CW struc-
ture).

Definition 16.6. The simplicial chain complex C∗(K) of a simplicial complex K is de-
fined by Cn(K) = ⊕KnZ whereKn is the set of n-simplices and the differential is given on gen-
erators by ∂σ =

∑
i(−1)idiσ, explicitly given by ∂[v0, . . . , vn] =

∑n
i=0(−1)i[v0, . . . , v̂i, . . . , vn].

Proposition 16.7. Let K be a finite simplicial complex. The homology of C∗(K) is
isomorphic to the homology of the polyhedron |K|.

Proof. There are two reasonable proofs:
The first proof is more geometric. We observe that C∗(K) is nothing but the cellular

chain complex of |K| with the induced CW structure. This is clear for the Cn, one has to
take some care when considering the differentials (exercise).

The other proof is more systematic. We note that every simplex of K defines a singular
simplex of |K|, and by construction this is compatible with the differentials and we get a
map C∗(K)→ S∗(|K|).

Denoting ∪i 6 nKn by Kn this induces a map of short exact sequences of complexes:
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0 // C∗(K
n−1) //

��

C∗(K
n) //

��

C∗(K
n)/C∗(K

n−1) //

��

0

0 // S∗(|Kn−1|) // S∗(|Kn|) // S∗(|Kn|, |Kn−1|) // 0

This induces a map between long exact sequences on homology:

Hi+1(C(Kn)/C(Kn−1)

∼=
��

// Hi(C(Kn−1)) //

∼=
��

Hi(C(Kn)) //

��

Hi(C(Kn)/C(Kn−1)

∼=
��

δ
// Hi−1(C(Kn−1))

∼=
��

Hi+1(|Kn|, |Kn−1|) δ
// Hi(|Kn−1|) // Hi(|Kn|) // Hi(|Kn|, |Kn−1|) δ

// Hi−1(|Kn−1|)

Here the first and fourth column are isomorphisms as we observe that C∗(K
n)/C∗(K

n−1) is
just the free abelian group onKn in degree n, and the inclusion induces a natural isomorphism
with H∗(|Kn|, |Kn−1|) which is Hn(∨KnSn) in degree 0.

For n = 0 we have H∗(C(K0)) ∼= H∗(|K0|). Thus we may assume the second and fifth
columns are isomorphisms by induction assumption.

We find by the 5-Lemma 9.5 that H∗(|Kn|) ∼= H∗(C(Kn)) for all n. As K = Kn for some
large n we are done. �

Simplical complexes form a category whose morphisms are simplicial maps f : K → L
which are maps of 0-simplices K0 → L0 such that for an [v0, . . . , vn] ∈ K we have a simplex
with vertices {f(v0), . . . , f(vn)} in L. (Note that the f(vi) need not be distinct.) Simplicial
maps clearly induce morphism on simplicial chain complexes.

A simplicial map f induces a continuous maps on polyhedra |f | : |K| → |L| by sending
a point

∑
tivi ∈ |K| to

∑
tif(vi) ∈ |L|.

Theorem 16.8 (Simplicial approximation theorem). Let K,L be finite simplicial com-
plexes and f : |K| → |L| a continuous map. Then there is a simplicial map g : K(r) → L
from an iterated barycenric subdivision of K to L such that f is homotopic to g.

We introduce some notation and one lemma to organize the proof.

Definition 16.9. Given a simplex σ in a simplicial complex we define its star St(σ) to
be the union of all simplices containing σ.

We define its open star st(σ) to be the union of all the interiors of the simplices containing
σ.

Here the interior of τ is τ \ ∂τ (and a 0-simplex is equal to its own interior). The open
star of σ is an open subset of |K| and St(σ) is its closure.

Example 16.10. Consider a vertex σ of the simplicial complex ∂∆3. Its star consists of
all the faces of ∆3 except for the one opposite σ. The open star conists of the interor of the
star, i.e. the complement of the face opposite σ in ∂∆3.

By definition if σ is a face of τ then St(τ) ⊂ St(σ).

Lemma 16.11. Let v1, . . . , vn a collection of a simplicial complex K. Then ∩ist(vi) is
nonempty if and only if v1, . . . , vn are the vertices of a simplex σ in K. In this case st(σ) =
∩st(vi).
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Proof. By definition the intersection consists of all the interiors of simplices containing
all vi. So if the intersection is nonempty there is such a simplex and contains σ = [v1, . . . , vn]
as a face. Moreover these simplices containing all vi are exactly the simplices containing
σ. �

Corollary 16.12. Let f : Sk → Sn be a continuous map. If k < n then f is homotopic
to a constant map.

Proof. Any Sk may be triangulated as the boundary of the (k + 1)-simplex. It follows
from Theorem 16.8 that f is homotopic to a simplicial map which must send Sk to the
k-skeleton of Sn, and any such map is null-homotopic. �

In other words πk(Sn) = 0 if k < n.

Proof of 16.8. We note that K may be embedded in some large RN . In fact we can
choose N = #K0 and send the i-th vertex to the standard basis vector ei. This equips |K|
with a metric which restricts to the usual Euclidean metric on every simplex.

Let {v} be the set of vertices of L. Then f−1(st(v)) is an open cover of K. Let ε be
its Lebesgue number. We recall that barycentric subdivison reduces the diameter of the
simplices from Lemma 7.8. Thus we may take an iterated subdivison K(r) such that each
simplex has diameter < ε/2 and then the closed star of any vertex x ∈ K has diameter < ε.
So we have f(St(x)) ⊂ st(v) and we set g(x) = v.

We claim that this map extends to a simplicial map g : K → L. So consider a simplex
[x1, . . . , xn] in K. We need [f(x1), . . . , f(xn)] to be a simplex in L. Consider any x in the
interior of [x1, . . . , xn]. it lies in every st(xi), so by definition f(x) lies in every st(g(xi)).
Thus by Lemma 16.11 [g(x1), . . . , g(xn)] is a simplex in L.

Then |g|(x) is defined by linear interpolation from the g(xi).
It remains to show f and |g| are homotopic. We embed L into RN again and define a

linear homotopy ht(x) = (1 − t)f(x) + tg(x). This wis a continuous homotopy between f
and |g| in RN , we just have to check it is contained in |L|.

Any x in |K| lies in the interior of some simplex [x1, . . . , xn] and |g|(x) lies in σ =
[g(x1), . . . , g(xn)]. By construction f(x) lies in St(σ), thus there is a simplex τ containing
f(x) and g(x) and thus ht(x) = (1− t)f(x) + tg(x) ∈ τ ⊂ |L|. �

17. The Lefschetz fixed point theorem

Simplicial homology has many practical short comings, but it does have some uses. Our
next goal is to prove the famed Lefschetz fixed point theorem.

To simplify things a little bit we work over the rational numbers Q, that means instead
of abelian groups we consider chain complexes which are given by Q-vector spaces in every
degree.

We recall the Euler characteristic of a chain complex from Exercise sheet 6. So from now
on let all our chain complexes have

∑
dimCi <∞. Then χ(C) =

∑
(−1)i dim(Ci).

We may also define something like the Euler characteristic of a morphism:

Definition 17.1. Let f : C → C be a chain map. Then we define τ(f) to be∑
i(−1)itr(fi : Ci → Ci).

In particular τ(idC) = χ(C).
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Lemma 17.2. Let f : C → C ′. Then τ(f) = τ(H∗(f)) :=
∑

i(−1)itr(Hi(f)).

Proof. We first consider a short exact sequence 0 → V → W → W/V → 0 of chain
complexes and an endomorphism f : W → W with f(V ) ⊂ V . Then there is an induced
map fW/V : W/V → W/V and we have τ(f) = τ(f |V ) + τ(fW/V ). The proof is elementary
linear algebra, just note that f has a block upper triangular form and the trace is the sum
of the traces of the diagonal blocks.

We can then apply our observation to the short exact sequences 0→ Bn → Zn → Hn → 0
and 0→ Zn → Cn → Bn−1.

We find

τ(H∗(f)) =
∑
i

(−1)itr(Hi(f)) =
∑
i

(−1)i (tr(Zi(f))− tr(Bi(f))

=
∑
i

(−1)i (tr(Zi(f)) + tr(Bi−1(f)))

=
∑

(−1)itr(f |Ci) = τ(f) �

Definition 17.3. Let X be a topological space and f : X → X. Then we define the
Lefschetz number τ(f) to be τ(f∗ : H∗(X)→ H∗(X)).

It is clear from the definition that τ(f) is homotopy invariant.

Theorem 17.4 (Lefschetz fixed point theorem). Let K be a finite simplicial complex and
f : |K| → |K| a continuous map with τ(f) 6= 0. Then f has a fixed point.

Proof. Assume f has no fixed point. We choose a metric on |K| as in the proof
of Theorem 16.8. As |K| is compact we see that d(x, f(x)) attans a minimum ε > 0.
Subdividing K we obtain a simplicial complex K ′ such that the stars of all simplices have
diameter < ε/3.

Subdividing K ′ further we find a simplicial map g : K ′′ → K ′ homotopic to f . By
construction f(x) and |g|(x) always lie in the same simplex, so d(f(x), |g|(x)) < ε/3.

We claim σ ∩ g(σ) = ∅. Indeed if x, y ∈ σ then

d(y, g(x)) > d(x, f(x))− d(x, y)− d(f(x), g(x)) > ε/3,

so the intersection is empty.
We now note that g does not give a simplicial map K ′′ → K ′′ (as subdividing the right

hand side means the images of simplices on the left hand side may no longer be simplices).
However, it does induce a cellular map on the CW complex associated to K ′′ as the n-skeleton
of |K ′| is contained in the n-skeleton of |K ′′|.

By Lemma 17.2 we can compute τ(f) by computing τ(|g|) on the cellular chain complex
of K ′′. On the basis given simplices all of the diagonal entries of g are 0 as every n-simplex
is moved. This shows τ(f) = τ(|g|) = 0 and completes the proof. �

One may also work over the integers but has to divide out all torsion subgroups.

Example 17.5. (a) Let f be an endomorphism of the closed disk Dn. As Dn is
contractible τ(f) is just the trace of f on H0, which is 1 for every path connected
space. Thus f has a fixed point and we have reproven the Brouwer fixed point
theorem.
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(b) The same argument applies to any space with trivial rational homology. In particular
any endomorphism of RP 2n has a fixed point.

(c) Consider a (rotationally symmetric) torus and rotate it by some angle θ around the
axis through the hole. This continuous map does not change the homology class of
any generator on homology, thus the Lefschetz number is 1− 2 + 1 = 0 and the map
need not have a fixed point.

(d) Consider a surface Σ of genus 2 that has reflectional symmetry through a plane
separating the two holes. The reflection f has trace 1 in degree 0 and trace 0 in
degree 1 as the generators of H1(Σ) are permuted. In degree 2 we use H2(Σ) ∼=
H2(Σ,Σ\{x}) for some x in the fixed plane. Then reflection changes the sign of the
fundamental class of H2(Σ,Σ \ {x}) ∼= H2(S2, S2 \ {x}) and the trace of f on H2 is
−1. Thus the Lefschetz number is τ(f) = 1− 0 + (−1) = 0. But f clearly has fixed
points. Thus there is no converse to the fixed point theorem. However, we may note
that τ(f) is the Euler characteristic of the fixed point set!

The following observation makes the Lefschetz fixed point theorem more powerful:

Corollary 17.6. Let X be a retract of a finite simplicial complex and f : X → X has
τ(f) 6= 0. Then X has a fixed point.

Proof. Let r : |K| → X be the retraction with ri = idX . Aussume f has no fixed
point, then neither does ifr : |K| → |K|. So τ(rfi) = 0 by Theorem 17.4. But as H∗(X) is
a direct summand of H∗(|K|) then τ(f) = 0 also. �

Remark 17.7. Any compact manifold and any finite CW complex is a retract of a finite
simplicial complex, see Theorem A.7 in [Hatcher].

Corollary 17.8. Let f be a simplicial homeomorphism of a finite simplicial complex
K. Then τ(f) = χ(Kf ) where Kf is the subspace of fixed points of |K|.
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CHAPTER 2

Singular cohomology

1. Definition of singular cohomology

Definition 1.1. A cochain complex of abelian groups is a sequence (Cn)n∈Z of abelian
groups Cn together with homomorphisms δ : Cn → Cn+1 with δ2 = 0. The map δ is called
coboundary operator. The group

Hn(C∗) =
ker(δ : Cn → Cn+1)

im(δ : Cn−1 → Cn)

is the nth cohomology group of C∗.

If (C∗, dC) is a chain complex, then we can define Dn := C−n, dD = d|C and this is a
cochain complex. The fact that dC lowers degree by one gives d : C−n = Dn → C−n−1 =
Dn+1, so dD raises degree by one. We therefore don’t need a theory of cochain complexes; it
is just often convenient to switch the notation.

Definition 1.2. For two cochain complexes (C∗, δ) and (C̃∗, δ̃) a map of cochain com-

plexes from C∗ to C̃∗ is a sequence of homomorphisms fn : Cn → C̃n with fn+1 ◦ δ = δ̃ ◦ fn.

Cn+1 fn+1

// C̃n+1

Cn fn
//

δ

OO

C̃n.

δ̃

OO

Maps of cochain complexes induce maps on cohomology.

Definition 1.3. Let (C∗, d) be a chain complex. Then the dual cochain complex Hom(C∗,Z),
often denoted C∗, is defined to be Hom(Cn,Z) in degree n with differential induced by d,
i.e. δ(φ)(α) = φ(dα) for α ∈ Cn+1 and φ ∈ Hom(Cn,Z).

The composition δ2(ϕ)(α) is (δϕ)(dα) = ϕ(d2α) = 0 for α ∈ Cn+2, φ ∈ Hom(Cn,Z).

Definition 1.4. For a topological space X we call the dual of the singular chain complex
the singular cochain complex S∗(X,Z) = Hom(S∗(X),Z).

If G is any abelian group we may similarly define

S∗(X;G) = (Hom(S∗(X), G), δ)

as the cochain complex of X with coefficients in G.
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For α : ∆n+1 → X and ϕ : Sn(X)→ Z, δ(ϕ)(α) = ϕ(∂α).

Sn(X)
ϕ

// Z

Sn+1(X)

∂

OO

δϕ

;;

Definition 1.5. Let G be an abelian group, then

Hn(X;G) =
ker(δ : Sn(X;G)→ Sn+1(X;G))

im(δ : Sn−1(X;G)→ Sn(X;G))

is the nth cohomology group of X with coefficients in G.

Every continuous map f : X → Y induces a map of cochain complexes S∗(Y ;G) →
S∗(X;G). Thus S∗ : Topop → Ch and Hn : Topop → Ab are contravariant functors from
the category of topological spaces and continuous maps to the category of chain complexes,
respectively abelian groups.

For a continuous map f : X → Y we denote S∗(f) by f∗ and S∗(f) : S∗(Y ;G)→ S∗(X;G)
by f ∗. For ϕ ∈ S∗(Y ;G) and α ∈ S∗(X),

f ∗(ϕ)(α) = ϕ(f∗α) ∈ G.
In order to compute cohomology we may again use cellular methods:

Definition 1.6. Given a CW complex X we define the cellular cochain complex with
coefficients in abelian group G to be the Hom(C∗(X), G).

Example 1.7. (a) Dualizing the cell complex Zen⊕Ze0 we compute that H i(Sn) is
Z if i = n or i = 0 and 0 otherwise (for n > 0).

(b) The cellular cochain complex of RP 2 with its usual CW structure is Hom(Z 2−→ Z 0−→
Z,Z), which is Z 2←− Z 0←− Z.

Thus we have H2(RP 2) = Z/2, H1(RP 2) = 0, H0(RP 2) = Z.

As chains and cochains are dual we may define a pairing:

Definition 1.8. • For two abelian groups A and G, we define the Kronecker pair-
ing

〈−,−〉 : Hom(A,G)⊗ A −→ G, 〈ϕ, a〉 = ϕ(a) ∈ G
where ϕ ∈ Hom(A,G), a ∈ A.
• For a homomorphism f : B → A we define f ∗(ϕ) = ϕ ◦ f ∈ Hom(B,G) and have

〈f ∗ϕ, b〉 = 〈ϕ, fb〉 = ϕ(f(b)).

• For a chain complex C∗ and Cn = Hom(Cn, G) we define

〈−,−〉 : Cn ⊗ Cn → G,ϕ⊗ a 7→ 〈ϕ, a〉 = ϕ(a).

• In particular, for A = Sn(X) we get a Kronecker pairing

〈−,−〉 : Sn(X;G)⊗ Sn(X)→ G.

• For ∂ : Sn+1(X)→ Sn(X) and a ∈ Sn+1(X) we get

〈δϕ, a〉 = 〈ϕ, ∂a〉 = ϕ(∂(a)).
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Lemma 1.9. The Kronecker pairing 〈−,−〉 : Cn⊗Cn → G is well-defined on the level of
cohomology and homology, i.e., we obtain an induced map

〈−,−〉 : Hn(C∗)⊗Hn(C∗)→ G.

Proof. Let ϕ be a cocycle, then

〈ϕ, a+ ∂b〉 = 〈ϕ, a〉+ 〈ϕ, ∂b〉 = 〈ϕ, a〉+ 〈δϕ, b〉 = 〈ϕ, a〉.

Assume that ϕ = δψ and a is a cycle. Then we get

〈ϕ, a〉 = 〈δψ, a〉 = 〈ψ, ∂a〉 = 0.

Therefore 〈ϕ,−〉 is well-defined on Hn(C∗) and Hn(C∗). �

For later use we choose νn ∈ Hn(Sn) with 〈νn, µn〉 = 1.
The Kronecker pairing also defines a natural map

κ : Hn(C∗) −→ Hom(Hn(C∗), G)

via κ[ϕ][a] := 〈ϕ, a〉. How much does the map κ see?

2. Universal coefficient theorem for cohomology

Dual to Tor, we consider a corresponding construction for the functor Hom(−,−) instead
of (−)⊗ (−). For a short exact sequence

0→ A −→ B −→ C → 0

the sequence

0→ Hom(C,G) −→ Hom(B,G) −→ Hom(A,G)→ 0

is always exact on the left, but not necessarily on the right.

As an example, consider 0 //Z n
//Z //Z/nZ //0 for a natural number n > 1.

Then the sequence

0 //Hom(Z/nZ,Z) = 0 //Hom(Z,Z) ∼= Z n
//Hom(Z,Z) ∼= Z

is exact but multiplication by n isn’t surjective, so we cannot prolong this sequence to the
right with a zero.

Definition 2.1. For two abelian groups A,G and the standard free resolution 0→ F1 →
F0 → A→ 0 we define Ext(A,G) as the cokernel of the map

Hom(i, G) : Hom(F0, G)→ Hom(F1, G).

Here, Ext comes from ’extension’, because one can describe Ext(A,G) in terms of exten-
sions of abelian groups.

• As for Tor it is true that Ext(A,G) is independent of the free resolution of A. We
may use essentially the same proof.
• The functor A,G 7→ Ext(A,G) is covariant in G and contravariant in A: for homo-

morphisms f : A→ B and g : G→ H we get

f ∗ : Ext(B,G)→ Ext(A,G), g∗ : Ext(A,G)→ Ext(A,H).
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• It follows from the corresponding properties of Hom that for a family of abelian
groups (Gi, i ∈ I)

Ext(A,
∏
i∈I

Gi) ∼=
∏
i∈I

Ext(A,Gi)

and

Ext(
⊕
i∈I

Gi, B) ∼=
∏
i∈I

Ext(Gi, B).

• Similarly to Tor the group Ext(A,G) can be explicitly calculated if A is a finitely
generated abelian group (see the exercise sheet).

Remark 2.2. It is clear that Ext(A,G) is trivial if A is free. It is also trivial if G is
divisible, i.e., for all g ∈ G and n ∈ Z \ {0} there is a t ∈ G with g = nt. For example this
holds if G is isomorphic to Q, R, Q/Z, or C.

In more general settings, when we replace abelian groups by R-modules over some com-
mutative unital ring R, the properties ensuring that ExtR(A,G) disappears are that A is
projective or G is injective. In the special case of Z-modules, i.e. abelian groups, this is
equivalent to A being free respectively G being divisible.

Theorem 2.3. (Universal coefficient theorem for cochain complexes) For every free
chain complex C∗ and C∗ = Hom(C∗, G) the following sequence is exact and splits

0 //Ext(Hn−1(C∗), G) //Hn(C∗)
κ
//Hom(Hn(C∗), G) //0.

Setting C∗ = S∗(X) we immediately obtain:

Corollary 2.4. (Universal coefficient theorem for singular cohomology) Let X be an
arbitrary space. Then the sequence

0 //Ext(Hn−1(X), G) //Hn(X;G)
κ
//Hom(Hn(X), G) //0

is split exact.

Proof of Theorem 2.3. Let C∗ be a free chain complex and C∗ = Hom(C∗, G). Then
the sequence 0 → Zn −→ Cn −→ Bn−1 → 0 is split exact. There is a potential ambiguity
here between the dual group Hom(Bn,Z) and the space of coboundaries Bn ⊂ Cn. But the
groups agree: Any coboundary δf comes from a map f ∈ Cn+1

As in the case of tensor products this means that the G-dual sequence

0→ Bn−1 −→ Cn −→ Zn → 0

is short exact. (Note that (contrary to what I said in lectures) Bn here is Hom(Bn, G), which
is not the space of boundaries in Cn!)

As the sequence is compatible with differentials (the trivial differential on B∗ and Z∗),
we get a short exact sequence of cochain complexes. This yields a long exact sequence on
the level of cohomology groups

. . . //Zn−1 ∂
//Bn−1 //Hn(C∗) //Zn ∂

//Bn // . . .
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Here, ∂ denotes the connecting homomorphism in the cohomological case. By the very
definition of the connecting homomorphism we get that ∂ is the dual of the inclusion in : Bn ⊂
Zn, ∂ = i∗n. We cut the long exact sequence above into short ones

0→ coker(i∗n−1) −→ Hn(C∗) −→ ker(i∗n)→ 0

and hence we have to identify the kernel and the cokernel above.
Left exactness of hom gives us the exact sequence

0 //Hom(Hn(C∗), G)
π∗
//Hom(Zn, G)

i∗n
//Hom(Bn, G) ,

which tells us that the kernel of i∗n is the image of π∗ and due to the injectivity of π∗ this is
isomorphic to Hom(Hn(C∗), G).

The sequence

0 //Bn−1

in−1
//Zn−1

//Hn−1(C∗) //0

is a free resolution of Hn−1(C∗) and therefore the cokernel of i∗n−1 is Ext(Hn−1(C∗), G).
THe splitting is left as an exercise. �

Example 2.5. We know that the homology of CP n is free with

Hk(CP n) ∼=

{
Z, 0 6 k 6 2n, k even,

0, otherwise.

Therefore Hk(CP n) ∼= Hom(Hk(CP n),Z), thus the cohomology is given by the Z-dual of the
homology.

3. Axiomatic description of a cohomology theory

We will now give the axiomatic description of singular cohomology. These axioms will
be the main results we proved for homology, and that hold equally for cohomology.

We begin by noting the following facts, easy consequences of some of the results we
proved for chain complexes.

• For a chain map f : C∗ → C ′∗ (such as the barycentric subdivision) the G-dual map

f ∗ = Hom(f,G) : Hom(C ′∗, G) −→ Hom(C∗, G)

is a map of cochain complexes.
• If (Hn : Cn → C ′n+1)n is a chain homotopy, then the G-dual

(Hn := Hom(Hn, G) : Hom(C ′n+1, G)→ Hom(Cn, G))n

is a cochain homotopy. Thus if ∂Hn+Hn−1∂ = fn−gn, then Hnδ+δHn−1 = fn−gn.
• As we mentioned above, for a split exact sequence 0→ B1 −→ B2 −→ B3 → 0 the

dual sequence 0→ Hom(B3, G) −→ Hom(B2, G) −→ Hom(B1, G)→ 0 is exact. For
instance, if A is a subspace of X, then the short exact sequence

0→ S∗(A) −→ S∗(X) −→ S∗(X,A)→ 0

is split. We define rn : Sn(X)→ Sn(A) on α : ∆n → X via

rn(α)

{
α, if α(∆n) ⊂ A,

0, otherwise.
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Therefore 0→ S∗(X,A) −→ S∗(X) −→ S∗(A)→ 0 is a short exact sequence.

With the help of these facts and using the results we have established for singular ho-
mology we can show that singular cohomology satisfies the axioms of a cohomology theory :

Theorem 3.1. Singular cohomology satisfies the following axioms for cohomology:

(a) The assignment (X,A) 7→ Hn(X,A) is a contravariant functor from the category of
pairs of topological spaces to the category of abelian groups.

(b) For any subspace A ⊂ X there is a natural homomorphism ∂ : Hn(A)→ Hn+1(X,A)
(c) If f, g : (X,A)→ (Y,B) are two homotopic maps of pairs of topological spaces, then

Hn(f) = Hn(g) : Hn(Y,B)→ Hn(X,A).
(d) For any subspace A ⊂ X we get a long exact sequence

. . .
∂
//Hn(X,A) //Hn(X)

Hn(i)
//Hn(A)

∂
// . . .

(e) Excision holds, i.e., for W ⊂ W̄ ⊂ Å ⊂ A ⊂ X

Hn(i) : Hn(X,A) ∼= Hn(X \W,A \W ), for all n > 0.

(f) Let ∗ be the one-point space, then

Hn(∗) ∼=

{
Z, n = 0,

0, n 6= 0.

This is called the axiom about the coefficients or the dimension axiom.
(g) Singular cohomology is additive:

Hn(
⊔
i∈I

Xi) ∼=
∏
i∈I

Hn(Xi).

Proof. We have shown the corresponding theorems for homology and together with our
observations above this gives (a)-(f). For (g) note that S∗(qXi) ∼= ⊕iS(Xi) , Hom(⊕iS∗(Xi),Z) =∏

i Hom(S∗(Xi),Z) and cohomology commutes with direct products of chain complexes. �

For singular cohomology with coefficients in G we have an analoguous set of axioms,
replacing the dimension axioms by H∗(∗) = G in degree 0.

Remarkably these axioms determine the cohomology groups uniquely, at least if we re-
strict attention to CW pairs!

Theorem 3.2. On the category of CW pairs the singular cohomology groups Hn are the
only functors satisfying the above axioms.

Proof. See Theorem 4.59 in [Hatcher]. The idea is to use the filtration of CW complexes
and compare cellular singular cochains and cellular cochains based on some other cohomology
theory. �

One may drop the dimension axiom and a set of functors satisfying all other axioms
is called a generalized cohomology theory. In particular we may allow the point to have
cohomology in nonzero degrees.

There are many important examples of generalizied cohomology theories, like (different
flavours of) topological K-theory or cobordism. An important example of a generalized
homology theory (defined entirely analogusly) is stable homotopy theory.
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4. Cup product

In the following, we fix a commutative ring with unit R and we will consider homology
and cohomology with coefficients in R. We will often suppress the R in our notation, so
Hn(X,A) will stand for Hn(X,A;R) and similarly Sn(X) is Sn(X;R) etc. We’ll use analo-
gous abbreviations for cochains and cohomology. We will introduce µ : R ⊗ R → R as an
explicit name for the multiplication on R.

If we consider cohomology groups with coefficients in a commutative ring then cohomol-
ogy itself can be equipped with a product.

The key point is that by contravariance of cohomology the diagonal map induces a map
H∗(X × X) → H∗(X), and by our considerations when proving the Künneth theorem the
left hand side receives a map form H∗(X)⊗H∗(X).

We first recall from Proposition 15.4 that there is an essentially unique natural chain
map S∗(X ×X)→ S∗(X)⊗ S∗(X). We will now pick an explicit model for the composition
of this map with the diagonal.

Definition 4.1. Let a : ∆n → X and let 0 6 q 6 n.

• The (n− q)-dimensional front face of a is

F (a) = F n−q(a) = a ◦ i : ∆n−q i
//∆n a

//X

where i is the inclusion i : ∆n−q ↪→ ∆n with i(ej) = ej for 0 6 j 6 n− q, explicitly
(t0, . . . , tn−q) 7→ (t0, . . . , tn−q, 0 . . . , 0).
• The q-dimensional back or rear face of a is

R(a) = Rq(a) = a ◦ h : ∆q r
//∆n a

//X

where r : ∆q ↪→ ∆n is the inclusion with r(e0) = en−q, . . . , r(eq) = en, i.e. r(ei) =
en−(q−i), , explicitly (t0, . . . , tq) 7→ (0, . . . , 0, t0, . . . , tq).

We can express the (n− q)-dimensional front face of a as

F n−q(a) = ∂n−q+1 ◦ . . . ◦ ∂n(a).

Similarly,

Rq(a) = ∂0 ◦ . . . ◦ ∂0(a)

where ∂0 is repeated n− q times.

Definition 4.2. The Alexander-Whitney diagonal map S∗(X) → S∗(X) ⊗ S∗(X) is
defined by

AW(a) =
∑
p+q=n

F p(a)⊗Rq(a)

for a generating simplex a : ∆n → X in Sn(X).

Proposition 4.3. The Alexander Whitney map is a chain map and satisfies AW (x) =
x⊗ x for x ∈ S0(X).

Proof. The first statement follows by unravelling the definitions (note the convention
for the differential on the tensor product). The second statement is immediate. �
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Definition 4.4. The cup product ∪ : Sp(X)⊗Sq(X)→ Sp+q(X) on cochains is defined
by

α ∪ β(c) = µ(α⊗ β)AW (a)

If |α| = p, |β| = q then for c ∈ Sp+q(X) we have

α ∪ β(c) = α(F p(c))β(Rq(c)).

Remark 4.5. Somebody might object that the sign is not right. I have mentioned before
that moving an object of degree p past an object of degree q picks up a sign pq. With this
rule we should have

α ∪ β(c) = (−1)pqα(F p(c))β(Rq(c)).

as we commute β of degree q past F p(c) of degree p.
In general, for two elements x, y ∈ C∗ and ξ, υ ∈ C∗ one can define (ξ ⊗ υ)(x ⊗ y) =

(−1)|x||υ|ξ(x)⊗ υ(y)). This is an instance of the Koszul rule of signs.
But in fact, to be principled the same applies to the sign in the cochain complex, and

we want the formula 0 = ∂f(a) = (δf)(a) + (−1)|f |f(∂a) to be true for a cochain f and a
chain a. But that implies δf(a) = (−1)|f |+1f(∂a).

All of this is a matter of convention, in some sense Bredon is the most principled source,
but it is a bit easier to work with Hatcher’s conventions, so this is what we will do.

Lemma 4.6. The cup product is associative, unital and functorial.

Proof. We compute that α∪ (β ∪γ)(c) and (α∪β)∪γ are both given by µ(µ⊗ id)(α⊗
β ⊗ γ)(F |α|(c) ⊗ M |β|(c) ⊗ R|γ|(c)) where M |β|(c) is the “middle face” of c, given by the
composition with the map ei 7→ ei+|α| from ∆|β| to ∆|c|.

The constant cochain with value 1 is the identity.
For the last statement we need to check that f ∗(α) ∪ f ∗(β) = f ∗(α ∪ β). But this is

immediate as AW is a chain map:

f ∗(α ∪ β)(c) = µ(α⊗ β)AW (f(a))

= µ(α⊗ β)f∗(AW (a))

= (f ∗(α) ∪ f ∗(β))(a)

�

We want to show our product descends to cohomology, and this is a consequence of the
following Leibniz formula:

Lemma 4.7. For α ∈ Sp(X) and β ∈ Sq(X) we have δ(α ∪ β) = δα ∪ β + (−1)qα ∪ δβ.

Proof. We need to check on c ∈ Sp+q+1 we compute:

(δα ∪ β)(c) =

p+1∑
i=0

(−1)iα(∂iF
p+1(c))β(Rq(c))

and

(−1)p(α ∪ δβ)(c) =

q+1∑
i=0

(−1)p+iα(F p(c))β(∂iR
q+1(c))

75



Investigating the summands in turn and repeatedly using that ∂j∂i = ∂i−1∂j wo commute
the boundary past the front and rear face maps we see that we obtain exactly the summands
of

(δ(α ∪ β)(c) =

p+q+1∑
i=0

(−1)iα(F p+1(∂ic))β(Rq(∂ic))

except for the terms (−1)p+1α(∂p+1F
p+1(c))β(Rq(c)) (which is the last summand of the first

sum) and (−1)pα(F p(c))β(∂0R
q+1(c)) (first summand of second sum). Those two terms

cancel, as ∂p+1F
p+1(c) = F p(c) and ∂0R

q+1(c) = Rq(c). �

As the cup product mixes up different degrees it is best to consider it on all cohomology
groups a the same time. We thus consider the category of graded rings.

Definition 4.8. A graded ring is a ring R with a decomposition R = ⊕i∈ZRi such that
Ri · Rj ⊂ Ri+j. A homomomorphis of graded rings f : R∗ → S∗ is a ring homomorphism
R→ S such that f(Ri) ⊂ Si for all i ∈ Z. We denote by Ringgr the category of graded rings.

Theorem 4.9. The direct sum of cohomology groups defines a functor from topological
spaces to the category of graded rings H∗ : Top→ Ringgr (or the category of graded R-algebras
if we consider coefficients in R).

Proof. As δ(α∪β) = δα∪β+ (−1)|α|α∪ δβ by Lemma 4.7 the cup product of cocycles
is a cocycle. Setting β = δγ or α = δγ in this equation shows that the cup product of a
cocycle with a coboundary (and vice versa) is a coboundary. Thus there is an induced cup
product on cohomology. It is associative, unital and functorial and respects degree as it is
on cochains. Note that the constant cochain that takes the value 1 on every 0-chain is a
cocycle. �

We may extend the cup product to relative cohomology. We consider α ∈ Hp(X,A;R)
and β ∈ Hq(X,B;R), i.e. α and vanishes on chains taking values in A, and β vanishes on
chains with values in B. If A and B are open in A ∪ B we can use the following argument:
Let some homology class c be represented by a chain take values in A∪B. Using barycentric
subdvision we may assume c = c′ + c′′ with c taking values in A and c′′ taking values in B.
But then (α ∪ β)(c) = 0 as the first factor is 0 on c′ and the second factor is 0 on c′′. We
thus find that

∪ : Hp(X,A;R)⊗Hq(X,B;R)→ Hp+q(X,A ∪B;R)

is well defined.
In particular H∗(X,A) is a graded ring, but note that it is in general non-unital!

Example 4.10. Many cup products are trivial for degree reasons.

(a) Let Sn be a sphere of dimension n > 1. We know that H0(Sn) ∼= Z ∼= Hn(Sn) and
the cohomology is trivial in all other degrees. We have 1 ∈ H0(Sn) and νn ∈ Hn(Sn).
We know that

1 ∪ νn = νn = νn ∪ 1, 1 ∪ 1 = 1

but νn∪νn = 0 ∈ H2n(Sn) = 0. Thus, H∗(Sn) has the structure of a so-called graded
exterior algebra with the generator νn, ΛZ(νn).

(b) More generally, if X is a CW complex of finite dimension, then α ∪ β = 0 for all α,
β for |α|+ |β| big enough.
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(c) In particular, if X is a finite-dimensional CW complex then every element in H>1(X)
is nilpotent.

We now compute our first non-trivial cup product.

Example 4.11. Consider H∗(RP 2,Z/2). This is Z/2 in degree 1 and 2. In fact the only
interesting cup product is the product of the generator γ of H1(RP 2) as H0 is generated by
1 and all other products must be zero for degree reasons.

So let us compute γ∪γ. We recall the presentation of RP 2 as a circle with the two halves
of the boundary identified. Fix a base point ∗. Let ∗1 be the constant 1-simplex and ∗2 the
constant 2-simplex at the base point ∗. Let c be the 1-simplex that is half the boundary of
the disk, it is easy to see this is a generator for π(RP 2, ∗) and thus for H1(RP 2,Z/2). Finally
let s be the 2-simplex that maps onto the disk homeomorphically, with boundary 2γ − ∗1.
It follows that s− ∗2 is a generator for H2(RP 2.

Now we consider a generator γ of H1(RP 2,Z/2). We then must have γ(c) = 1 and γ(∗1)
is 0 as ∗1 = ∂∗2 is a boundary.

We compute (γ ∪ γ)(s) = γ(∂2s)f(∂0s) = 1 · 1. Similarly (γ ∪ γ)(∗2) = γ(∗1)γ(∗1) = 0.
We need to show γ ∪ γ is not a coboundary. But δβ(s) = β(∂s) = β(2c ∗1) = β(∗1) using
characteristic 2. But β(∗1) = β(∂∗2) is a boundary. So any coboundary takes value 0 on s
and γ ∪ γ is not a coboundary.

As a graded ring H∗(RP 2) = Z[γ]/(γ2) with |γ| = 1.

We conclude with two more vanishing results:

Lemma 4.12. If X can be covered as X = X1 ∪ . . .∪Xr by open and path-connected sets
with H∗(Xi) = 0 then in H∗(X) all r-fold cup products of elements of positive degree vanish.

Proof. We prove the case where r = 2; the general claim then follows by induction. So
assume X = X1∪X2 such that the Xi have vanishing cohomology groups in positive degrees
and let ij : Xj ↪→ X be the inclusion of Xj into X (j = 1, 2). Then for all α ∈ H∗(X),
i∗j(α) = 0. Consider the exact sequence

H∗(X,Xj) −→ H∗(X) −→ H∗(Xj).

Therefore, for all α there is an α′ ∈ H∗(X,X1) that is mapped isomorphically to α. Similarly,
for β ∈ H∗(X) there is an β′ ∈ H∗(X,X2) that corresponds to β. The cup product α ∪ β
then corresponds to α′ ∪ β′ but this is an element of H∗(X,X1 ∪X2) = H∗(X,X) = 0. �

A pointed space (X, ∗) such that (X, ∗) is a good pair is also called well-pointed.

Lemma 4.13. If X = X1∨X2 and X1, X2 are well-pointed and connected, then H̃∗(X) ∼=
H̃∗(X1) ⊕ H̃∗(X2)) as nonunital rings, i.e. for α = α1 + α2 and β = β1 + β2 with αi, βi ∈
H∗(Xi) in positive degrees, the cup product is

α ∪ β = (α1 + α2) ∪ (β1 + β2) = α1 ∪ β1 + α2 ∪ β2.

Proof. As Xi is well-pointed we have H̃∗(X1∨X2) = H∗(X1qX2, ∗q∗) ⊂ H∗(X1qX2)
for ∗ > 2 by the long exact sequence.

So any nonzero product in degree > 2 must map to a nonzero product in H∗(X1 qX2),
but by the definition the product of a cochain in S∗(X1qX2) supported on X1 and a cochain
supported on X2 is zero. �
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5. The cross product

There is another multiplication on cohomology, which relates the cohomologies of two
spaces with the cohmology of their product.

Recall from Proposition 15.4 that there is an essentially unique natural chain map S∗(X×
Y )→ S∗(X)⊗ S∗(Y ). Fix such a map and call it EZ.

We want to work in a bit more generality, so we state here the relative version. There
are some subtleties to consider (and it is perfectly legitimate for you to focus on the absolute
case, which I will do next time I lecture this course).

First, the result we expect is false unless we make some assumption on our pairs (X,A)
and (Y,B). We could assume A and B are open in X and Y respectively or that one of
them is empty.

Then there is a natural map K : S∗(X,A) ⊗ S∗(Y,B) → S∗(X × Y,X × B ∪ A × Y )
obtained by composing a map L : S∗(X,A)⊗S∗(Y,B)→ S∗(X×Y )/(S∗(X×B)+S∗(A×Y ))
with M : S∗(X × Y )/(S∗(X ×B) +S∗(A× Y ))→ S∗(X × Y,X ×B ∪A× Y ) which induces
an isomorphism on homology. Some details can be found in Spanier’s “Algebraic Topology”,
Theorem 5.3.9 together with Theorem 4.6.3. Note that Spanier moves from showing the map
M induces an isomorphism on homology (by using barycentric subdivision) to declaring it is
a chain homotopy equivalence. In fact as K induces an isomorphism on homology it follows
by general homological algebra that it is a chain homotopy equivalence as the two complexes
are free and bounded below.

So we shall choose a homotopy inverse of our map K and denote it by EZ, as in the
absolute case above.

Definition 5.1. Let A ⊂ X and B ⊂ Y be open. For α ∈ Sp(X,A) and β ∈ Sq(Y,B)
we define the cohomology cross product, ×, as

α× β := µ ◦ (α⊗ β) ◦ EZ ∈ Sp+q(X × Y,X ×B ∪ A× Y )

where EZ is any Eilenberg-Zilber map as above. Thus

Sn(X × Y ;X ×B ∪ A× Y )

EZ
��

α×β

''

⊕
p+q=n Sp(X,A)⊗ Sq(Y,B)

��

Sp(X,A)⊗ Sq(Y,B)
α⊗β

// R⊗R µ
// R

We note without proof some useful properties of the cross product, compare similar
statements in Lemma 15.1:

• The cohomology cross product is natural, i.e., for maps of pairs of spaces f : (X,A)→
(X ′, A′), g : (Y,B)→ (Y ′, B′)

(f, g)∗(α× β) = (f ∗α)× (g∗β).

• The Leibniz formula holds

δ(α× β) = (δα)× β + (−1)|α|α× (δβ)
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where |α| denotes the degree of α. Thus the cross product descends to cohomology
and gives Hp(X,A)⊗Hq(Y,B)→ Hp+q(X × Y,X ×B ∪ A× Y ).
• For the Kronecker pairing we have for cohomology classes α, β and homology classes
a, b of a corresponding degree

〈α× β, a× b〉 = 〈α, a〉〈β, b〉
where we use the cross product in homology and in cohomology.
• For 1 ∈ R and thus 1 ∈ S0(X,A)

1× β = p∗2(β), α× 1 = p∗1(α)

where pi (i = 1, 2) denotes the projection onto the ith factor in X × Y .
• The cohomology cross product is associative

α× (β × γ) = (α× β)× γ
on the level of cohomology groups.

We may use the cohomology cross product to define the cup product on H∗, and con-
versely the cross product may be defined via the cup product.

We recall the diagonal map ∆: X → X×X and the two projections p1, p2 : X×Y → X.

Lemma 5.2. For α ∈ Hp(X,A) and β ∈ Hq(X,B), with A ⊂ X and B ⊂ X open, the
cup-product of α and β is given by

α ∪ β = ∆∗(α× β) = ∆∗(µ ◦ (α⊗ β) ◦ EZ).

Conversely the cross product of α and β is given by p∗1(α) ∪ p∗2(β) ∈ H∗(X × Y,X ×B ∪
A× Y ).

As a diagram we have:

Hp(X,A)⊗Hq(X,B)
×
//

∪
++

Hp+q(X ×X,X ×B ∪ A×X)

∆∗

��

Hp+q(X,A ∪B)

Proof. The first statement follows immediately if we recall that our Alexander Whitney
diagonal that defines the cup product α ∪ β(a) = µ(α ⊗ β)AW (a) is a model for the chain
map EZ ◦∆∗.

For the second statement let α ∈ Hp(X), β ∈ Hq(Y ).

p∗1(α) ∪ p∗2(β) = (α× 1) ∪ (1× β).

Here, α×1 and 1×β live in the cohomology of X×Y . By definition, the cup product is the
pull-back of the cross product by the diagonal. Here, ∆X×Y : X×Y → (X×Y )2. Therefore,
the above is equal to

∆∗X×Y ((α× 1)× (1× β)) = α× β.
�

We prove the following key property of the cross product:

Proposition 5.3. The cross product induces a graded commutative product on cohomol-
ogy, i.e. α× β = (−1)|α||β|β × α.
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Proof. We consider the twist map T : X × Y → Y ×X and the swap map τ : C∗(X)⊗
C∗(Y )→ C∗(Y )⊗ C∗(X) given by a⊗ b 7→ (−1)|a||b|b⊗ a.

Let EZ : S∗(X × Y )→ S∗(X)⊗ S∗(Y ) be map as in Prposition 15.4. Then we consider
the map

EZτ = τ ◦ EZ ◦ T : S∗(X × Y )→ S∗(X)⊗ S∗(Y ).

This is also a chain map (note the sign on τ that is needed for compatibility with the tensor
differential), and clearly agrees with EZ on S0. Thus by Proposition 15.3 the two maps are
chain homotopic and, setting X = Y , we have that the cup product on cohomology may
equivalently be defined using EZ or EZτ . But the EZτ definition gives α∪τ β = (−1)pqβ∪α,
proving the proposition. �

Corollary 5.4. The cup product on H∗(X;R) is graded commutative, i.e. α ∪ β =
(−1)|α||β|β ∪ α.

This corollary only holds if R is commutative and this is the reason we always we assume
we are working with a commutative coefficient ring.

Proof. This is immediate from Proposition 5.3 and Lemma 5.2. �

Corollary 5.5. Assume that α ∈ Hp(X;R) with p odd. Assum that R is a field of
characteristic 6= 2 or a torsion free ring. Then α2 = 0.

Proof. We compute

α2 = (−1)p
2

α2 = −α2.

Therefore 2α2 = 0 and if R is a field of characteristic not equal to 2 or if R is a torsionfree
commutative ring, then α2 = 0. �

Remark 5.6. Our formula for the cup product in terms of the Alexander-Whitney diag-
onal showed that ∪ is associative on the cochain level and not just on the level of cohomology
groups (this was not obvious from the EZ map). But note that the explicit formula does
not give a (graded) commutative product on singular cochains. The cup product is only
homotopy commutative, in fact it is homotopy commutative up to coherent homotopies, it
is an E∞-algebra.)

The cross product looks reminiscent of the Künneth theorem. To simplify matters we
work over a field k to avoid having to worry about Tor groups.

Theorem 5.7. Let X, Y be topological spaces such that Y has finite-dimensional homol-
ogy groups in each degree. The cross product induces an isomorphism of graded commutative
rings H∗(X; k)⊗H∗(Y ; k)→ H∗(X × Y ; k).

Here the notation means that for each p, q we have a map Hp ⊗ Hq → Hp+q such that
⊕p+q=nHp ⊗Hq = Hn, and the left hand side has the product (µ⊗ µ) ◦ (id⊗ τ ⊗ id), which
on basis elements is defined by (a⊗ b).(a′ ⊗ b′) = (−1)|a

′||b|aa′ ⊗ bb′, (µ⊗ µ) ◦ (id⊗ τ ⊗ id).

Proof. The natural map× : α⊗β 7→ α×β = p∗1(α)∪p∗2(β) induces a morphism of graded
rings on cohomology groups. This follows as p∗i is a ring homomorphism by functoriality and
a homomorphism from a tensor product of rings is determined by its restriction to the tensor
functors. (The tensor product is the coproduct in the category of commutative graded rings.)
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It remains to check that × is an isomorphism. We know from Theorem 15.5 that the
map EZ : S∗(X × Y )→ S∗(X)⊗ S∗(Y ) induces an isomorphism on homology.

Over a field we may use that the cohomology groups are dual to the homology groups.
Moreover, the dual of the tensor product is the tensor product of the duals as one of the factor
is finite dimensional: we may compute Hom(V ⊗W,k) ∼= Hom(⊕ik⊗W,k) ∼= ⊕iHom(W,k) ∼=
V ∗ ⊗W ∗ if V ∼= ⊕ik is a finite sum.

It follows that EZ also induces an isomorphism on cohomology. But EZ is exactly the
map (unique up to chain homotopy) that we used to induce the cross product. �

The Künneth theorem gives us a few more non-trivial cup products:

Example 5.8. Consider a product of spheres, X = Sn×Sm with n,m > 1. By Theorem
5.7 we have

H∗(Sn × Sm) ∼= H∗(Sn)⊗H∗(Sm).

We have three additive generators

αn = νn × 1, βm = 1× νm, and γn+m = νn × νm.
The square α2

n is trivial:

α2
n = (νn × 1) ∪ (νn × 1) = (νn ∪ νn)× (1 ∪ 1) = 0.

Similarly, β2
m = 0 = γ2

n+m. But the products

αn ∪ βm = νn × νm = γn+m, βm ∪ αn = (−1)mnγn+m

are non-trivial.
This determines the ring structure of H∗(Sn × Sm). In particular, the cohomology ring

H∗(Sn×Sm) is not isomorphic to the cohomology ring H∗(Sn∨Sm∨Sn+m), which has trivial
products by Lemma 4.13. Additively, both graded abelian groups are isomorphic, thus the
graded cohomology ring is a finer invariant than the cohomology groups.

6. Cap product

The rough idea of the cap product is to digest a piece of a chain with a cochain of smaller
or equal degree.

Definition 6.1. Let R be an associative ring with unit. We define

∩ : Sq(X,A;R)⊗Sn(X,A;R) = Hom(Sq(X,A), R)⊗Sn(X,A)⊗R −→ Sn−q(X)⊗R = Sn−q(X;R)

using the Kronecker pairing and the Alexander-Whitney diagonal as

β ∩ (a⊗ r) := F n−q(a)⊗ 〈β,Rq(a)〉r
for a : ∆n → X and extend the definition linearly to Sn(X,A;R).

This definition does indeed make sense: we claim that β ∩ a is a well-defined chain in
S∗(X), not just in S∗(X,A). But if we modify a by adding a chain a′ taking values in A it
will not affect β ∩ a as β vanishes on all faces of a′.

Here we recall that (n− q)-dimensional front face of a is

F n−q(a) = ∂n−q+1 ◦ . . . ◦ ∂n(a).

Similarly,
Rq(a) = ∂0 ◦ . . . ◦ ∂0(a)
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where ∂0 is repeated n− q times.
Analogously with the cup product we may also express this for a general EZ map as

(id⊗ β) ◦EZ ◦∆(a). The map ∩ is well-defined: for a = a′ ∈ Sn(X,A), i.e., a = a′+ b with
im(b) ⊂ A we get

β ∩ (a⊗ r) = β ∩ ((a′ + b)⊗ r) = β ∩ (a′ ⊗ r) + F (b)⊗ 〈β,R(b)〉r.

The image of R(b) is contained in A, but β ∈ Hom(Sq(X,A), R), thus β : Sq(X) → R with
β|Sq(A) = 0 and 〈β,R(b)〉 = 0.

Proposition 6.2. There is a Leibniz formula for the cap product, i.e. for β ∈ Sq(X,A;R)
and a ∈ Sn(X,A) we have

∂(β ∩ (a⊗ r)) = (−1)n−q(δβ) ∩ (a⊗ r) + β ∩ (∂a⊗ r)

For the proof we suppress the tensor product with R. It just adds to notational com-
plexity.

Proof. We check the equation ∂(β ∩ (a⊗ r)) + (−1)n−q+1(δβ)∩ (a⊗ r) = β ∩ (∂a⊗ r)).
For this we consider

∂(β ∩ a) = ∂(F n−q(a)⊗ 〈β,Rq(a)〉) = ∂(F n−q(a))⊗ 〈β,Rq(a)〉(6.1)

and

(−1)n−q+1(δβ) ∩ a = (−1)n−q+1F n−(q+1)(a)⊗ 〈δβ,Rq+1(a)〉 = (−1)n−q+1F n−(q+1)(a)⊗ 〈β, ∂Rq+1(a)〉
(6.2)

Finally,

β ∩ ∂a =
n∑
j=0

(−1)jβ ∩ ∂ja

=
n∑
j=0

(−1)jF n−1−q(∂ja)⊗ 〈β,Rq(∂ja)〉

=
n∑
j=0

(−1)j∂n−q−2 · · · ∂n−1 ◦ ∂ja⊗ 〈β, ∂n−q0 ∂ja〉.

We examine the summands of this last expression in turn and distinguish cases. If j 6 n−q−2
we use that ∂i−1∂j = ∂j∂i for i > j to show that the summand is

(−1)j∂j∂n−q · · · ∂na⊗ 〈β, ∂n−q0 a〉 = (−1)j∂jF
n−qa⊗ 〈β,Rq(a)〉

so we recover exactly the summands of equation 6.1.
If j > n−q−1 we use that ∂i∂j = ∂j−1∂i as i < j, and after relabelling j′ = j−(n−q−1)

the summand is

(−1)j
′+(n−q−1)∂n−q−1 · · · ∂n(a)⊗〈β, ∂j′∂n−q−1

0 (a)〉 = (−1)n−q−1(−1)j
′
F n−q−1(a)⊗〈β, ∂j′Rq+1(a)〉.

and thus we find the summands of equation 6.2.
�
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Proposition 6.3. For a map of pairs of spaces f : (X,A) → (X,B) and classes a ∈
H∗(X,A), β ∈ H∗(Y,B) we have

f∗(f
∗(β) ∩ (a⊗ r)) = β ∩ (f∗(a)⊗ r)

where f∗ : S∗(X,A)→ S∗(Y,B) and f ∗ : S∗(Y,B)→ S∗(X,A).

Proof. We plug in the definitions (skipping r for legibility) and obtain

f∗(f
∗(β) ∩ a) = f∗(F (a)⊗ 〈f ∗β,R(a)〉)

= f∗(F (a)⊗ 〈β, f∗R(a)〉)
= F (f∗(a))⊗ 〈β,R(f∗(a))〉)
= β ∩ f∗(a)

as F and R are natural. �

Proposition 6.4. The cap product induces a map

∩ : Hq(X,A;R)⊗Hn(X,A;R) −→ Hn−q(X;R)

via

[β] ∩ [a] := [F (a)⊗ 〈β,R(a)〉]
This defines an action of the graded ring H∗(X,A;R) on the graded R-module H∗(X,A;R).

Here a graded module M = ⊕M i over a graded ring R = ⊕Rj is an R-module M
satisfying Rj.M i ⊂ M i+j. The sign arises as H∗ is graded cohomologically while H∗ is
graded homologically. To put them on the same footing we should consider the degree q
cohomology as living in homological degree −q.

Proof. From the Leibniz formula we get that the cap product satisfies that

• a cocycle cap a cycle is a cycle,
• a cocycle cap a boundary is a boundary,
• a coboundary cap a cycle is a boundary.

This implies the first result.
Next consider 1 ∈ S0(X;R), i.e. 1(a) = 1 for all a : ∆0 → X. We claim that 1∩a = a. We

have F (a) = a because q = 0 and R(a)(e0) = a(en). Therefore, 1∩a = a⊗〈1, a(en)〉 = a⊗ 1
and we identify the latter with a.

For the associativity we compute that (α ∪ β) ∩ c and (α ∩ (β ∩ c)) are both given by
α(F p(c))β(M q(c))Rn−p−q(c) when |α| = p, |β| = q and |c| = n, and M q(c) denotes the
“middle face” again. �

The cap product also interacts well with the Kronecker product:

Proposition 6.5. Far α ∈ Hp(X), β ∈ Hq(X) and c ∈ Hp+q(X) we have

〈α ∪ β, c〉 = 〈α, β ∩ c〉.

Note that if α = 1 this says 〈β, c〉 = β ∩ c.

Proof. Both sides are equal to α(F p(c)).β(Rq(c)). �
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Example 6.6. Let us consider a non-trivial example. So let T be a torus, take a 1-chain
given by a meridian b ⊂ T and another 1-chain given by the longitude a. We also consider
a 1-cocycle given by β ∈ H1(T ) that is dual to [b] ∈ H1(T ), so that β(a) = 0.

Let c be a generator of H2(T ). Our first guess might be a surjection from ∆2 to the
square such that ∂0∆2 is the vertical and ∂2∆2 is the horizontal edge. However, this is not a
cycle, as ∂1 is not equal to ∂0 +∂2. So instead we cover the square with two triangles and take
their difference as our 2-chain. It is a cycle and for degree reasons cannot be a boundary. So
we have c = x− y and ∂0(x) = a = ∂2(y) and ∂2(x) = b = ∂0(y). (Here ∂1(x) = ∂1(y) is the
diagonal.)

Then we identify edges to obtain the torus such that the the vertical edge is the meridian
and the horizontal edge is the longitude.

Then β ∩ c = β ∩ x− β ∩ y is 〈β, ∂2(x)〉∂0(x)− 〈β, ∂2(y)〉∂0(y) = 1.a− 0.
Thus β∩c is exactly the longitude, transversal to b = β∗. The cap notation is reminiscent

of the symbol t that denotes transversality.
One can compute that similarly α ∩ c = −b. Thus the computation also takes account

of orientation of the intersection.

Remark 6.7. An alternative notation for F q(c) is c|0...q, indicating the restriction of the
simplex to the subsimplex spanned by the first q+ 1 vertices. Similarly Rq(c) = c|(n−q+1)...n.

7. Suspensions

We recall the following constructions:

Definition 7.1. Let X be a topological space. Then the cone on X, denoted by CX is
defined as X × [0, 1]/X × {1}.

The (free) suspension of X, denoted by SX is defined as X× [0, 1]/ ∼ where ∼ identifies
X × {1} to a point and X × {0} to point.

The reduced suspension of a pointed space (X, x0) is defined as

(X × [0, 1])/(X × {0} ∪ {x0} × [0, 1] ∪X × {1})

i.e. it is the quotient of SX where we also identify {x0} × [0, 1] to a point.

If (X, x0) is a good pair then one can show there is a homotopy equivalence ΣX ' SX.
We will mostly talk about the free suspension in this course. The suspension can also be

written as the colimit of ∗ q ∗ ← X qX → X × [0, 1].
It is clear that CX is contractible and that SX = CX qX CX.

Example 7.2. For any n we have SSn ∼= Sn+1.

Theorem 7.3 (Suspension isomorphism). If A ⊂ X is a good pair then for all n > 0

H̃n(SX, SA) ∼= H̃n−1(X,A), and H̃n(SX, SA) ∼= H̃n−1(X,A)

Proof. We prove the result for homology, the proof for cohomology is identical.
Picking open neighbourhoods of the two copies of CX ⊂ SX, e.g. the images of X×(1

3
, 1]

and X × [0, 2
3
), we obtain from the Mayer-Vietoris sequence on reduced homology that

δ : H̃n+1(SX) ∼= H̃n(X) for all n, i.e. the boundary map provides an isomorphism.
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The same is true for A ⊂ X and for the relative case we apply the 9-Lemma 9.6 to the
quotient of the following short exact sequences of complexes

0 // C∗A //

��

C∗(CA)⊕ C∗(CA) //

��

C∗(SA) //

��

0

0 // C∗X // C∗(CX)⊕ C∗(CX) // C∗(SX) // 0

to obtain a short exact sequence of chain complexs

0→ C∗(X,A)→ C∗(CX)/C∗(CA)⊕ C∗(CX)/C∗(CA)→ C∗(SX, SA)→ 0.

Here we use CX and CA to mean the open neughbourhoods for better legibility. As
C∗(CX)/C∗(CA) is acyclic the result follows from the long exact sequence on homology. �

Remark 7.4. Note, that the corresponding statement is terribly wrong for homotopy
groups. We have SS2 ∼= S3, but π3(S2) ∼= Z, whereas π4(S3) ∼= Z/2Z, so homotopy groups
(unlike homology groups) don’t satisfy such an easy form of a suspension isomorphism. There
is a Freundenthal suspension theorem for homotopy groups, but that’s more complicated.
For the above case it yields:

Z/2Z ∼= π1+3(S3) ∼= π1+4(S4) ∼= . . . =: πs1

where πs1 denotes the first stable homotopy group of the sphere.

The suspension construction is in fact functorial and if f : Sn → Sn is continuous, then
S(f) : SSn → SSn is given as SSn 3 [x, t] 7→ [f(x), t].

Lemma 7.5. Suspensions leave the degree invariant, i.e., for f : Sn → Sn we have

deg(S(f)) = deg(f).

Proof. The suspension isomorphism of Theorem 7.3 is induced by a connecting homo-
morphism. Using the isomorphism Hn+1(Sn+1) ∼= Hn+1(SSn), the connecting homomorphism
sends µn+1 ∈ Hn+1(Sn+1) to −µn ∈ H̃n(Sn) by definition. But then the commutativity of

Hn+1(Sn+1)
∼=
// Hn+1(SSn)

δ
��

Hn+1(Sf)
// Hn+1(SSn)

δ
��

Hn+1(Sn+1)
∼=
oo

H̃n(Sn)
Hn(f)

// H̃n(Sn)

ensures that deg(f)δµn+1 = δdeg(Sf)µn, which becomes −def(f)µn = −deg(Sf)µn. �

This gives another proof that for every k ∈ Z and n > 1 there is an f : Sn → Sn with
deg(f) = k. We just define the k-fold loop on S1 and suspend it n− 1 times.

Finally we note that suspension immediately kills all cup products:

Proposition 7.6. The cup product structure on SX is trivial for any toplogical space
X.

Proof. This follows immediately from Lemma 4.12 as CX is contractible. �
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Note that the cohomology rings of S(Sn × Sm) and S(Sn ∨ Sm ∨ Sn+m) are isomorphic
(namely here cup products of elements of positive degree are trivial due to Proposition 7.6.
You may wonder if

S(Sn × Sm) ' S(Sn ∨ Sm ∨ Sn+m).

8. Orientability of manifolds

Definition 8.1. A topological space X is called locally euclidean, if every point x ∈ X
has an open neighborhood U which is homeomorphic to an open subset V ⊂ Rm.

• A homeomorphism ϕ : U → V is called a chart.
• A set of charts is called atlas, if the corresponding U ⊂ X cover X.
• The number m is the dimension of X if it is independent of x, for example if X is

connected.

Example 8.2. Consider the line with two origins, i.e. let

X = {(x, 1)|x ∈ R} ∪ {(x,−1)|x ∈ R}/ ∼, (x, 1) ∼ (x,−1) for x 6= 0.

Then X is locally euclidean, but X is not a particularly nice space. For instance, it is not
Hausdorff: you cannot separate the two origins.

Definition 8.3. A topological space X is an m-dimensional (topological) manifold (or
m-manifold for short) if X is a locally euclidean space of dimension m that is Hausdorff and
has a countable basis for its topology.

With this definition, topological manifolds are paracompact: any open cover has a locally
finite refinement.

Example 8.4. (a) Let U ⊂ Rm an open subset, then U is a topological manifold of
dimension m.

(b) The n-sphere Sn ⊂ Rn+1 is an n-manifold and Sn = (Sn \ N) ∪ (Sn \ S) is an atlas
of Sn.

(c) The 2-dimensional torus T ∼= S1×S1 is a 2-manifold and more generally, the surfaces
Fg are 2-manifolds. Charts can be easily given via the 4g-gon whose quotient Fg is.

(d) The open Möbius strip [−1, 1]× (−1, 1)/ ∼ with (−1, t) ∼ (1,−t) is a 2-manifold.
(e) For k = R,C,H let d = 1, 2, 4 respectively. The projective space kP n defined in

Example 12.8 is a manifold of dimension dn. The open sets Ui ⊂ kP n defined by
[x0, . . . , xn] with xi 6= 0 in projective coordinates provide a chart as Ui ∼= kn ∼= Rdn.

Let M be a connected manifold of dimension m > 2. We denote the open charts by
Uα ⊂M . Without loss of generality we can assume that

ϕ : Uα ∼= D̊m ⊂ Rm

and for an x ∈M we can choose charts with ϕ(x) = 0. Excision tells us that for all x ∈M
Hm(M,M \ x) ∼= Hm(D̊m, D̊m \ {0}) ∼= Hm−1(D̊m \ {0}) ∼= Z

for m > 2.

For a triple B ⊂ A ⊂M there are maps of pairs

%B,A : (M,M \ A) −→ (M,M \B).
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Definition 8.5. An m-manifold M is orientable (with respect to Z) if there is a coherent
choice of generators ox ∈ Hm(M,M \ x), i.e. for all x ∈ M there is an open neighbourhood
U of x and a class oU ∈ Hm(M,M \U) such that for all y ∈ U we have that (%y,U)∗oU = oy.

Note that this implies that for all x, y ∈ U we have the compatibility condition

oy = %xy,U ◦ (%x,U)−1(ox).

Hm(M,M \ U)
%y,U

))

%x1,U

uu

ox ∈ Hm(M,M \ x) Hm(M,M \ y) 3 oy

Definition 8.6. If such a choice is possible, then (ox|x ∈M) is an orientation of M .

Note that for an orientation (ox|x ∈ M) the family (−ox|x ∈ M) is an orientation of M
as well.

Example 8.7. Let M be an open Möbius strip and x a point on it. We pick a generator
ox ∈ H2(M,M \ x) and walk once around the Möbius strip, always picking compatble
orientations in H2(M,M \ y) as y moves along the meridian of M . After one circle around
the Möbius strip we end up at −ox.

If we choose other coefficients, these problems can disappear. For instance for G = Z/2Z
there is no choice in local generators, and thus there is automatically a choice of coherent
generators for H2(M,M \ x;Z/2Z) for any manifold M .

Now, we consider integral coefficients again. The easiest way to get an orientation is to
have a global class oM ∈ Hm(M ;Z) = Hm(M). Then with

%x,M =: %x : Hm(M)→ Hm(M,M \ x), %x(oM) = ox

we have that (ox|x ∈M) is an orientation of M – provided that ρx is injective everywhere.

Example 8.8. If M = RP 2, then H2(RP 2) = 0, but H2(RP 2,RP 2 \ x) ∼= Z, so here we
cannot have such a class. We will show later that in fact there is no orientation on RP 2.

Definition 8.9. Let K ⊂M be a compact subset of M . We call an oK ∈ Hm(M,M \K)
an orientation of M along K, if the classes ox := (%x,K)∗(oK) constitute a coherent choice of
generators for all x ∈ K. Here ρx,K : (M,M \K)→ (M,M \ x) is the natural restriction.

Of course, if we have a global class oM ∈ Hm(M) then we get coherent generators ox for
all x ∈M and also a class oK as above for all compact K ⊂M .

Lemma 8.10. Let M be a connected topological manifold of dimension m and assume
that M is orientable. Let K ⊂M be compact. Then

(i) Hq(M,M \K) = 0 for all q > m, and
(ii) if a ∈ Hm(M,M \K), then a is trivial if and only if (%x,K)∗(a) = 0 for all x ∈ K.

The following method of proof is a standard method in the theory of manifolds.

Proof.
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(a) First, let M = Rm and let K be convex (and thus in particular contractible) and

compact in M . In this case we can assume without loss of generality that K ⊂ D̊m.
We calculate

Hq(M,M \K) = Hq(Rm,Rm \K) ∼= Hq(D̊m, D̊m \ x) = 0, for q > m.

All identifications are isomorphisms and this gives the second claim as well.
(b) Let M be again Rm and let K = K1 ∪ K2 with K1, K2 as in (a). In this case the

claims follow with the help of the relative Mayer-Vietoris sequence (Theorem 9.7):

Hq+1(M,M \K0) //Hq(M,M \K)
i
//Hq(M,M \K1)⊕Hq(M,M \K2)

κ
//Hq(M,M \K0) // . . .

where K0 = K1 ∩K2. Here K1, K2 and K1 ∩K2 satisfy the assumptions as in (a)
and we can deduce (i) from the exact sequence 0→ Hq(M,M \K)→ 0.

To show (ii) consider a class a in Hm(M,M \K). By the exact sequence it is 0
if ρK1,K(a) = ρK2,K(a) = 0, and by (a) this is the case if and only if ρx,K(a) = 0 for
all x ∈ K.

(c) An induction shows the case of M = Rm and K = K1 ∪ . . . ∪Kr with Ki as in (a).
(d) Let M = Rm and let K be an arbitrary compact subset and let a ∈ Hq(M,M \K)

with q > m. Choose a ψ ∈ Sq(Rm) representing the class a. The boundary of ψ,
∂(ψ), has to be of the form

∂(ψ) =
∑̀
j=1

λjτj

with τj : ∆q−1 → Rm \K. As ∆q−1 is compact, the union⋃̀
j=1

τj(∆
q−1) ⊂ Rm \K

is compact.
There exists an open neighborhood U of K in Rm with⋃̀

j=1

τj(∆
q−1) ∩ U = ∅.

Therefore ψ gives a cycle in S∗(Rm,Rm \ U) and we let a′ ∈ Hq(Rm,Rm \ U) be
the corresponding class. Thus

(%K,U)∗(a
′) = a.

Choose closed balls B1, . . . , Br ⊂ Rm with Bi ⊂ U for all i and K ∩ Bi 6= ∅ such
that K ⊂

⋃r
i=1 Bi. Consider the restriction maps

(Rm,Rm \ U)
%⋃Bi,U

//(Rm,Rm \
⋃r
i=1Bi)

%K,
⋃
Bi

//(Rm,Rm \K).

Define a′′ as a′′ := (%⋃Bi,U)∗(a
′). Note that (%K,⋃Bi)∗(a

′′) = a.
The Bi are convex and compact and therefore

(%⋃Bi,U)∗(a
′) = 0 = a′′, for all q > m

and hence a = 0, showing (i).
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To show (ii) let q = m and assume that (%x,K)∗(a) = 0 for all x ∈ K. We have
to show that a is trivial. We express (%x,K)∗(a) as above as

(%x,K)∗(a) = (%x,K)∗ ◦ (%K,⋃Bi)∗(a
′′) = (%x,⋃Bi)∗(a

′′) = 0

for all x ∈ K. For every x ∈ Bi ∩ K the above composition is equal to (%x,Bi)∗ ◦
(%Bi,

⋃
Bi)∗(a

′′), but (%x,Bi)∗ is an isomorphism and hence (%Bi,
⋃
Bi)∗(a

′′) = 0. This
implies (%y,Bi)∗ ◦ (%Bi,

⋃
Bi)∗(a

′′) = 0 for all y ∈ Bi and in addition (%y,⋃Bi)∗(a
′′) = 0

for all y ∈
⋃
Bi. According to case (c) this implies that a′′ = 0 and therefore

a = (%K,⋃Bi)∗(a
′′) is trivial as well.

(e) Now let M be arbitrary and suppose that K is contained in a domain of a chart
K ⊂ Uα ∼= Rm. Therefore

Hq(M,M \K) ∼= Hq(Uα, Uα \K) ∼= Hq(Rm,Rm \ im(K)).

As the image of K is compact in Rm, the claim follows from (d).
(f) If M and K are arbitrary, then K = Kα1 ∪ . . .∪Kαr with Kαi ⊂ Uαi . (Proving this

decomposition is an exercise in non-algebraic topology.) An induction as in (c) then
proves the claim. �

Proposition 8.11. Let K ⊂M be compact and assume that M is connected and oriented
with (ox ∈ Hm(M,M \x) | x ∈M). Then there is a unique orientation of M along K, which
is compatible with the orientation of M , i.e., there is a class oK ∈ Hm(M,M \K) such that
(%xK)∗(oK) = ox for all x ∈ K.

Proof. First we show uniqueness. Let oK and õK be two orientations of M along K.
By assumption we have that

(%xK)∗(oK)− (%xK)∗(õK) = (%xK)∗(oK − õK) = 0.

According to Lemma 8.10 this is only the case if oK − õK = 0.
In order to prove existence we first consider the case where K ⊂ Uα ∼= D̊m and hence

M \Uα ⊂M \K. Let x ∈ K. We denote the isomorphism Hm(M,M \Uα) ∼= Hm(M,M \x)
by φ.

We define oK as
oK := (%K,Uα)∗((φ

−1)(ox)).

For K = K1 ∪ K2 with Ki contained in the source of a chart we get that oK1 and oK2

exist. Let K0 = K1 ∩K2 and consider the Mayer-Vietoris sequence

0 //Hm(M,M \K)
i
//Hm(M,M \K1)⊕Hm(M,M \K2)

κ
//Hm(M,M \K0) // . . .

The uniqueness of the orientation along K0 implies that

κ(oK1 , oK2) = (%K0,K1)∗(oK1)− (%K0,K2)∗(oK2) = 0.

Therefore there is a unique class oK ∈ Hm(M,M \K) with i(oK) = (oK1 , oK2).
For the last case we consider a compact subset K and we know that K = K1 ∪ . . . ∪Kr

with Ki ⊂ Uαi . An induction then finishes the proof. �

Theorem 8.12. Let M be a connected and compact manifold of dimension m. The
following are equivalent

(a) M is orientable,
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(b) there is an orientation class oM ∈ Hm(M ;Z),
(c) Hm(M ;Z) ∼= Z.

Proof. Proposition 8.11 yields that (a) implies (b). Now assume that (b) holds, thus
there is a class oM ∈ Hm(M) restricting to the local orientation classes ox. Then the class
oM satisfies, that oM is not trivial, because its restriction (%x,M)∗oM = ox is a generator and
hence non-trivial. Furthermore, oM cannot be of finite order: if koM = 0, then this would
imply kox = 0 for all x ∈M contradicting the generating property of the ox. Let a ∈ Hm(M)
be an arbitrary element. Thus (%x,M)∗(a) = kox for some integer k. As the ox are coherent
in x, this k has to be constant and if we set b := koM − a then (%x,M)∗b = 0 for all x and
this implies that b = 0. Therefore a = koM , thus every element in Hm(M) is a multiple of
oM and Hm(M) ∼= Z.

Assuming (c) there are two possible generators in Hm(M). Choose one of them and call
it oM . Then we claim that ((%x,M)∗oM | x ∈M) is an orientation of M . To show this we first
need to know that ρx is an injection. From the long exact sequence in relative homology the
kernel is given by Hn(M \x;Z) and must be 0 or Z. But it follows from Corollary 14.6 below
that Hn(M \ x;Z/2) = 0, and this is impossible if Hn(M \ x;Z) = Z. Note that we will use
the first implication of this theorem to prove that corollary, but not this implication!

Next we need surjectivity, so let us consider (%x,M)∗oM) | x ∈ M) = (kxox) | x ∈ M)
for some collection kx. But kx is locally constant on M and thus constant, and if there
is a coherent choice (kox | x ∈ M) it follows that (ox | x ∈ M) is a coherent choice of
orientation. �

The oM as in Theorem 8.12 is also called fundamental class of M and is often denoted
by [M ] = oM .

Example 8.13. For the m-sphere, M = Sm we can choose µm ∈ Hm(Sm) as a generator,
thus

[Sm] = oSm = µm.

All results about orientations can be transferred to a setting with coefficients in a com-
mutative ring R with unit 1R.

• Then M is called R-orientable if and only if there is a coherent choice of generators
Hm(M,M \ x;R) for all x ∈M .
• The results we had have formulations relative R: Lemma 8.10 goes through, and

if M has an R-orientation (oRx |x ∈ M), then for all compact K ⊂ M there is an
R-orientation of M along K, i.e., a class oRK ∈ Hm(M,M \ K;R) that restricts to
the local classes. The R-version of Theorem 8.12 yields a class oRM ∈ Hm(M ;R)
restricting to the oRx . The class oRM is then called the fundamental class of M with
respect to R and is denoted by [M ;R].

If the manifold M is triangulated then there is a different way of viewing orientation:
It is a coherent choice of orientation of all the n-simplices making up the manifold. An
orientation of an n-simplex is a sign given by an ordering of all the vertices, and swapping
two vertices changes the orientation.

Coherence just means that if we consider the simplicial n-chain given by the sum of all
the n-simplices the boundary will contain each (n − 1)-simplex twice. If it appears twice
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with opposite sign and cancels the sum of all n-simplices is an n-cycle, and as it can’t be a
boundary this generates simplicial Hn(M).

If we have such a triangulated manifold with an orientation we may construct a dual
cell decomposition: Each n-simplex becomes a 0-cell (the barycenter), each (n− 1)-simplex
that is a common face of two n-simplices becomes a 1-cell connecting the barycenters, an
(n− 2)-simplex becomes a 2-cell (things are already harder to visualize here, unless n = 2).
Note that this dual cell decomposition is not necessarily a triangulation.

What happens to the boundary operation? As we dualize the decomposition the homolog-
ical operator Ck → Ck−1 must become some operator from (n−k)-chains to (n−k+1)-chains,
i.e. a coboundary operator.

One can thus turn the simplicial chain complex upside down and obtain a cellular cochain
complex of the same manifold with a different cell decomposition. With some more work,
this shows that if M is a compact R-oriented connected manifold then

Hp(M ;R) ∼= Hn−p(M ;R).

This is Poincaré duality. We will prove it in a different way, that avoids triangulations (which
are not unique and may not even exist) and allows for a number of generalizations.

9. Cohomology with compact support

Our setting for Poincaré duality is as follows: if M is a compact connected oriented
manifold of dimension m, then taking the cap product with [M ] = oM gives a map

(−) ∩ oM : Hq(M ;R)→ Hm−q(M ;R).

We want to show this is an isomorphism.
One of our best strategies for proving theorems has been to chop manifolds into open

pieces and prove the result locally first. However, Poincaré duality as stated is visibly wrong
for non-compact manifolds. Thus if we want to prove a local version of Poincaré duality, we
first need to extend the statement to non-compact M . To this end we define the following
notion.

Definition 9.1. Let X be an arbitrary topological space and let R be a commutative
ring with unit 1R. Then the singular n-cochains with compact support of X are

Snc (X;R) = {ϕ : Sn(X)→ R | ∃Kϕ ⊂ X compact : ∀σ : ∆n → X, σ(∆n)∩Kϕ = ∅ ϕ(σ) = 0.}
The nth cohomology group with compact support of X with coefficients in R is

Hn
c (X;R) := Hn(S∗c (X;R)).

Note that S∗c (X;R) ⊂ S∗(X;R) is a sub-complex. This inclusion of complexes induces a
map on cohomology

Hn
c (X;R) −→ Hn(X;R).

If X is compact, then we may pick Kφ = X for all φ and Hn
c (X;R) ∼= Hn(X;R) for all

n.
Is there a map from singular cohomology to singular cohomology with compact support?

Not in general, but there is a map in a relative setting. Let K ⊂ X be compact. The
restriction map

%K,X : (X,X \X) = (X,∅) −→ (X,X \K)
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induces a map
%nK,X : Sn(X,X \K;R) −→ Sn(X;R)

whose image is contained in Snc (X;R): for a ϕ in the image there is a ψ ∈ Sn(X,X \K;R)
with %nK,X(ψ) = ϕ. The functional ψ is trivial on all simplices σ : ∆n → X with σ(∆n)∩K =
∅. Therefore,

ϕ(σ) = %nK,X(ψ)(σ) = 0

for such σ.

Lemma 9.2. (a) For all compact K ⊂ X the map %∗K,X is a cochain map S∗(X,X \
K;R) −→ S∗c (X;R) and in particular we get an induced map

H∗(%K,X) : H∗(X,X \K;R) −→ H∗c (X;R).

(b) For compact subsets K ⊂ L ⊂ X we have

%K,L ◦ %L,X = %K,X

and therefore

S∗(X,X \K;R)
%∗K,X

((

%∗K,L

��

S∗c (X;R)

S∗(X,X \ L;R)

%∗L,X

66

commutes.

Lemma 9.2 says that there is a functor from the poset of compact subsets of K to the
category of cochain complexes.

For K ⊂ L ⊂ L′ we have
%∗K,L′ = %∗L,L′ ◦ %∗K,L.

Our index category also has the property that for compact K and L we can consider the
inclusions K ⊂ K ∪ L and L ⊂ K ∪ L, thus these maps meet again.

A poset with the special property that any two elements have a common bound is called
a directed set. A functor from a directed set, viewed as a category, is called a direct system.
So this is nothing but a special kind of diagram and we may take the colimit of this diagram,
it is called the direct limit (even though it is a colimit), and denoted by lim−→Mi.

We recall some facts about direct limits of R-modules and (co)chain complexes of R-
modules.

First we spell out the definitions: Let I be a partially ordered set which we consider as
a diagram, i.e. for all i < j there is a unique map fji : i→ j and for i = j we have fii = idi.
all i, j ∈ I there is a k ∈ I with i, j 6 k.

Consider a functor from I to R-modules. Unravelling the definitions this means: Let Mi

for i ∈ I be a family of R-modules together with maps fji : Mi →Mj with fkj ◦ fji = fki for
i 6 j 6 k. Then we call (Mi)i∈I a direct system.

The direct limit is then the R-module that is determined (up to canonical isomorphism)
by the following universal property: there are R-linear maps hi : Mi → lim−→Mi such that for
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every family of R-module maps gi : Mi →M that satisfy gj ◦ fji = gi for all i 6 j, there is a
unique morphism of R-modules g : lim−→Mi →M such that g ◦ hi = gi for all i ∈ I.

For a direct system (Mi, i ∈ I) of R-modules we can explicitly construct lim−→Mi as

lim−→Mi =

(⊕
i∈I

Mi

)
/U

where U is the submodule of
⊕

i∈IMi generated by all mi − fji(mi), i 6 j.
For (co)chain complexes the construction is similar. For a direct system of chain com-

plexes ((Ci)∗)i∈I we set
(lim−→(Ci))n := lim−→((Ci)n).

The boundary operators di : (Ci)n → (Ci)n−1 induce a boundary map

d : (lim−→(Ci))n −→ (lim−→(Ci))n−1.

Let (Ai)i∈I , (Bi)i∈I and (Ci)i∈I be three direct systems of R-modules. If

0 //Ai
φi
//Bi

ψi
//Ci //0

is a short exact sequence for all i ∈ I and if fBji ◦φi = φj ◦ fAji , fCji ◦ψi = ψj ◦ fBji for all i 6 j,
then we call

0 //(Ai)
(φi)
//(Bi)

(ψi)
//(Ci) //0

a short exact sequence of direct systems.

Lemma 9.3. (a) If

0 //(Ai)
(φi)
//(Bi)

(ψi)
//(Ci) //0

is a short exact sequence of directed systems of R-modules, then the sequence of
R-modules

0→ lim−→Ai −→ lim−→Bi −→ lim−→Ci → 0

is short exact.
(b) If (Ai)i∈I is a directed system of chain complexes, then

lim−→Hm(Ai) ∼= Hm(lim−→Ai).

Proof. The maps φi : Ai → Bi give – via composition with hi : Bi → lim−→Bi – maps
Ai → lim−→Bi and by the universal property this yields a unique map

φ : lim−→Ai −→ lim−→Bi.

One has to show that i) φ is injective, ii) the kernel of ψ is the image of φ and iii) ψ is
surjective.

We show i) and leave ii) and iii) as an exercise.
Let a ∈ lim−→Ai with φ(a) = 0 ∈ lim−→Bi. Write a = [

∑n
j=1 λjaj] with aj ∈ Aij . Choose

k > i1, . . . , in, then a = [ak] for some ak ∈ Ak, using the definition of the direct limit as a
quotient. (The inedex k exists as I is directed.). By assumption φ(a) = [φk(ak)] = 0. Thus
there is an N > k with fNkφk(ak) = 0 and by the coherence of the maps φk we have 0 =
fNk ◦φk(ak) = φN ◦fNk(ak). But φN is a monomorphism and therefore fNk(ak) = 0 ∈ lim−→Ai,
hence a = [ak] = [fNk(ak)] = 0.
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For (b) we fix m and apply (a) to the short exact sequences 0 → Bm(Ai) → Zm(Ai) →
Hm(Ai)→ 0. �

We can use this algebraic result to approximate singular cohomology with compact sup-
port via relative singular cohomology groups.

Proposition 9.4. For all spaces X we have

lim−→S∗(X,X \K;R) ∼= S∗c (X;R)

and hence

lim−→H∗(X,X \K;R) ∼= H∗c (X;R).

Here the directed system runs over the poset of compact subsets K ⊂ X.

Proof. A cochain ϕ ∈ Sn(X;R) is an element of Snc (X;R) if and only if there is a
compact K = Kϕ such that ϕ(σ) = 0 for all σ with σ(∆n) ∩K = ∅ and this is the case if
and only if ϕ ∈ Sn(X,X \K;R). We obtain a well-defined map

Snc (X;R)→ lim−→Sn(X,X \K;R)

in this way. But by Lemma 9.2 Snc (X;R) is a cocone under the direct system and the maps
to the colimit factor through it. By the universal property of the colimit this is only possible
if Snc (X;R) is isomorphic to the colimit.

The second statement now follows from Lemma 9.3 (b). �

To the eyes of compact cohomology Rm looks like a sphere:

Proposition 9.5.

H∗c (Rm;R) ∼= H∗(Rm,Rm \ {0};R) ∼=

{
R, ∗ = m,

0, ∗ 6= m.

Proof. If K ⊂ Rm is compact, then there is a closed ball of radius rK around the origin,
BrK (0), with K ⊂ BrK (0). Without loss of generality we can assume that rK is a natural
number.

Instead of considering the colimit over all compact K it now suffices to consider the
colimit over all closed balls with integer radius. To see this note that there are natural maps
between the colimits of the two diagrams and it is not hard to see they are inverse (we say
the diagram H∗(Rm,Rm \ Br(0);R)r∈N is cofinal in H∗(Rm,Rm \ K;R)K compact. Thus we
have )

lim−→H∗(Rm,Rm \K;R) ∼= lim−→H∗(Rm,Rm \Br(0);R)

where the direct system on the right runs over all natural numbers r. But

H∗(Rm,Rm \Br(0);R) ∼= H∗(Rm,Rm \ {0};R)

for all r and the diagrams

H∗(Rm,Rm \Br(0);R) //

��

H∗(Rm,Rm \Br+1(0);R)

��

H∗(Rm,Rm \ {0};R) // H∗(Rm,Rm \ {0};R)
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commute. Therefore we have an isomorphism of direct systems and this induces an isomor-
phism of direct limits:

lim−→H∗(Rm,Rm \Br(0);R) ∼= lim−→H∗(Rm,Rm \ {0};R).

But the system on the right is constant and therefore

H∗c (Rm;R) ∼= lim−→H∗(Rm,Rm \Br(0);R) ∼= H∗(Rm,Rm \ {0};R).

�

10. Poincaré duality

Let M be a connected m-dimensional manifold with an R-orientation (ox | x ∈M). For
a compact L ⊂ M let oRL = oL ∈ Hn(M,M \ L) be the R-orientation of M along L. (We
omit R from the notation.) For K ⊂ L compact we have that

(%K,L)∗(oL) = oK

because (%x,K)∗(oK) = ox = (%x,L)∗(oL) = (%x,K)∗ ◦ (%K,L)∗(oL) and oK is unique with this
property. Consider

(−) ∩ oK : Hm−p(M,M \K;R) −→ Hp(M ;R), α 7→ α ∩ oK = F (oK)⊗ 〈α,R(oK)〉.

For K ⊂ L and α ∈ Hm−p(M,M \K;R) we have (%K,L)∗(α) ∈ Hm−p(M,M \ L;R) and

(%K,L)∗(α) ∩ oL = α ∩ (%K,L)∗(oL) = α ∩ oK .

because the cap product is natural, see Proposition 6.3. (There is no (ρK,L)∗ on the left
hand side as the cap product takes values in Hp(M ;R) regardless which compact set we
start with.)

This compatibility ensures that the cap product yields a map

lim−→(− ∩ oK) : lim−→Hm−p(M,M \K;R) = Hm−p
c (M ;R) −→ Hp(M ;R)

where the colimit goes over all the compact subsets K of M .

Definition 10.1. The map

lim−→(− ∩ oRK) : Hm−p
c (M ;R)→ Hp(M ;R)

is called Poincaré duality map and is denoted by PD or PDM .

Theorem 10.2 (Poincaré Duality). Let M be a connected m-manifold with R-orientation
(ox | x ∈M). Then PD is an isomorphism PD : Hm−p

c (M ;R) −→ Hp(M ;R) for all p ∈ Z.

Corollary 10.3 (Poincaré duality for compact manifolds). Let M be a connected com-
pact manifold of dimension m with an R-orientation (ox | x ∈ M) and let [M ] = oM be the
fundamental class of M , then

PD = (−) ∩ [M ] : Hm−p(M ;R) −→ Hp(M ;R)

is an isomorphism for all p ∈ Z.
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Example 10.4. Any connected compact manifold of dimension m possesses a Z/2Z-

orientation and a fundamental class o
Z/2Z
M ∈ Hm(M ;Z/2Z) ∼= Z/2Z. Thus for all p

(−) ∩ oZ/2ZM : Hm−p(M ;Z/2Z) ∼= Hp(M ;Z/2Z).

For instance the cohomology of RP n and its homology satisfy Poincaré duality with Z/2Z-
coefficients regardless of the parity of n.

Proof of Theorem 10.2. (a) First we consider the case of M = Rm and we know
that

Hm−p
c (Rm) ∼=

{
R, p = 0,

0, p 6= 0

and this is isomorphic to Hp(Rm;R). Therefore, abstractly, both R-modules are
isomorphic. LetBr be the closed r-ball centered at the origin. We have to understand

(−) ∩ oBr : Hm
c (Rm)→ H0(Rm;R).

We know that 〈1, α ∩ oBr〉 = 〈α, oBr〉 for all α ∈ Hm(Rm,Rm \Br;R). But

〈−, oBr〉 : Hm(Rm,Rm \Br;R) −→ R, u 7→ 〈u, oBr〉

is bijective because the Kronecker pairing induces the first map in the isomorphism
from the universal coefficient theorem

Hm(Rm,Rm \Br;R) ∼= Hom(Hm(Rm,Rm \Br), R)⊕ Ext(Hm−1(Rm,Rm \Br), R).

The second summand is trivial because Hm−1(Rm,Rm \ Br) = 0. Thus we obtain
that for all r the map (−) ∩ oBr is bijective and therefore its direct limit

lim−→(−) ∩ oBr : lim−→Hm(Rm,Rm \Br;R) −→ H0(Rm;R)

is an isomorphism as well.
(b) Now assume that M = U ∪ V such that the claim holds for the open subsets U, V

and U ∩ V , i.e. the maps PDU ,PDV and PDU∩V are isomorphisms and each of them
uses the orientation that is induced from the orientation of M .

On the example sheet you can show there is a Mayer-Vietoris sequence for com-
pactly supported cohomology. We use it together with the Mayer-Vietoris sequence
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to build the following diagram

Hm−p
c (U ∩ V ;R)

PDU∩V =∩oU∩V
//

��

Hp(U ∩ V ;R)

��

Hm−p
c (U ;R)⊕Hm−p

c (V ;R)
∩oU⊕∩oV

//

��

Hp(U ;R)⊕Hp(V ;R)

��

Hm−p
c (M ;R)

∩oM
//

��

Hp(M ;R)

��

Hm−p+1
c (U ∩ V ;R)

∩oU∩V
//

��

Hp−1(U ∩ V ;R)

��

Hm−p+1
c (U ;R)⊕Hm−p+1

c (V ;R)
∩oU⊕∩oV

// Hp−1(U ;R)⊕Hp−1(V ;R).

I claim this diagram commutes up to signs and then the five lemma proves Poincaré
duality in the case M = U ∪ V . Note here that commutativity up to sign is enough
to apply the five lemma: just change the signs of the horizontal maps to make
everything commute on the nose, and if −∩oM is an isomorphism then so is −∩oM .

The fact that the first two squares of this diagram are in fact commutative
follows by unravelling the definitions. Commutativity of the third square, involving
the boundary maps, is significantely more involved. We prove it in Lemma 10.5
below.

By induction this extends to unions of finitely many open sets such that PD is
an isomorphism on the sets and their intersections.

(c) Now assume M =
⋃∞
i=1 Ui with open Ui such that U1 ⊂ U2 ⊂ . . .. We will show that

if the claim holds for all Ui with the orientation induced by the one of M , then the
claim holds for M . To that end, let U ⊂ M be an arbitrary open subset and let
K ⊂ U be compact. Excision gives us

Hp(M,M \K;R) ∼= Hp(U,U \K;R)

and we denote by ϕK the inverse of this map. The direct limit of these ϕK induces
a map

ϕMU := lim−→ϕK : Hp
c (U ;R) −→ Hp

c (M ;R).

In general, this map is not an iso (U is ’too small’), but now we let U vary. For
U ⊂ V ⊂ W we get

ϕWU = ϕWV ◦ ϕVU , ϕUU = id.

As the excision isomorphism is induced by the inclusion (U,U \K) ↪→ (M,M \K),
we get that the following diagram commutes:

Hm−p
c (U ;R)

ϕMU
//

PDU
��

Hm−p
c (M ;R)

PDM
��

Hp(U ;R)
(iMU )∗

// Hp(M ;R)
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and hence the corresponding diagram

lim−→Hm−p
c (Ui;R)

lim−→ϕMUi
//

lim−→PDUi
��

Hm−p
c (M ;R)

PDM
��

lim−→Hp(Ui;R)
lim−→(iMUi

)∗
// Hp(M ;R)

commutes as well. Now the limit of the (iMUi)∗ is an isomorphism. To show this
note that chains on ∪Ui are the direct limits of chains on the Ui as the n-simplex is
compact. Then we apply Lemma 9.3 to deduce the isomorphism on homlogy. (This
should have been a lemma in the last section.)

The map lim−→ϕMUi is an isomorphism as every K lands in some Ui eventually, so

by excision Hm−p(M,M \K) = Hm−p(Ui, Ui \K) and taking the direct limit over
K ⊂M or simultaneously over K and i gives the same result.

By assumption, each PDUi is an isomorphism and so is their limit by Lemma 9.3.
Putting all this together PDM is also an isomorphism.

(d) We show that the claim is valid for arbitrary open subsets M ⊂ Rm. We express M

as a union M =
⋃∞
r=1 B̊r where the Br are m-balls. This is possible because Rm has

a countable basis of its topology. Set Ui :=
⋃i
r=1 B̊r, then of course

U1 ⊂ U2 ⊂ . . .

The claim holds for the Ui and because of (c) it then holds for M . (Note that the
Ui may be disconnected, but applying (b) in the special case where the intersection
is empty the claim still holds in this case.)

(e) Finally we assume that M is as in the theorem with some fixed R-orientation.
Every point in M has a neighborhood which is homeomorphic to some open subset
of Rm and we can choose the homeomorphism in such a way that it preserves the
orientation. We know that M has a countable basis for its topology and thus there
are open subsets V1, V2, . . . ⊂M such that Vi ∼= Wi ⊂ Rm and the Vi cover M . Define
Ui :=

⋃i
j=1 Vj, thus M =

⋃
i Ui. The claim holds for the Vj by (a), and it holds for

their intersections (which are open subsets of Rn not necessarily homeomorphic to
balls) by (d). Therefore the claims holds for the Ui by (b) and thus for M by (c).

�

Lemma 10.5. The following diagram is commutative up to sign:

Hm−p
c (M ;R)

PDM
//

δ
��

Hp(M ;R)

δ
��

Hm−p+1
c (U ∩ V ;R)

PDU∩V
// Hp−1(U ∩ V ;R)
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Proof. It suffices to prove commutativity befor passinng to the limit, so we consider
the diagram:

Hm−p(M,M \K ∪ L)
∩oK∪L

//

∂
��

Hp(M)

δ
��

Hm−p+1(M,M \K ∩ L)
∼=
// Hm−p+1(U ∩ V, U ∩ V \K ∩ L)

∩oK∩L
// Hp−1(U ∩ V ;R)

where the unlabelled isomorphism comes from excision.
We represent oK∪L by a chain α = αU\L + αU∩V + αV \K ∈ C∗(M), where the summands

lie in C∗(U \L), C∗(U ∩V ) and C∗(V \K) respectively. We use that those three opens form
a cover of M and use barycentric subdivison to ensure the decomposition of α.

We observe that αU∩V represents oK∩L as the other two summands vanish in Hn(M,M \
U ∩ V ). Similarly αU∩V + αU\L represents oK .

To compute the boundary map in the relative Mayer-Vietoris sequence on cohomology we
take a cocycle φ and represent it as φK + φL with φK ∈ C∗(M,M \K), φL ∈ C∗(M,M \L).
Then we find by definition that ∂[φ] is represented by δφK = δφL ∈ C∗(M,M \K ∩ L).

So we can compute (∂φ) ∩ oK∩L = δφK ∩ αU∩V in homology. Then we use the Leibniz
formula

∂(φK ∩ αU∩V ) = (−1)n−p(δφK) ∩ αU∩V + φK ∩ (∂αU∩V )

and as φK ∩ αU∩V is a chain on U ∩ V the left hand side is zero on homology and we find

(∂φ) ∩ oK∩L = (−1)n−p−1φK ∩ ∂αU∩V

in homology
Then we compute δ(φ ∩ oK∪L) = δ(φ ∩ (αU\L + αU∩V + αV \K). We may compute the

boundary map by applying ∂ to the first summand and obtain ∂(φ ∩ αU\L).
As φ is a cycle this is φ ∩ ∂αU\L by the Leibniz formula.
Again we wirte φ = φK + φL and note that as φL is zero on chains in M \ L it sends

∂αU\L to zero.
Thus we are left with φK ∩ ∂αU\L. We are close now. We recall that αU\L + αU∩V

represents oK , thus its boundary is a chain in M \K and and by construction φK vanishes
on chains in M \K. Thus we havve

δ(φ ∩ oK∪L) = −φK ∩ ∂αU∩V

in homology and the diagram commutes up to the sign (−1)n−p. �

The following corollary holds for general coefficients, but we only need this version:

Corollary 10.6. Let M be a non-compact connected manifold. Then Hn(M ;Z/2) = 0.

Proof. As M is orientable with respect to Z/2 we may apply Poincaré duality and find
that Hn(M ;Z/2) ∼= H0

c (M ;Z/2). But unravelling definitions H0
c (M) are exactly functions

with compact support that are constant along any continuous path. But on a non-compact
manifold there are no compactly supported constant functions. �
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11. Duality and cup products

Let M be a connected closed m-manifold with an R-orientation for some commutative
ring R. We consider the composition

Hk(M ;R)⊗R Hm−k(M ;R)
∪

// Hm(M ;R)

(−)∩oRM
��

H0(M ;R) ∼= R

Definition 11.1. For α ∈ Hk(M ;R), β ∈ Hm−k(M ;R) the map

(α, β) 7→ 〈α ∪ β, oRM〉
is called cup product pairing of M .

Proposition 11.2. The cup product pairing is non-singular if R is a field or if R = Z
and all homology groups of M are torsion-free.

Here, non-singular means that the induced maps

Hk(M ;R)→ HomR(Hm−k(M ;R), R) and Hm−k(M ;R)→ HomR(Hk(M ;R), R)

are both isomorphisms.
Proposition 11.2 holds as long as one restricts attention to the free part of the cohomology

groups: let FHk(M ;R) denote the free part of Hk(M ;R) then there is a non-singular pairing

FHk(M ;R)⊗R FHm−k(M ;R)→ R.

In geometric applications the ground ring is often R = R, so then you are dealing with
a pairing over the real numbers and methods of linear algebra apply.

Proof. The Kronecker pairing yields a map

κ : Hk(M ;R)→ HomR(Hk(M ;R), R)

and Poincaré duality tells us that capping with oRM is an isomorphism between Hk(M ;R)
and Hm−k(M ;R). The composite is

Hk(M ;R)→ HomR(Hk(M ;R), R) ∼= HomR(Hm−k(M ;R), R), α 7→ 〈α, (−) ∩ oRM〉.
Over a field κ is an isomorphism, and then so is the composite. In the torsion-free setting κ
is an isomorphism as well. �

Remark 11.3. Note that we have not assumed finite rank of homology groups anywhere.
In fact, we can deduce it from our results. Let’s make the sattement over a field k: If M is a
compact connected orientable manifold then Hi(M ; k) is finite-dimensional in each degree.
Suppose Hi(M ; k) ∼= ⊕∞k. Then by Poincaré duality Hn−i(M) ∼= ⊕∞k and by the Universal
coefficent theorem this means that Hn−i(M) is some vector space whose linear dual is ⊕∞k.
But this is impossible.

Dual to the cup product pairing there is the intersection form:

Hp(M)⊗Hm−p(M)→ Z
with a ⊗ b 7→ 〈PD−1(a) ∪ PD−1(b), oM〉. For even-dimensional manifolds we may restrict to
p = m

2
. Then the signature of this form is an important invariant in differential topology.
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For instance one can show that for a compact oriented manifold W such that ∂W = M
with a 4n-dimensional manifold M the signature of the intersection form on M is trivial.
One can also show that up to homeomorphism there is exactly one simply connected smooth
4-manifold with a given unimoduler symmetric bilinear form as its intersection form on H2.

Example 11.4. In the case of a torus with meridian a and longitude b we find (a, b) =
〈α∪β, oT 2〉 = 1 and (b, a) = −1. (The overall sign may change if we change the orientation.)

Thus the intersection does indeed count the signed points of intersection of two cycles.
This holds in general, but it is not easy to prove. One approach can be found in the book
“Differential forms in algebraic topology” by Bott & Tu.

Lemma 11.5. Let M be as in 11.2 with torsion-free homology groups. If Hp(M) ∼= Z ∼=
Hm−p(M) and if α ∈ Hp(M), β ∈ Hm−p(M) are generators, then α ∪ β is a generator of
Hm(M) = Z.

Proof. For α there exists a β′ ∈ Hm−p(M) with

〈α ∪ β′, oM〉 = 1.

As β is a generator we know that β′ = kβ for some integer k and hence

1 = 〈α ∪ β′, oM〉 = 〈α ∪ kβ, oM〉 = k〈α ∪ β, oM〉.
But 〈α ∪ β, oM〉 is an integer, so k has to be ±1 and therefore α ∪ β generates Hm(M). �

We will use this result to calculate the cohomology rings of projective spaces.

Lemma 11.6. If α ∈ H2(CPm) is a generator, then αq ∈ H2q(CPm) is a generator as
well for q 6 m.

Proof. We have to show by induction that αq−1 is an additive generator of H2q−2(CPm)
and we do that by induction over m because we will use the argument in this proof later
again.

For m = 1 there is nothing to prove because CP 1 ∼= S2 and there α2 = 0.
Consider the inclusion i : CPm−1 ↪→ CPm. The CW structure of CPm is CPm−1 ∪f D2m.

For m > 1 i∗ : H2i(CPm) → H2i(CPm−1) is an isomorphism for 1 6 i 6 m − 1 and i∗(α)
generates H2(CPm−1). Induction over m then shows that (i∗(α))q generates H2q(CPm−1)
for all 1 6 q 6 m − 1. But (i∗(α))q = i∗(αq) and therefore αq generates H2q(CPm) for
1 6 q 6 m− 1. Lemma 11.5 then shows that α ∪ αm−1 = αm generates H2m(CPm). �

Corollary 11.7. As a graded ring

H∗(CPm) ∼= Z[α]/αm+1 with |α| = 2.

Similarly,
H∗(RPm;Z/2Z) ∼= Z/2Z[β]/βm+1 with |β| = 1

and
H∗(HPm;Z) ∼= Z[γ]/γm+1 with |γ| = 4.

Proof. The first statement follows immediately from the lemma, the other two state-
ments are shown by first proving analogous lemmas in the same way. �

There are two geometric consequences that follow from this calculation.
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Corollary 11.8. For 0 < m < n the inclusion j : CPm ↪→ CP n is not a weak retract.

Proof. Let us assume that there is an r : CP n → CPm with r ◦ j ' id. On second
cohomology groups j induces an isomorphism

j∗ : H2(CP n)→ H2(CPm).

Let α ∈ H2(CPm) be a generator, then β := r∗(α) is a generator as well. As αm+1 = 0 we
get

βm+1 = r∗(α)m+1 = r∗(αm+1) = r∗(0) = 0.

But H∗(CP n) ∼= Z[β]/βn+1 and hence βm+1 6= 0. �

Corollary 11.9. The attaching map of the 2n-cell in CP n is not null-homotopic.

Proof. Let ϕ : S2n−1 → CP n−1 be the attaching map, thus

CP n = Cϕ = CP n−1 ∪ϕ D2n.

If ϕ were null-homotopic, then

CP n−1 ∪ϕ D2n ' CP n−1 ∨ S2n

since homotopic attaching maps give rise to homotopy equivalent CW complexes, see Propo-
sition 0.18 in [Hatcher].

Thus CP n−1 would be a weak retract of CP n, contradicting Corollary 11.9. (Or we note
there is a direct contradiction to the strucutre of the cohomology rings.) �

Example 11.10. A famous example of this phenomenon is the Hopf fibration ϕ =
η : S3 → CP 1 = S2 = C ∪∞. Consider S3 ⊂ C2 and send S3 3 (u, v) to

η(u, v) :=

{
u
v
, v 6= 0,

∞, v = 0.

Then this map is not null-homotopic, η : S3 → S2, and in fact it generates π3(S2) ∼= Z.
A similar consideration for the attachment map S7 → HP 1 ∼= S4 shows that π7(S4) is

non-trivial.

12. Further applications

The product structure on H∗(RP n) has some interesting consequences.
A famous application of topology to algebra is the classification of finite dimensional

division algebras.

Definition 12.1. A n-dimensional division algebra over R is a bilinear multiplication
map Rn × Rn → Rn, denoted (a, b) 7→ ab satisfying

(a) a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for a, b, c ∈ Rn (distributivity),
(b) λ(ab) = (λa)b = a(λb) for a, b ∈ Rn and λ ∈ R (scalar associativity)

such that ax = b and xa = b always have a solution for a, b ∈ Rn and a 6= 0.

We de not assume commutativity or associativity!
You have already met the division algebras R,C and H in deminsions 1, 2, 4. These are

the only associative ones. There is also the non-associative divison algebra of octonions in
dimension 8.
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Theorem 12.2. Any finite-dimensional division algebra over R has dimension 2k for
some nonnegative integer k.

Proof. The multiplication induces a map m : Sn−1×Sn−1 → Sn−1 by (x, y) 7→ xy
|xy| which

is continuous (as a bilinear map is continuous) and well-defined (as there are no zero-divisors
in a divison algebra). Moreover m(x,−y) = −m(x, y) = m(−x, y) by scalar associativity,
thus there is an induced map h : RP n−1 × RP n−1 → RP n−1.

We now investigate h∗ on cohomology with coefficients in Z/2. We have H∗(RP n−1 ×
RP n−1,Z/2) ∼= Z/2[α, β]/(αn = βn = 0) where the generators are pulled back from the
generators of cohomology from the two factors. Let γ generate H∗(RP n−1,Z/2). The key
claim now is that h∗(γ) = α + β.

We investigate the map h∗ on π1 first. We may assume n > 2 so that π1(RP n, ∗) ∼=
H1(RP n,Z/2). So consider a loop w in RP n−1 representing the generator of π1(RP n−1, x)
with base point x = w(0) ∈ RP n−1. The loops (w, cx) and (cx, w) that together generate
π1(RP n−1 × RP n−1, (x, x)) map to x.w and w.x, respectively. We claim that x.w and w.x
are non-trivial, and then they must be homotopic as there is only one non-trivial element in
the fundamental group.

For this we consider that w lifts to a path w̃ in Sn−1 connecting a point to its antipode.
Multiplication with w̃(0) gives a continuous self map of Sn−1, and we have w̃(0).w̃(0) 6=
w̃(1).w̃(0) as there are no zero divisors. Thus w.x also lifts to a path in Sn−1 connecting two
antipodel points, and thus it is non-trivial in the fundamental group. The same argument
applies to x.w.

(The argument from lectures does not work as it was tacitly assuming the existence of a
unit in our division algebra.)

Similarly the map on H1(RP n,Z/2) sends both generators (0, [w]) and ([w], 0) to [w]. If
we dualize this stament we obtain that h∗(γ) = α + β.

With the claim in hand we consider (α + β)n = h∗(γn) = 0 and thus

n∑
i=0

(
n

i

)
αiβj = 0.

This can only be zero if all coefficients for i 6= 0, n vanish, thus
(
n
i

)
is even for all i. It is an

exercise in basic number theory to show that this implies n = 2k.
Let n =

∑
i 2

kj for some integers kj and consider (1 + x)n =
∑

i

(
n
i

)
xi modulo 2. This

may be rewritten
∏

j(1 + x)2kj =
∏

j(1 + x2ki ). But multiplying this out there can be no
cancellation as the powers are too far apart. Thus all the binomial coefficients can only
vanish if there is only one factor and n = 2k1 . �

Next we turn to the Borsuk-Ulam theorem. It has several formulations, several proofs
and many applications. One of the most natural proofs uses cohomology of projective space.

Lemma 12.3. For n > m there is no map RP n → RPm that is nontrivial on H1(−,Z/2)

Proof. Assum f is such a map and let β generater H∗(RPm,Z/2). Then f(β) 6= 0 by
assumption and thus it generates H∗(RP n). In particular f ∗(β)n = f ∗(βn) = 0 generates
Hn(RP n), which is a contradiction. �
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Theorem 12.4 (Borsuk-Ulam theorem). Let f : Sn → Rn be an odd map, i.e. f(−x) =
−f(x) for all x ∈ Sn. Then f has a zero.

The following alternatiev formulation is useful: Given an arbitrary continuous map g :
Sn → Rn we may consider g(x)− g(−x) which is always odd. Thus it has a zero and g takes
the same value on two antipodal points.

Proof. We only prove the case n > 3 and leave n = 1, 2 as exercises (solvable with
the methods of a first topology course). Suppose the theorem is false. Then we may define
x 7→ f(x)/||f(x)|| : Sn → Sn−1 which is also odd. Thus it induces h : RP n → RP n−1. This
map induces an isomorphism on fundamental groups. To see this consider that the lift of a
generator of π1(RP n, ∗) is a path from north to south pole of Sn, which maps to a path from
south to north pole of Sn−1, which is the lift of a non-trivial loop in RP n−1. It follows that
h is also an isomorphism on H1 and by Lemma 12.3 we have the desired contradiction. �

The Borsuk-Ulam theorem has many applications, there is a whole book about them.
Possibly the most famous one is the “Ham sandwich theorem”, named after the special case
of n = 3, where it expresses the (theoretical) possibility that the two slices of bread and the
ham in a sandwich may be sliced into equal parts with a singl stroke of a knife.

Theorem 12.5. Lett {µ1, . . . , µn} be a collection of finite Borel measures on Rn such
that all hyperplanes have measure 0. Then there is a single hyperplane that bisects each µi,
i.e. the opposite half spaces defined by the hyperplane have equal measure.

A finite Borel measure is a measure on Rn such that all opens are measurable and the
meausure of Rn itself is positive and finite. An example would be the restriction of the usual
Lebesgue measure to some compact subset of Rn.

Proof. The proof in its proper generality needs some topology, which we have available
now, and a little bit of analysis.

We write an arbitrary point u ∈ Sn as (u0, u
′) with u0 ∈ R and u′ ∈ Rn. Then we define

the half-space
h+(u) := {x ∈ Rn | u′.x 6 u0}.}

One sees that h+(−u) is the opposite half space of h+(u). The only exception is u =
(±1, 0, . . . , 0) when h+(u) = Rn, respectively ∅.

Let f : Sn → Rn be given in coordinates by fi(u) = µi(h
+(u)) where µ is the Borel

measure. (In fact, instead of specifying Ai we could specify an arbitrary finite measure on
Rn such that no hyperplane has positive measure!)

It is an exercise in analysis to rigorously show that the fi are continuous (see e.g. Theorem
3.1.1 of Matoušek ‘Using the Borsuk-Ulam Theorem’).

Now if f(u) = f(−u) for some u then the corresponding hyperplane u′.x = h0 exactly
bisects all Ai. (We cannot have f(1, 0, . . . , 0) = f(−1, 0, . . . , 0).) But such a poin must exist
as h(u) = f(u)− f(−u) is antipodal, so it has a zero by Theorem 12.4. �

13. Lefschetz duality

A number of topological applications can be deduced from a relative version of Poincaré
duality. W’ll give a very general statement and then prove two special cases and give their
applications.
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A space X is a Euclidean neighbourhood retract if it is homeomorphic to subspace of Rn

which is a retract of a neighbourhood.

Theorem 13.1 (Alexander-Lefschetz duality). Let M be a connected m-dimensional
manifold and let K ⊂ L ⊂M be compact subspaces that are Euclidean neighbourhood retracts.
Let M be oriented along L with respect to R. Then there is a well-defined map

PD = (−) ∩ oL : Hq(L,K;R) −→ Hm−q(M \K,M \ L;R)

which is an isomorphism for all integers q.

Remark 13.2. The statement remains to true without the Euclidean neighbourhood
assumption, but one has to replace cohomology by Čech cohomology which we won’t have
time to introduce.

The first special case is if M is a manifold with boundary.
Let

Rm
− := {(x1, . . . , xm), xi ∈ R, x1 6 0}

be an m-dimensional half-space. Its topological boundary is

∂Rm
− = {(x1, . . . , xm), xi ∈ R, x1 = 0}.

Definition 13.3. An m-dimensional topological manifold with boundary is a Hausdorff
space M with a countable basis of its topology together with an open cover {Ui}i∈I and
homeomorphisms hi : Ui → Vi with Vi ⊂ Rm

− open.
An x ∈ M is a boundary point of M if it has an open neighbourhood U with a homeo-

morphism h : U → V with V open in Rm
− and h(x) in ∂Rm

− . The set of boundary points of
M is its boundary, denoted by ∂M .

Example 13.4. (a) The closed n-dimensional ball is a manifold with boundary Sn−1.
In this case the boundary agrees with the boundary in the sense of elementary
topology if we embed the ball into Rn, but in general this is not possible!

(b) Removing two open disks with disjoint closures from a closed disk produces a disk
with two holes, whose boundary is S1 q S1 q S1. This manifold with boundary is
called the pair of pants.

Sometimes the word manifold is used to mean a manifold with boundary. A closed
manifold is a compact manifold which has empty boundary.

An orientation of a manifold M with boundary is just orientation of the interior M \∂M .

Proposition 13.5 (Lefschetz duality). Let M be a a compact connected orientable m-
manifold with boundary, then there is a natural isomorphism

Hq(M,∂M) ∼= Hm−q(M).

Proof. We may glue a collar along ∂M to M , i.e. consider

W := M q∂M (∂M × [0, 1)).

Then one can check that W is an oriented m-manifold (without boundary) which is homotopy
equivalent to M . Thus Poincaré duality applies and we obtain

Hq
c (W ) ∼= Hm−q(W ) ∼= Hm−q(M).
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It remains to show that Hq
c (W ) ∼= Hq(M,∂M). By homotopy equivalence Hq(M,∂M) ∼=

Hq(W,∂M× [0, 1)). As M ∪∂M (∂M× [0, d]) for 0 < d < 1 is an exhaustion of W by compact
subsets which are homotopy equivalent we see that

Hq
c (W ) ∼= lim−→Hq(W,W \M q∂M ∂M × [0, d)) ∼= lim−→Hq(W,∂M × (d, 1))

and moreover the inverse limit computing compactly supported cohomology becomes con-
stant. The last group is then isomorphic to Hq(M,∂M) by homotopy equivalence. �

Proposition 13.6. Let M be a compact connected and orientable m-manifold and let βi
be the ith Betti number of M , βi = dimQHi(M ;Q). Then

βi = βm−i.

In particular the Euler characteristic χ(M) =
∑m

i=0(−1)iβi of M vanishes if the dimen-
sion of M is odd.

Proof. Note that orientability implies Q-orientability. Theorem 10.2 then tells us that

dimQHm−i(M ;Q) = dimQH
i(M ;Q)

As Q is divisible, there is no Ext-term arising in the universal coefficient theorem and thus

dimQH
i(M ;Q) = dimQ(Hom(Hi(M),Q))

but this is equal to the dimension of the vector space of the homomorphisms from the free
part of Hi(M) to Q which is equal to the rank of Hi(M) and this in turn is equal to βi.

The second statement is immediate. �

Corollary 13.7. If M is a compact connected oriented manifold then the Euler char-
acteristic of ∂M is always even.

Proof. We consider the collared version W of M again. As M ' W we have χ(M) =
χ(W ) and the long exact sequence of the pair W \M ⊂ W gives

χ(W ) = χ(W \M) + χ(W,W \M)

as Euler characteristic is additive on long exact sequences. Here the relative Euler char-
acteristic is χ(W,W \M) =

∑
(−1)i dimQHi(W,W \M ;Q). Homotopy invariance yields

χ(W \M) = χ(∂M) and Proposition 13.5 guarantees that χ(W,W \M) = (−1)mχ(M).
Therefore

χ(∂M) = (1 + (−1)m−1)χ(M)

and this is always an even number. �

We compute

χ(CP 2m) =
2m∑
i=0

(−1)2i = 2m+ 1

and

χ(HP 2m) =
2m∑
i=0

(−1)4i = 2m+ 1

by recalling the cell structure of complex and quaternionic projective space.
Thus no even complex or quaternionic projective spaces can occur as the boundary of a

connected compact orientable manifold.
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It also follows that RP 2m can never be a boundary of a compact connected oriented
manifold, because its Euler characteristic is 1. However, this is less interesting, as the
boundary of an oriented manifold always inherits an orientation. However, we may adapt
Corollary 13.7 to coefficients in Z/2 and deduce that RP 2m which has Euler characteristic 1
cannot be the boundary of any compact connected manifold.

This is important in bordism theory : one can introduce an equivalence relation on mani-
folds by saying that two m-manifolds M and N are cobordant, if there is an (m+1)-manifold
W whose boundary is the disjoint union of M and N , ∂W = M t N . We then call W a
cobordism from W to M .

One can then define, for example, the (oriented) bordism groups Ωi (respectively ΩSO
i ),

freely generated by closed (oriented) manifolds of dimension i, up to (oriented) cobordism.
Thus Ω0 is Z/2 generated by a point. It has order 2 as a pair of points is cobordant to

the empty set via a line.
By contrast ΩSO

0 is the group of integers generated by a point.
Ω1 and ΩSO

1 on the other hand are trivial, as the only closed 1-manifold is the circle which
is bordant to the empty set via a disk! In low degrees one finds the following unoriented
bordism groups:

Group Generators
Ω0 Z/2 ∗
Ω1 0 ∅
Ω2 Z/2 RP 2

Ω3 0 ∅
Ω4 Z/2⊕2 RP 4,RP 2 × RP 2

Ω5 Z/2 SU(3)/SO(3)
Ω6 Z/2⊕3 RP/6,RP 2 × RP 4,RP 2 × RP 2 × RP 2

and the following oriented bordism groups:
Group Generators

ΩSO
0 Z ∗

ΩSO
1,2,3 0 ∅

ΩSO
4 Z CP 2

ΩSO
5 Z/2 SU(3)/SO(3)

ΩSO
6,7 0 ∅

ΩSO
8 Z⊕ Z CP 2 × CP 2,CP 4

In fact the cartesian product gives a natural ring structure to Ω∗ and ΩSO
∗ . The unoriented

bordism ring was computed by Thom: It is a polynomial algebra Z/2Z[pi] over Z/2 with
generators pi in degree i for each i 6= 2i − 1.

The oriented bordism ring is more complicated, but also known.

14. Alexander Duality

This is another special case of Alexander-Lefschetz duality.

Proposition 14.1 (Alexander duality). Let K ⊂ M be a compact, locally contractible,
nonempty, proper subspace of a orientable n-manifold M . Then

H̃i(M,M \K;Z) ∼= H̃n−i(K;Z).
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Corollary 14.2. For K as above a subspace of Sn we have

H̃i(Sn \K) ∼= H̃n−i−1(K;Z).

Remark 14.3. This tells us that the homology of the complement is unaffecetd by how
we embed our copy of K into M . In particular, we cannot study knots (i.e. homeomorphic
impages of S1 in R3) by the homology of the complement. The fundamental group of the
knot complement does a better job. Here the un-knot gives the integers, but for instance
the complement of the trefoil knot has a fundamental group that is not isomorphic to the
integers, but is isomorphic to the group 〈a, b|a2 = b3〉. This group is actually isomorphic to
the braid group on three strands.

Proposition 14.4. Let M be a compact oriented connected m-manifold and let K ⊂
M be nonempty, proper, compact, locally contractible subspace. If H1(M) is trivial, then
Hm−1(K) is free abelian and M \K has rank (Hm−1(K)) + 1 components.

Proof. Let k = |π0(M \K)| be the number of components of the complement of K in
M . Therefore

k = rankH0(M \K) = 1 + rankH̃0(M \K).

By assumption H1(M) = 0 = H̃0(M) and therefore we know from the long exact sequence
and Alexander duality 14.1 that

H̃0(M \K) ∼= H1(M,M \K) ∼= Hm−1(K).

�

We have the following famous corollary:

Corollary 14.5 (Jordan curve theorem). Let C be a simple curve in R2, i.e. a subset
homeomorphic to S1. Then R2 \ C has two components.

Proof. Add a point to turn R2 into S2 and apply Proposition 14.4 for M = S2. �

As a historical aside, Jordan proved this theorem in 1887, without any use of algebraic
topology. Brouwer then proved the n-dimensional version in 1910, an early triumph of
topology. There was some consensus that Jordan’s proof was incomplete or even flawed, but
later authors (notably Thomas Hales) declared the proof essentially correct. Nevertheless,
the topological proof is much more concise and generalizes easily. All of this is at the cost
of introducing some serious machinery.

Preparing the last proposition I noticed some gaps in the previous notes: In Theorem 8.12
we claimed that if M is a connected and compact manifold of dimension m with Hm(M ;Z) ∼=
Z then M is orientable.

There are two possible generators in Hm(M) we choose one of them and call it oM . Then
we claim that ((%x,M)∗oM | x ∈M) is an orientation of M . But this needs proof!

To show this we need to know that %x is an injection. From the long exact sequence in
relative homology the kernel is given by Hn(M \x;Z) and must be 0 or Z. But it follows from
Corollary 14.6 below that Hn(M \ x;Z/2) = 0, and this is impossible if Hn(M \ x;Z) = Z.
Note that we used the first implication of Theorem 8.12 to prove that corollary, but not this
implication.

Corollary 14.6. Let M be a non-compact connected manifold. Then Hn(M ;Z/2) = 0.
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Proof. As M is orientable with respect to Z/2 we may apply Poincaré duality and find
that Hn(M ;Z/2) ∼= H0

c (M ;Z/2). But unravelling definitions H0
c (M) are exactly functions

with compact support that are constant along any continuous path. But on a non-compact
manifold there are no nonzero compactly supported constant functions. �

Proposition 14.7. Let M be a non-orientable compact manifold. Then Hn(M ;Z) = 0
and Hn(M ;Z) has torsion.

Proof. This is true in general, but we will only prove the case that M has a finite
cell structure, e.g. a triangulation. In this case it is immediate from cellular homology that
Hn(M ;Z) is torsion-free, so it is isomorphic to Zr and r cannot be 1, else M would be
orientable by Theorem 8.12. But if r > 1 the universal coefficient theorem implies that
Hn(M ;Z/2) has rank greater than 1, contradicting Theorem 8.12 for Z/2-coefficients.

Thus Hn(M ;Z) = 0. But then Tor(Hn−1(M ;Z);Z/2) = Z/2 by Z/2-orientability. This
implies that Hn−1(M ;Z) has Z/2-torsion and then Ext(Hn−1(M ;Z),Z/2) 6= 0. (In fact it
equals Hn−1(M ;Z) = Z/2.) �

Proposition 14.8. If M is a compact connected orientable m-manifold and if the first
homology group of M with integral coefficients vanishes, then all compact submanifolds with-
out boundary of dimension m− 1 are orientable.

Proof. A submanifold N ⊂ M satisfies the assumptions of Alexander duality, thus we
have

Hm−1(N) ∼= H1(M,M \N) ∼= H̃0(M \N)

and Hm−1(N) is free abelian. This implies that the components of N are orientable by
Corollary 14.7 �

Corollary 14.9. It is not possible to embed RP 2 or K into R3.

Proof. If one could, then one could also embed RP 2 or K into S3 as the one-point
compactification of R3. Due to H1(S3) = 0, the 2-manifold RP 2 would be orientable, but we
know that it’s not. �

At the math institute in Oberwolfach there is a model of the Boy surface, see Figure 1.
That is a model of an immersion of RP 2 into three-space.
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Figure 1. Photo credit: Florian-TFW, CC BY-SA 3.0

110



APPENDIX A

Some background

A.1. Quotient homotopies

We recall the following key result about the compact open topology on spaces of maps
between topological spaces, details are for example in the Appendix of [Hatcher], startin on
p. 529.

Lemma A.1.1. Fix three topological spaces X, Y, Z. Denote by Map(X, Y ) the set of
continous maps from X to Y equipped with the compact open topology. Whenever Y is
locally compact Hom(X × Y, Z) ∼= Hom(X,Map(Y, Z)).

Lemma A.1.2. Let i : A → U be a deformation retract, i.e. there is r : U → A such
that ri = idA and ir ' idU via a homotopy H fixing A. Then ī : A/A → U/A is also a
deformation retract.

Proof. The canonical projection gives r̄ : U/A→ A/A and necessarily r̄ ◦ ī = idA/A. It
remains to show that ī ◦ r̄ is homotopic to idU/A. Let H : U × [0, 1] → U be the homotopy
from ir to idU . We want to define H̄ : U/A× [0, 1]→ U/A. For any fixed t ∈ [0, 1] we have
H̄t : U/A → U/A by the properties of the quotient topology, but it is not at all clear that
these maps are continuous in t!

Let q : U → U/A be the projection and consider q ◦ H ∈ Hom(U × [0, 1], U/A).
As [0, 1] is locally compact we may apply Lemma A.1.1 and rewrite our map as H ′ ∈
Hom(U,Map([0, 1], U/A)). As H ′(a) is the constant function with value A/A for all a H ′

factors through U/A, and we obtain H̄ ′ ∈ Hom(U/A,Map([0, 1], U/A)), which gives rise to
H̄ ∈ Hom(U/A× [0, 1], U/A) by Lemma A.1.1 again. This is the desired homotopy. �
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