SS 2006

Übungen zur Vorlesung "Numerische Mathematik für Studierende der Wirtschaftsmathematik, der Lehrämter und der Naturwissenschaften"

Blatt 3

Abgabetermin: 02.05.2006

Aufgabe 1: (4 Punkte (1+1+2)) Sei $A \in M(n; \mathbb{R})$. Zeigen Sie, dass folgende Beziehungen gelten:

$$\begin{split} \|A\|_{\infty} &:= \|\mathsf{lub}_{\infty}(A) = \max_{x \neq 0} \frac{|Ax|_{\infty}}{|x|_{\infty}} = \max_{1 \leq k \leq n} \sum_{j=1}^{n} |a_{kj}| \,, \\ \|A\|_{1} &:= \|\mathsf{lub}_{1}(A) = \max_{x \neq 0} \frac{|Ax|_{1}}{|x|_{1}} = \max_{1 \leq j \leq n} \sum_{k=1}^{n} |a_{kj}| \,, \\ \|A\|_{2} &:= \|\mathsf{lub}_{2}(A) = \max_{x \neq 0} \frac{|Ax|_{2}}{|x|_{2}} = \max_{i} \left\{ \sqrt{\lambda_{i}}; \, \lambda \text{ Eigenwert von } A^{T}A \right\}. \end{split}$$

Aufgabe 2: (4 Punkte (2+2)) Sei $F \in M(n; \mathbb{R})$ mit ||F|| < 1, wobei $||\cdot||$ eine **submulti-plikative** Matrix-Norm bezeichne, **für die** ||E|| = 1 **gilt**.

a) Weisen Sie nach, dass dann $(E+F)^{-1}\,$ existiert und die Abschätzung

$$||(E+F)^{-1}|| \le \frac{1}{1-||F||}$$

richtig ist.

b) Wenden Sie dieses Resultat auf $(A+\delta A)$ an, d.h. formulieren Sie hinreichende Kriterien für die Existenz von $(A+\delta A)^{-1}$ und geben Sie eine Abschätzung der Norm $\|(A+\delta A)^{-1}\|$ an.

Aufgabe 3: (4 Punkte) Lösen Sie das lineare Gleichungssystem

$$Ax = b$$

wobei $A=\left(\begin{array}{cc}4.1&2.8\\9.7&6.6\end{array}\right)$ und $b=(4.1,9.7)^T$. Lösen Sie das gleiche System mit minimal veränderter rechter Seite $b=(4.11,9.70)^T$.

Berechnen und diskutieren Sie die relativen Änderungen in b und der Lösung x in der l_1 -Norm. Welche Rolle spielt dabei die Konditionszahl?

Aufgabe 4: (4 Punkte) Gegeben sei ein lineares Gleichungssystem

$$Ax = b$$

mit invertierbarer Matrix $A \in \mathbb{R}^{n \times n}$ und Vektoren $x, b \in \mathbb{R}^n$. Weiter sei $\varepsilon > 0$. Wir betrachten den folgenden Algorithmus:

- 1. Berechne eine Näherungslösung $\,\tilde{x}\,$ von $\,Ax=b\,$ mit $\,||A\tilde{x}-b||\leq \varepsilon||b||\,.$
- 2. Berechne das Residuum $\,r=b-A\tilde{x}\,$ (exakt bzw. mit sehr hoher Genauigkeit).
- 3. Berechne eine Näherungslösung $\,\tilde{s}\,$ von $\,As=r\,$ mit $\,||A\tilde{s}-r||\leq \varepsilon||r||\,.$
- 4. Setze $x^* = \tilde{x} + \tilde{s}$.

Die Schritte 2-4 werden **Nachiteration** genannt. Zeigen Sie, dass für die nachiterierte Lösung x^* folgende Abschätzung gilt:

$$||Ax^* - b|| \le \varepsilon^2 ||b||$$