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zur Angewandten Mathematik

A finite element approximation to
elliptic control problems in the presence of

control and state constraints

Klaus Deckelnick and Michael Hinze

Nr. 2007-01
Januar 2007





A finite element approximation to elliptic control problems in

the presence of control and state constraints

Klaus Deckelnick∗& Michael Hinze†

Abstract: We consider an elliptic optimal control problem with control and pointwise state con-

straints. The cost functional is approximated by a sequence of functionals which are obtained by

discretizing the state equation with the help of linear finite elements and enforcing the state con-

straints in the nodes of the triangulation. The control variable is not discretized. Error bounds for

control and state are obtained both in two and three space dimensions. Finally, we discuss some im-

plementation issues of a generalized Newton method applied to the numerical solution of the problem

class under consideration.
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1 Introduction

Let Ω ⊂ Rd (d = 2, 3) be a bounded domain with a smooth boundary ∂Ω and consider the
differential operator

Ay := −

d
∑

i,j=1

∂xj

(

aijyxi

)

+

d
∑

i=1

biyxi
+ cy,

along with its formal adjoint operator

A∗y = −

d
∑

i=1

∂xi

(

d
∑

j=1

aijyxj
+ biy

)

+ cy

where for simplicity the coefficients aij, bi and c are assumed to be smooth functions on Ω̄.
We associate with A the bilinear form

a(y, z) :=

∫

Ω

(

d
∑

i,j=1

aij(x)yxi
zxj

+
d

∑

i=1

bi(x)yxi
z + c(x)yz

)

dx, y, z ∈ H1(Ω)

and subsequently assume that there exists c0 > 0 such that

d
∑

i,j=1

aij(x)ξiξj ≥ c0|ξ|
2 for all ξ ∈ Rd and all x ∈ Ω.
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Furthermore we suppose that the form a is coercive on H1(Ω), i.e. there exists c1 > 0 such
that

a(v, v) ≥ c1‖v‖
2
H1 for all v ∈ H1(Ω). (1.1)

From the above assumptions it follows that for a given f ∈ (H1(Ω))′ the elliptic boundary
value problem

Ay = f in Ω
∑d

i,j=1 aijuxi
νj = 0 on ∂Ω

(1.2)

has a unique weak solution y ∈ H1(Ω) which we denote by y = G(f). Here, ν is the unit
outward normal to ∂Ω. Furthermore, if f ∈ L2(Ω), then the solution y belongs to H2(Ω) and
satisfies

‖y‖H2 ≤ C‖f‖,

where have used ‖ · ‖ to denote the L2–norm.
Next, let (U, (·, ·)U ) be a Hilbert space and B : U → L2(Ω) a linear, continuous operator. We
are interested in the following control problem

min
u∈Uad

J(u) =
1

2

∫

Ω
|y − y0|

2 +
α

2
‖u − u0‖

2
U

subject to y = G(Bu) and y(x) ≤ b(x) in Ω.

(1.3)

Here, Uad ⊆ U denotes the set of admissible controls which is assumed to be closed and
convex. Furthermore, we suppose that α > 0 and that y0 ∈ H1(Ω), u0 ∈ U and b ∈ W 2,∞(Ω)
are given.
In the special case U ≡ L2(Ω) without control constraints, i.e. Uad ≡ L2(Ω) the finite element
analysis of problem (1.3) is carried out in [6]. In the present work we extend the analysis to the
case of control and pointwise state constraints. Here we use techniques which are applicable
to a wider class of control problems. In particular the results of [6] are contained as a special
case.
From here onwards we impose the following assumption which is frequently referred to as
Slater condition or interior point condition.

Assumption 1.1.
∃ũ ∈ Uad G(Bũ) < b in Ω̄.

Since the state constraints form a convex set and the set of admissible controls is closed and
convex it is not difficult to establish the existence of a unique solution u ∈ Uad to this problem.
In order to characterize this solution we introduce the space M(Ω̄) of Radon measures which
is defined as the dual space of C0(Ω̄) and endowed with the norm

‖µ‖M(Ω̄) = sup
f∈C0(Ω̄),|f |≤1

∫

Ω̄
fdµ.

Using [3, Theorem 5.2] we then infer (compare also [2, Theorem 2])

Theorem 1.2. Let u ∈ Uad denote the unique solution to (1.3). Then there exist µ ∈ M(Ω̄)
and p ∈ L2(Ω) such that with y = G(Bu) there holds

∫

Ω
pAv =

∫

Ω
(y − y0)v +

∫

Ω̄
vdµ ∀v ∈ H2(Ω) with

d
∑

i,j=1

aijvxi
νj = 0 on ∂Ω (1.4)

(B∗p + α(u − u0), v − u0)U ≥ 0 ∀v ∈ Uad (1.5)

µ ≥ 0, y(x) ≤ b(x) in Ω and

∫

Ω̄
(b − y)dµ = 0. (1.6)
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Our aim is to develop and analyze a finite element approximation of problem (1.3). We
start by approximating the cost functional J by a sequence of functionals Jh where h is a
mesh parameter related to a sequence of triangulations. The definition of Jh involves only
the approximation of the state equation by linear finite elements and enforces constraints on
the state in the nodes of the triangulation, whereas the controls are still sought in Uad. We
shall prove that the minima of Jh converge in L2 to the minimum of J as h → 0 and that
the states convergence strongly in H1 with corresponding error bounds. We thereby extend
the semi–discrete approach to purely control constrained control problems presented by the
second author in [9] to problems with control and state constraints.
To the authors knowledge only few attempts have been made to develop a finite element
analysis for elliptic control problems in the presence of control and state constraints. In [4]
Casas proves convergence of finite element approximations to optimal control problems for
semi-linear elliptic equations with finitely many state constraints. Casas and Mateos extend
these results in [5] to a less regular setting for the states and prove convergence of finite
element approximations to semi-linear distributed and boundary control problems. In [11]
Meyer considers a fully discrete strategy to approximate an elliptic control problem with
pointwise state and control constraints. He obtains the approximation order O(h2−d/2−ǫ) for
the state in H1 and for the control in L2, where d denotes the spatial dimension and ǫ > 0
can be chosen arbitrarily. His results confirm those obtained by the authors in [6] for the
purely state constrained case.
Let us comment on further approaches that tackle optimization problems for pdes with
control and state constraints. A Lavrentiev-type regularization of problem (1.3) is investigated
in [13]. In this approach the state constraint y ≤ b in (1.3) is replaced by the mixed constraint
ǫu + y ≤ b, with ǫ > 0 denoting a regularization parameter. It turns out that the associated
Lagrange multiplier µǫ belongs to L2(Ω). Numerical analysis for this approach with emphasis
on the coupling of gridsize and regularization parameter ǫ is presented by the second author
and Meyer in [10]. The resulting optimization problems are solved either by interior-point
methods or primal-dual active set strategies, compare [12]. The development of numerical
approaches to tackle (1.3) is ongoing. An excellent overview can be found in [7, 8], where
also further references are given, for the latter see also [16].

The paper is organized as follows: in §2 we describe our discretization and establish bounds
on the relevant discrete quantities which are uniform in the discretization parameter. These
bounds are used in §3 in order to prove the following error bounds

‖u − uh‖U , ‖y − yh‖H1 =







O(h
1

2 ), if d = 2,

O(h
1

4 ), if d = 3,

where uh and yh are the discrete control and state respectively. If in addition Bu ∈ W 1,s(Ω)
we obtain

‖u − uh‖U , ‖y − yh‖H1 ≤ Ch
3

2
− d

2s

√

| log h|.

Roughly speaking, the idea is to test (1.5) with uh and (2.8), the discrete counterpart of
(1.5), with the continuous solution u. This is feasible since controls are not discretized ex-
plicitly. An important tool in the analysis is the use of L∞–error estimates for finite element
approximations of the Neumann problem developed in [14]. The need for uniform estimates
is due to the presence of the measure µ in (1.4).
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2 Finite element discretization

Let Th be a triangulation of Ω with maximum mesh size h := maxT∈Th
diam(T ) and vertices

x1, . . . , xm. We suppose that Ω̄ is the union of the elements of Th so that element edges lying
on the boundary are curved. In addition, we assume that the triangulation is quasi-uniform
in the sense that there exists a constant κ > 0 (independent of h) such that each T ∈ Th is
contained in a ball of radius κ−1h and contains a ball of radius κh. Let us define the space
of linear finite elements,

Xh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on each T ∈ Th}

with the appropriate modification for boundary elements. In what follows it is convenient
to introduce a discrete approximation of the operator G. For a given function v ∈ L2(Ω) we
denote by zh = Gh(v) ∈ Xh the solution of the discrete Neumann problem

a(zh, vh) =

∫

Ω
vvh for all vh ∈ Xh.

It is well–known that for all v ∈ L2(Ω)

‖G(v) − Gh(v)‖ ≤ Ch2‖v‖, (2.1)

‖G(v) − Gh(v)‖L∞ ≤ Ch2− d
2 ‖v‖. (2.2)

The estimate (2.2) can be improved provided one strengthens the assumption on v.

Lemma 2.1. Suppose that v ∈ W 1,s(Ω) for some 1 < s < d
d−1 . Then

‖G(v) − Gh(v)‖L∞ ≤ Ch3− d
s | log h| ‖v‖W 1,s .

Proof. Let z = G(v), zh = Gh(v). Elliptic regularity theory implies that z ∈ W 3,s(Ω) from
which we infer that z ∈ W 2,q(Ω) with q = ds

d−s using a well–known embedding theorem.
Furthermore, we have

‖z‖W 2,q ≤ c‖z‖W 3,s ≤ c‖v‖W 1,s . (2.3)

Using Theorem 2.2 and the following Remark in [14] we have

‖z − zh‖L∞ ≤ c| log h| inf
χ∈Xh

‖z − χ‖L∞ , (2.4)

which, combined with a well–known interpolation estimate, yields

‖z − zh‖L∞ ≤ ch
2− d

q | log h|‖z‖W 2,q ≤ ch3− d
s | log h|‖v‖W 1,s

in view (2.3) and the relation between s and q.

Problem (1.3) is now approximated by the following sequence of control problems depending
on the mesh parameter h:

min
u∈Uad

Jh(u) :=
1

2

∫

Ω
|yh − y0|

2 +
α

2
‖u − u0,h‖

2
U

subject to yh = Gh(Bu) and yh(xj) ≤ b(xj) for j = 1, . . . ,m.

(2.5)

Here, u0,h denotes an approximation to u0 which is assumed to satisfy

‖u0 − u0,h‖ ≤ Ch. (2.6)

Problem (2.5) represents a convex infinite-dimensional optimization problem of similar struc-
ture as problem (1.3), but with only finitely many equality and inequality constraints for
the state, which form a convex admissible set. Again we can apply [3, Theorem 5.2] which
together with [2, Corollary 1] yields (compare also the analysis of problem (P) in [4])
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Lemma 2.2. Problem (2.5) has a unique solution uh ∈ Uad. There exist µ1, . . . , µm ∈ R and
ph ∈ Xh such that with yh = Gh(Buh) and µh =

∑m
j=1 µjδxj

we have

a(vh, ph) =

∫

Ω
(yh − y0)vh +

∫

Ω̄
vhdµh ∀vh ∈ Xh, (2.7)

(B∗ph + α(uh − u0,h), v − uh)U ≥ 0 ∀v ∈ Uad, (2.8)

µj ≥ 0, yh(xj) ≤ b(xj), j = 1, . . . ,m and

∫

Ω̄

(

Ihb − yh

)

dµh = 0. (2.9)

Here, δx denotes the Dirac measure concentrated at x and Ih is the usual Lagrange interpo-
lation operator.

Remark 2.3. Problem (2.5) is still an infinite–dimensional optimization problem, but with
finitely many state constraints. This is reflected by the well known fact that the variational
inequalities (1.5) and (2.8) can be rewritten in the form

u = ΠUad

(

−
1

α
B∗p + u0

)

and uh = ΠUad

(

−
1

α
B∗ph + u0,h

)

(2.10)

respectively, where ΠUad
: U → Uad denotes the orthogonal projection onto Uad. Due to

the presence of ΠUad the function uh will in general not belong to Xh even in the case
U = L2(Ω), B = Id. This is different for the purely state constrained problem, for which
ΠUad

≡ Id, so that uh = − 1
αph + u0,h ∈ Xh by (2.10). In that case the space U = L2(Ω)

in (2.5) may be replaced by Xh to obtain the same discrete solution uh, which results in a
finite–dimensional discrete optimization problem instead. However, we emphasize, that the
infinite–dimensional formulation of (2.5) is crucial for our numerical analysis in §3.

As a first result for (2.5) we prove that the sequence of optimal controls, states and the
measures µh are uniformly bounded.

Lemma 2.4. Let uh ∈ Uad be the optimal solution of (2.5) with corresponding state yh ∈ Xh

and adjoint variables ph ∈ Xh and µh ∈ M(Ω̄). Then there exists h̄ > 0 so that

‖yh‖, ‖uh‖U , ‖µh‖M(Ω̄) ≤ C for all 0 < h ≤ h̄.

Proof. Since G(Bũ) is continuous, Assumption 1.1 implies that there exists δ > 0 such that

G(Bũ) ≤ b − δ in Ω̄. (2.11)

It follows from (2.2) that there is h0 > 0 with

Gh(Bũ) ≤ b in Ω̄ for all 0 < h ≤ h0

so that Jh(uh) ≤ Jh(ũ) ≤ C uniformly in h giving

‖uh‖U , ‖yh‖ ≤ C for all h ≤ h0. (2.12)

Next, let u denote the unique solution to problem (1.3). We infer from (2.11) and (2.2) that
v := 1

2u + 1
2 ũ satisfies

Gh(Bv) ≤
1

2
G(Bu) +

1

2
G(Bũ) + Ch2− d

2 (‖Bu‖ + ‖Bũ‖) (2.13)

≤ b −
δ

2
+ Ch2− d

2 (‖u‖U + ‖ũ‖U ) ≤ b −
δ

4
in Ω̄
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provided that h ≤ h̄, h̄ ≤ h0. Since v ∈ Uad, (2.8), (2.7), (2.12) and (2.13) imply

0 ≤ (B∗ph + α(uh − u0,h), v − uh)U =

∫

Ω
B(v − uh)ph + α(uh − u0,h, v − uh)U

= a(Gh(Bv) − yh, ph) + α(uh − u0,h, v − uh)U

=

∫

Ω
(Gh(Bv) − yh)(yh − y0) +

∫

Ω̄
(Gh(Bv) − yh)dµh + α(uh − u0,h, v − uh)U

≤ C +

m
∑

j=1

µj

(

b(xj) −
δ

4
− yh(xj)

)

= C −
δ

4

m
∑

j=1

µj

where the last equality is a consequence of (2.9). It follows that

‖µh‖M(Ω̄) ≤ C

and the lemma is proved.

3 Error analysis

An important ingredient in our analysis is an error bound for a solution of a Neumann
problem with a measure valued right hand side. Let A as above and consider

A∗q = µ̃xΩ in Ω
∑d

i=1

(
∑d

j=1 aijqxj
+ biq

)

νi = µ̃x∂Ω on ∂Ω.
(3.14)

Theorem 3.1. Let µ̃ ∈ M(Ω̄). Then there exists a unique weak solution q ∈ L2(Ω) of (3.14),
i.e.

∫

Ω
qAv =

∫

Ω̄
vdµ̃ ∀v ∈ H2(Ω) with

d
∑

i,j=1

aijvxi
νj = 0 on ∂Ω.

Furthermore, q belongs to W 1,s(Ω) for all s ∈ (1, d
d−1 ). For the finite element approximation

qh ∈ Xh of q defined by

a(vh, qh) =

∫

Ω̄
vhdµ̃ for all vh ∈ Xh.

the following error estimate holds:

‖q − qh‖ ≤ Ch2− d
2 ‖µ̃‖M(Ω̄). (3.15)

Proof. A corresponding result is proved in [1] for the case of an operator A without transport
term subject to Dirichlet conditions, but the arguments can be adapted to our situation. We
omit the details.

We are now prepared to prove our main theorem for the optimal controls.

Theorem 3.2. Let u and uh be the solutions of (1.3) and (2.5) respectively. Then

‖u − uh‖U + ‖y − yh‖H1 ≤ Ch1− d
4 .

If in addition Bu ∈ W 1,s(Ω) for some s ∈ (1, d
d−1) then

‖u − uh‖U + ‖y − yh‖H1 ≤ Ch
3

2
− d

2s

√

| log h|.
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Proof. We test (1.5) with uh, (2.8) with u and add the resulting inequalities. This gives

(B∗(p − ph) − α(u0 − u0,h) + α(u − uh), uh − u)U ≥ 0,

which in turn yields

α‖u − uh‖
2
U ≤

∫

Ω
B(uh − u)(p − ph) − α (u0 − u0,h, uh − u)U . (3.16)

Let yh := Gh(Bu) ∈ Xh and denote by ph ∈ Xh the unique solution of

a(wh, ph) =

∫

Ω
(y − y0)wh +

∫

Ω̄
whdµ for all wh ∈ Xh.

Applying Theorem 3.1 with µ̃ = (y − y0)dx + µ we infer

‖p − ph‖ ≤ Ch2− d
2

(

‖y − y0‖ + ‖µ‖M(Ω̄)

)

. (3.17)

Recalling that yh = Gh(Buh), yh = Gh(Bu) and observing (2.7) as well as the definition of ph

we can rewrite the first term in (3.16)
∫

Ω
B(uh − u)(p − ph) =

∫

Ω
B(uh − u)(p − ph) +

∫

Ω
B(uh − u)(ph − ph)

=

∫

Ω
B(uh − u)(p − ph) + a(yh − yh, ph − ph) (3.18)

=

∫

Ω
B(uh − u)(p − ph) +

∫

Ω
(y − yh)(yh − yh) +

∫

Ω̄
(yh − yh)dµ −

∫

Ω̄
(yh − yh)dµh

=

∫

Ω
B(uh − u)(p − ph) − ‖y − yh‖

2 +

∫

Ω
(y − yh)(y − yh)

+

∫

Ω̄
(yh − yh)dµ +

∫

Ω̄
(yh − yh)dµh.

After inserting (3.18) into (3.16) and using Young’s inequality we obtain in view of (3.17),
(2.1) and (2.6)

α

2
‖u − uh‖

2
U +

1

2
‖y − yh‖

2 (3.19)

≤ C
(

‖p − ph‖2 + ‖y − yh‖2 + ‖u0 − u0,h‖
2
)

+

∫

Ω̄
(yh − yh)dµ +

∫

Ω̄
(yh − yh)dµh

≤ Ch4−d +

∫

Ω̄
(yh − yh)dµ +

∫

Ω̄
(yh − yh)dµh.

It remains to estimate the integrals involving the measures µ and µh. Since

yh − yh ≤ (Ihb − b) + (b − y) + (y − yh) in Ω̄

we deduce with the help of (1.6)
∫

Ω̄
(yh − yh)dµ ≤ ‖µ‖M(Ω̄)

(

‖Ihb − b‖∞ + ‖y − yh‖∞

)

.

Similarly, (2.9) implies
∫

Ω̄

(yh − yh)dµh ≤ ‖µh‖M(Ω̄)

(

‖b − Ihb‖∞ + ‖y − yh‖∞

)

.
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Inserting the above estimates into (3.19) and using Lemma 2.4 as well as an interpolation
estimate we infer

‖u − uh‖
2
U + ‖y − yh‖

2 ≤ Ch4−d + C‖y − yh‖L∞ . (3.20)

The estimates on ‖u − uh‖U now follow from (2.2) and Lemma 2.1 respectively. Finally, in
order to bound ‖y − yh‖H1 we note that

a(y − yh, vh) =

∫

Ω
B(u − uh)vh

for all vh ∈ Xh, from which one derives the desired estimates using standard finite element
techniques and the bounds on ‖u − uh‖U .

Remark 3.3. Let us note that the approximation order of the controls and states in the
presence of control and state constraints is the same as in the purely state constrained case,
if Bu ∈ W 1,s(Ω). This assumption holds for the important example U = L2(Ω), B = Id and
u0h

= Phu0, with u0 ∈ H1(Ω) and Ph : L2(Ω) → Xh denoting the L2–projection, and subsets
of the form

Uad = {v ∈ L2(Ω), al ≤ v ≤ au a.e. in Ω},

with bounds al, au ∈ W 1,s(Ω), since u0 ∈ H1(Ω), and p ∈ W 1,s(Ω).

4 Implementation issues

The numerical computation of solutions to problem (2.5) is more involved than in the purely
state constrained case, i.e. Uad ≡ U . The latter is treated in [6] for the special case U =
L2(Ω). As already mentioned in Remark 2.3 the purely state constrained problem may be
substituted by a finite–dimensional one which yields the same solution uh. Therefore, common
solution techniques for finite–dimensional optimization problems with equality and inequality
constraints can be applied for its numerical computation.
In the present situation this is definitely different, since problem (2.5) really is infinite–
dimensional, with finitely many state constraints. It is not clear at the first instance, whether
an iterative solution algorithm for this problem can be implemented on a computer without
further discretization steps, while keeping the management of information overhead bounded
with increasing number of iterations. We now sketch that this is indeed possible.
To simplify the exposition we now assume aij = δij , B = Id, U = L2(Ω) and u0 = 0, y0 = 0.
We rewrite (2.5) as nonlinear, nonsmooth operator equation. To begin with, we define

A = Ã + M̃ :=





∫

Ω

∇φi∇φj





m

i,j=1,

+





∫

Ω

φiφj





m

i,j=1,

U :=





∫

Ω

uφi





m

i=1,

B := [b(xi)]
m
i=1,

and
Y := [yi]

m
i=1, P := [pi]

m
i=1, M := [µi]

m
i=1,

where














yh

ph

µh















=
m

∑

i=1















yiφi

piφi

µiδxi














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denote the corresponding finite element representations of Y, P and M , respectively, and
u ∈ L2(Ω). We recall that (2.8) in the present situation is equivalent to the nonsmooth
equation

uh = PUad

(

−
1

α
ph

)

,

and that the complementarity system in (2.9) can be equivalently rewritten in the form

M = max {0,M + c(Y − B)} component wise, (4.21)

where c > 0 is arbitrary. Let us define the mapping G : Rm ×Rm ×L2(Ω)×Rm → Rm ×Rm ×
L2(Ω) × Rm by

G(Y, P, u,M) :=















AY − U

AP − M̃Y − M

u − PUad

(

− 1
αph

)

M − max {0,M + c(Y − B)}















.

Then, the first–order necessary optimality conditions yh = Gh(u) together with (2.7)–(2.9)
are equivalent to the nonsmooth system

G(Y, P, uh,M) = 0,

where uh denotes the solution of (2.5), and Y, P, and M the nodal representations of the
corresponding state yh, adjoint state ph, and multiplier µh, respectively. Let us apply a
generalized Newton step to this system. For this purpose let [Y, P, u,M ]t ∈ Rm×Rm×L2(Ω)×Rm → Rm × Rm × L2(Ω) × Rm be given. Let us define fmax := max (0,M + c(Y − B)) and
dmax := diag (max′ (0,M + c(Y − B))). For the generalized Jacobian of G at [Y, P, u,M ]t

we obtain

DG(Y, P, u,M) =

=



















A 0 −

[

∫

Ω

•φi

]m

i=1

0

−M̃ A 0 −IdM

0 1
αP ′

Uad

(

− 1
αph

)

• IdL2(Ω) 0

−c dmaxIdY 0 0 IdM − dmaxIdM



















,

so that one generalized Newton step for the computation of [Y n, Pn, un,Mn]t amounts to
solving

DG(Y, P, u,M)















Y n

Pn

un

Mn















=















0

0

1
αP ′

Uad

(

− 1
αph

)

ph + PUad

(

− 1
αph

)

−c dmaxY − dmaxM + fmax















From the first equation we deduce Y n = A−1Un, the second yields Mn = APn − M̃A−1Un,
and from the third equation we obtain Un = − 1

αCPn +R, where the matrix C and the vector
R are defined by

C = C(ph) :=









∫

I(− 1

α
ph)

φjφi









m

i,j=1

and R =
1

α









∫

I(− 1

α
ph)

phφi









m

i=1

+





∫

Ω

PUad

(

−
1

α
ph

)

φi





m

i=1.
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Here, I
(

− 1
αph

)

denotes the subset of Ω, where − 1
αph is inactive. Its description clearly relies

on the structure of Uad. Finally, with the substitutions from above the fourth equation leads
to

(

A − dmaxA +
1

α

(

M̃ + dmax
(

c IdY − M̃
))

A−1C

)

Pn =

= M̃A−1R +
1

α

(

c IdY − M̃
)

A−1R − dmaxY − dmaxM + fmax, (4.22)

which represents a linear system for the computation of Pn. We conclude, that a step of the
generalized Newton method is feasible, iff the matrix

A − dmaxA +
1

α

(

M̃ + dmax
(

c IdY − M̃
))

A−1C

is regular. In this case, once Pn is computed, the vectors Y n,Mn and the function un are
obtained by performing the corresponding re–substitutions. Let us briefly comment on the
cases i.) Uad ≡ U and ii.) b = ∞, i.e. no state constraints are present. In the first case the
system matrix in (4.22) takes the form

A − dmaxA +
1

α

(

M̃ + dmax
(

c IdY − M̃
))

A−1M̃

and is positive definite if we choose c large enough. In the second case we obtain the system
matrix

A +
1

α
M̃A−1C

which is positive definite since 1
αM̃A−1C is positive semi–definite. In both cases the Newton

step is feasible. This reflects the fact that in these cases the adjoint variables p, ph and the
multipliers µ, µh are unique. Let us finally note that the constant c in (4.21) may also be
replaced by an vector c ∈ Rm containing positive components ci > 0(i = 1, . . . ,m). If one
now replaces the mass matrix M̃ by its mass–lumped version M̄ , the choice c := diag(M̄ )
leads to the system matrix

(

A − dmaxA +
1

α
M̄A−1C

)

in (4.22).
We note that the adjoint states p, ph and the multipliers µ, µh need not be unique if state and
control constraints occur simultaneously. Necessary and sufficient conditions for the unique-
ness of multipliers in the presence of cone constraints are provided by Shapiro in [15].
The exposition in this section shows that the infinite dimensional problem (2.5) can numeri-
cally be implemented on a computer by a generalized Newton method, say, without further
discretization steps, and with keeping the management of information overhead constant in
each iteration step. Further details inc. convergence analysis for generalized Newton methods
applied to the numerical solution of (2.5) will be given in a forthcoming paper.
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