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Abstract

We present an optimal control approach for the solidification process of a
melt in a container. The process is described by a two phase Stefan problem
including flow driven by convection and Lorentz forces. The free boundary
(interface between the two phases) is modelled as a graph.

We control the evolution of the free boundary using the temperature on the
container wall and/or the Lorentz forces. The control goal consists in tracking
a prescribed evolution of the free boundary. We achieve this goal by minimizing
a appropriate cost functional. The resulting minimization problem is solved
numerically by a steepest descent method with step size control, where the
gradient of the cost functional is expressed in terms of the adjoint variables.
Several numerical examples are presented which illustrate the performance of
the method.

1 Introduction

In the present work we extend our control approach to solidification processes
presented in [3]. Here we also include flow driven by convection and in addition
to temperature boundary control we also consider near wall Lorentz forces as
control actions. We develop an optimization strategy for the free boundary
in the corresponding two phase Stefan problem, whose mathematical model
in the present situation governs heat conduction in the solid phase and heat
conduction, heat transport and flow in the liquid phase. The coupling of the
phases is established through the Stefan condition at the free boundary, and
through a third order boundary condition which follows from the heat transfer
equation at the container wall.

Our goal is to control the evolution of the free boundary using the temper-
ature at the container wall and/or near-wall Lorentz forces as control action.
This is motivated by the fact, that we have in mind control of crystal growth
processes, where the shape of the solid-liquid interface strongly influences the
quality of the crystal.

We assume that the free boundary can be described by a graph. This leads
to a sharp interface model which explicitly contains the free boundary control
variable in terms of the function which defines its graph. The mathematical
formulation of the control goal now reads: for a prescribed desired evolution
described as a graph, find a temperature boundary control and/or near-wall
Lorentz forces such that the free boundary of the system is as close as possible
to the desired free boundary. Since the free boundary is modelled as a graph,
its error to the desired free boundary can be formulated in form of a cost
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functional which explicitly contains the described functions.

Altogether we end up with an optimization problem for the temperature
on the container wall and/or near-wall Lorentz forces, which is coupled to the
temperature in the solid and liquid phases, to the velocity in the liquid phase
and to the desired free boundary by an highly nonlinear system of pde’s.

Let us comment on the work of Zabaras et al. In [7], [10], [9] similar control
problems as in the present work are considered. The main differences to our
have their origin in the fact that the free boundary is assumed as known a priori
and that the melting temperature condition at the free boundary is not met
exactly during the optimization process. This may lead to unphysical solutions
of the control approach. This is in contrast to our approach, where at any stage
of the optimization procedure developed the physical laws constituted by our
model are conserved.

In [7] and [10] the free boundary is set to the desired boundary without
ensuring that the melting temperature condition u = um is satisfied at the free
boundary (u denotes the temperature, um denotes the melting temperature).
The heat flow at the fixed boundary into the liquid phase is set to 0 (this
means, that the container is isolated). This allows to separate the problems
for each phase. In particular, the heat flow into the free boundary can be
computed using the Stefan condition, and by solving a direct (forward) heat
conduction problem [7], or a direct (forward) heat conduction problem includ-
ing convection [10]. The optimization goal consists in determining the heat
flux at the fixed boundary of the solid phase such that the temperature differ-
ence at the free boundary is minimized, i.e. 1

2
‖um − u(x, t)‖2

L2(Γ×[0,T ]) = min
q0

,

where q0 is the heat flow into the solid phase at the fixed boundary.

Yang in [9] extends the approach of [10] to the case where the temperature
at the fixed boundary in the liquid phase is also variable. To separate the
problems for each phase the heat flux into the free boundary is assumed to be
given. The minimization problem in the liquid phase consists in determining
the temperature at the fixed boundary considering heat conduction, convec-
tion and the Stefan condition, such that the error of the temperature at the
free boundary ‖um − u(x, t)‖2

L2(Γ×[0,T ]) is minimized, with the position of the
free boundary and heat flux into the free boundary given. The minimization
problem for the solid phase then reads as in [7] and [10]: Given the position
and the heat flux of the free boundary, find the heat flux on the fixed boundary
such that the error of the temperature at the free boundary is minimized.

The approaches of Zabaras at al. and Yang have in common, that a
physical solution of the optimization process is obtained only in the case
‖um − u(x, t)‖2

L2(Γ×[0,T ]) = 0, which in most configurations only is satisfied
by chance. We emphasize that the approach presented here always delivers
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physical solutions.
For a discussion on further related literature we refer to [3]. To the best of

our knowledge this is the first attempt (except of our previous work [3]) to con-
trol the evolution of the free boundary directly using a sharp interface model.
The presented approach admits the major advantage, that the interface serves
as an optimization variable itself and thus can be controlled directly. This is
different to phase field models, say, where the free boundary is represented as
a zero level set which only admits indirect control through the order param-
eter. Furthermore at any stage of the optimization process the physical laws
constituted by our mathematical model are conserved.

2 Problem definition

2.1 Physical model

Let Ω = G × H be a bounded cylindrical domain containing the substance,
where G denotes the ground domain and H ⊂ R the height, see Figure 1. For
t ∈ [0, T ] let Ωs(t),Ωl(t) ⊂ Ω denote the parts containing the solid and the
liquid phase, where Ωs(t)∩Ωl(t) = ∅ and Ω = Ωs(t)∪Ωl(t). The free boundary
is described as a graph

Γ(t) := Ωs(t) ∩ Ωl(t) =

{(
y

f(t, y)

)
: y ∈ G

}
with f : G→ H. Figure 1 shows such a configuration.

As mathematical model for the temperature u, the velocity vvv and the
pressure p we take

∂tu =
ks

csρ
∆u in (0, T ]× Ωs (1)

∂tu+ vvv · ∇u =
kl

clρ
∆u in (0, T ]× Ωl (2)

∇ · vvv = 0 in (0, T ]× Ωl (3)

∂tvvv + (∇vvv)vvv − ε

ρ
∆vvv +

1

ρ
∇p = −gggγ(u− uM) +AAA in (0, T ]× Ωl (4)

VΓL =
ks

ρ
∂µµµu|Ωs −

kl

ρ
∂µµµu|Ωl

=: −
[ks/l

ρ
∂µµµu

]
Γ

on (0, T ]× Γ (5)

u = uM on (0, T ]× Γ (6)

with the initial conditions
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u(0,xxx) = u0(x) for xxx ∈ Ω (7)

vvv(0,xxx) = vvv0(x) for xxx ∈ Ω (8)

f(0, y) = f0(y) for y ∈ G (9)

and the boundary conditions

ks/l

αs/l
∂νννu = ub − u on (0, T ]× ∂Ω (10)

vvv = 0 on (0, T ]× ∂Ω (11)

∂νννp = −ρννν · gggγ(u− uM) + ννν ·AAA on (0, T ]× ∂Ωl. (12)

The vector ννν denotes the outer normal vector of the boundary and µµµ denotes
the normal vector of the free boundary, directed from the solid into the liquid
phase (i.e. µµµ = ννν|∂Ωs = −ννν|∂Ωl

on Γ). Equations (3) and (4) form the
Navier Stokes equations for incompressible flow, where ε denotes the dynamic
viscosity and ρ denotes the density. The buoyancy force is modelled with the
Boussinesq approximation by the term −gggγ(u − uM) using the gravitational
force ggg and the thermal expansion coefficient γ. The external force AAA is used
later in this section to model the Lorentz force. Equations (1) and (2) are the
heat equation in the solid phase and the heat equation with heat transport
in the liquid phase, respectively. The constants ks/l and cs/l denotes the heat
conductivities and the heat capacity in the solid and liquid phase, respectively.
The Stefan condition (5) is a conservation law on the free boundary which
balances the heat transported into the free boundary and the melting heat
generated through solidification. The constant L denotes the latent heat.

sΩ Ω l

Γ ∂Ω

G

H

Figure 1: Solid phase Ωs, liquid phase Ωl and free boundary Γ in a container
with boundary ∂Ω.
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Using the free boundary graph f the Stefan condition (5) can be equivalently
written as

Lρ
ft(t, y)√

1 + fy(t,xxx)
= −

[
ks/l∂µµµu

]
Γ

(
t,

(
y

f(t, y)

))
= 0 .

Equation (6) states the melting temperature condition, where uM is the melt-
ing temperature. The boundary condition (10) for the temperature follows
directly from the heat transfer equation q = αs/l(u − ub) and the heat con-
duction q = ks/l∂νu, where q is the heat flow and αs/l is the heat transfer
coefficient between the container wall and the solid/liquid phase, respectively.

For the modeling of the Lorentz forces we consider a (hypothetical) rota-
tional symmetric configuration with G =

{
(r cosφ, r sinφ) : φ ∈ [0, 2π], r ∈

[0, R]
}

and h ∈ H = [ha, hb] as sketched in Figure 2. This configuration
consists of actuator rings of the thickness dh → 0. Each ring consists of an
alternating arrangement of electrodes and magnets and each ring is control-
lable separately. We assume that the Lorentz force of each ring is rotational
symmetric and acts only in tangential direction, see Figure 3. This allows us
to assemble the total Lorentz force at xxx = (r cosφ, r sinφ, h) by integration
over the Lorentz forces generated by each ring

AAA(xxx) = δ

∫
H

Ac(y)τττ(x, y)g
(√

(R− r)2 + (h− y)2
)
dy (13)

N + S − N + S − N +

+

+

N

N

−

−

S

S

+

+

N
N +

+

S

S

−

− N
N

φ
Lorentz forces

dh

h
r

Figure 2: Configuration of actuator rings used for generating Lorentz forces.
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where

τττ =

(
(h− y) cosφ, (h− y) sinφ, (R− r)

)√
(R− r)2 + (h− y)2

, (14)

is the tangential vector (see Figure 3) and Ac is the control force. The constant
δ is used to tailor the influence of the control force. The function g(r) denotes
the dependency of the Lorentz force from the distance d, see Figure 3. We
choose

g(d) =
e−d π

a

2
√
d

.

With this choice for g and Ac = const. we obtain wall-parallel Lorentz forces
in h-direction which satisfy the approximation

A(xxx) ≈ δAce
−π

a
dist(xxx,∂G×H) ,

compare [2, Appendix] and [8, Section 2,4]. Here a denotes the width of the
electrodes and magnets. We note, that we ignore effects caused by induction.
This makes sense for weakly conductive fluids and partially also for high con-
ductive fluids, if we use small magnetic and strong electric fields. Let us note
that highly conductive fluids combined with strong electric fields would cause
a considerable heating of the material near the container wall, which is not
considered in our model.

Let f be the desired evolution of the free boundary. We consider the
rotational symmetric case, i.e. G =

{
(r cosφ, r sinφ) : φ ∈ [0, 2π], r ∈ [0, R]

}
and h ∈ H = [ha, hb]. Similar to [3], we specify additional boundary conditions
for the intersection of the free boundary and the container wall;

f(t, R) = f(t, R) fr(t, R) = f r(t, R) frr(t, R) = f rr(t, R) . (15)

Ω s

Ω l

y

τ
x

h

r

d

Figure 3: Lorentz forces generated by a single actuator ring.
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This choice simplifies our moving grid implementation and especially it avoids
the need of an additional boundary grid for the container wall temperature
ub, and so the interpolation of ub between grids is avoided. further details are
given in [3].

The boundary conditions (15) induce the following compatibility condi-
tions;

Lρ
f tf r

1 + f
2

r

= −(αs − αl)ub (16)

∂hub

∣∣
Ωs/l

=
f t

1 + f
2

r

(
Lρ

αs − αl

(αs/l

ks/l

− 2
f rf rr(

1 + f
2

r

)2

)
−
ubρcs/l

ks/l

)
+

Lρf rt

(αs − αl)
(
1 + f

2

r

)2
.

(17)

For the two-dimensional case the boundary conditions for f and the corre-
sponding compatibility conditions are presented in [3], where also a detailed
derivation of the compatibility condition is given. We note, the flow has no
influence on the derivation since vvv satisfies vvv = 0 at the boundary ∂Ωl.

Further we need to ensure that the boundary conditions are satisfied for
t = 0, i.e. we to set

ub(0,xxx) = u0(xxx) +
ks/l

αs/l
∂νu0(xxx) . (18)

Since ub needs to satisfy the compatibility conditions (16) – (18) it cannot
serve as control variable directly. We resolve this difficulty by splitting ub into
two parts;

ub = ub0 + βubc (19)

where ub0 denotes a fixed part (e.g. a temperature known from experience),
and βubc denotes the controllable part βubc, where β is a weight function which
allows to tailor the control part of the boundary condition. Now we require
that ub0 satisfies the compatibility conditions (16) – (18) and assume

β(t,xxx) = ∂e2β(t,xxx) = 0 for xxx ∈ ∂Ω ∩ Γ and t ∈ (0, T ],

β(0,xxx) = 0 for xxx ∈ ∂Ω.
(20)

These conditions ensure that ub for every choice ubc satisfies (16) – (18), so
that ubc may serve as the control variable in our optimization problem specified
below.
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2.2 Optimization Problem

Our goal is to control the free boundary using the temperature on the container
walls and/or near-wall Lorentz forces. As control horizon we take t ∈ (0, T ]
for some T > 0. Using the desired evolution of the free boundary f we define
the optimization problem

J(f, ubc,AAAc) :=
1

2T

T∫
0

∫
G

(
f(t, y)− f(t, y)

)2
dydt

+
λT

2

∫
G

(
f(T, y)− f(T, y)

)2
dy = min!

f,ubc,AAAc

s.t. (1) – (12), (13), (19) .

(21)

The functional J models the objective in our minimization problem, namely
the reduction of the error between the free boundary and the desired free
boundary. With λT the deviation of the free boundary from the desired free
boundary at time t = T is weighed. The functions ub0, β, f , u0, f0 and
vvv0 are given and the functions u, f , vvv and ubc and/or Ac are sought. From
here onwards we assume that the optimization problem admits a solution
(u∗, f∗, vvv∗, u∗bc, A

∗
c). Further we assume that the state equations (1) – (12), (13),

(19) for every (ubc, Ac) admit a unique solution, in particular f = f(ubc, Ac).
It then is meaningful to replace (21) by

K(ubc,AAAc) := J
(
f(ubc,AAAc), ubc,AAAc

)
= min!

ubc,AAAc

, (22)

where k denotes the reduced functional. To solve this optimization problem
numerically in Section 3 we apply a gradient algorithm with a appropriate
step size rule. Thus we need an expression for ∇K(ubc,AAAc). There holds

∇K =
[
−βαs/lωs/l , −δ

∫
Ωl

ψψψ(t,xxx)·τττ(xxx, y)g
(√

(R− r)2 + (h− y)2
)
dxxx

]
(23)

where xxx = (r cosφ, r sinφ, h) and the tangential vector τττ is defined as in (14),
see also Figure 3. For given ubc and Ac the functions ωs/l and ψψψ are obtained
first by solving (1) – (12), (13), (19) for u, vvv and f , and then by solving the
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so called adjoint system

− ∂tωs =
ks

csρ
∆ωs in [0, T )× Ωs , (24)

− ∂tωl =
kl

clρ
∆ωl + vvv · ∇ωl −

γggg

clρ
·ψψψ in [0, T )× Ωl , (25)

ks/l∂νννωs/l = −αs/lωs/l in [0, T )× ∂Ωs/l \ Γ , (26)

ωs/l = 0 in {T} × Ωs/l , (27)

ωs/l = −ϕ in (0, T )× Γ , (28)

∂tψψψ + (∇ψψψ)vvv − (∇vvv)Tψψψ +
ε

ρ
∆ψψψ = clρωl∇u−∇π in [0, T )× Ωl , (29)

ψψψ(T,xxx) = 0 in {T} × Ωl(t) , (30)

ψψψ = 0 in [0, T )× ∂Ωl , (31)

∂νννπ = ∂νννuclρωl in [0, T )× ∂Ωl , (32)

∇ ·ψψψ = 0 in [0, T )× Ωl , (33)

− Lρ∂tϕ =
f − f

T
in [0, T )×G , (34)

Lρϕ = λT

(
f − f

)
in {T} ×G and (35)

ϕ = 0 in (0, T )× ∂G (36)

for ω, ψψψ and ϕ.
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3 The numerical approach

In this section we present a numerical solution of the optimization problem

K(ubc,AAAc) = min!
ubc,AAAc

,

using the following gradient algorithm.

(C0) Initialization of u
(0)
bc = 0 and AAA

(0)
c = 000

(FWD) Solving the forward system [u(0), vvv(0), f (0)](u
(0)
bc ,AAA

(0)
c )

(S1) For all 1 ≤ k ≤ kmax

(ADJ) Solving of the adjoint equation system
[ω(k),ψψψ(k), ϕ(k)](u(k−1), vvv(k−1), f (k−1))

(GRD) Computation of the gradient G(k) = ∇K(ω(k),ψψψ(k))

(LM) Line minimization: K
(
[u

(k−1)
bc , A(k−1)

c ] + s(k)G(k)
)

= min!
s(k)

(FWD) Solving the forward system [u(k), vvv(k), f (k)](u
(k)
bc ,AAA

(k)
c ) using

[u
(k)
bc , A

(k)
c ] = [u

(k−1)
bc , A(k−1)

c ] + s(k)G(k) .

The forward and adjoint systems (steps (FWD) and (ADJ)) are discretized
using the finite volume approach and are solved using a PISO algorithm, see
[4], [5] and [6]. For the spatial discretization we use a moving grid which tracks
the free boundary, i.e. the free boundary is represented by a grid hyperplane.
A detailed description of this grid can be found in [3]. An example grid for
two time instances is shown in Figure 5. For the time discretization we use
an adaptive grid where the time steps are calculated by fixing the Courant
number. The gradient steps (GRD) are computed according to (23). For
the line minimization we use a quadratic approximation approach, which is
described in [3]. As stopping criterions we use

kmax := min
{
k :

J (k−1) − J (k)

J (0)
≤ ε

}
. (37)

The algorithm is implemented using the Open Source toolbox OpenFOAM
[1].
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4 Numerical results

4.1 First test configuration

As the first test problem we consider an aluminium melt in a rotational sym-
metric cylinder with a diameter of 5cm and a height of 10cm. Thus the do-
main is described by Ω = G×H with the ground G =

{
(r cosφ, r sinφ) : φ ∈

[0, 2π], r ∈ [0, R]
}

with R = 2.5cm, and the height H = [ha, hb] = [0, 10cm].
The solid phase is on the bottom and the liquid phase is on the top. The
gravitational force is directed downwards, i.e. ggg =

(
(0, 0),−9.82

)
m
s2 . We opti-

mize the solidification process over the time period [0, T ] with T = 40s. The
physical constants for aluminium are listed in Table 2. For αs/l we choose

αs = 1000
J

s · cm2 ·K
and αl = 250

J

s · cm2 ·K
.

The desired free boundary is the moving plane f(t, y) = 0.025m + 1
800

m
s
· t

(t ∈ [0, T ], y ∈ G). As initial condition for the temperature we choose

u0(y, h) = uM + u′s/l(h− 0.025m) for y ∈ G and h ∈ H,

where u′s and u′l are equal to

u′s/l :=
Lραs/l

ks/l(αs − αl)
· 1

800
· m
s

.

For the boundary value ub0 we choose

ub0

(
t, (y, h)

)
= uM +u′s/l

(
h−f(t, y)

)
for t ∈ [0, T ], y ∈ ∂G and h ∈ H.

For this choice of f the function ub0 in (41) satisfies the compatibility condi-
tions (16) – (18).

Two control cases are considered. First, we use only the the container wall
temperature ub for control by setting the control weights β and δ to

β1

(
t, (y, h)

)
=


(

t
T

)0.3
(

f(t,y)−h

f(t,y)

)2

: h < f(t, y)(
t
T

)0.3
(

h−f(t,y)

hb−f(t,y)

)2

: h ≥ f(t, y) and

δ1 = 0

for t ∈ [0, T ], y ∈ ∂G and h ∈ H. Secondly, we control using near-wall Lorentz
forces only;

β2 = 0 and δ2 = 1 .
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Making use of the symmetry the spatial mesh contains 100 cells in vertical
and 25 cells in radial direction.

The computational time for one forward step (FWD) takes approximately
80s on a single AMD Athlon MP 2133 MHz, for the backward step (ADJ) it
takes around 120s.

ρ = 2650 kg
m3

cs = 1230 J
kg·K cl = 1090 J

kg·K

ks = 227 J
s·m·K kl = 100 J

s·m·K

L = 397670 J
kg

γ = 3.84 · 10−5 1
K

ε = 3.23 · 10−3 kg
m·s

uM = 660◦C

Table 2: Physical constants aluminium.

4.2 Results for the uncontrolled case

First we examine the results for the uncontrolled forward problem with ubc = 0
(Forward step 0 of the algorithm). Figure 4 shows the shape of the free
boundary, the temperature u and the velocity v in the liquid phase at three
different time instances. Figure 5 shows the corresponding grids.

The images (e.g. in Figure 4) show white and grey stripes. Every stripe
represents a temperature interval corresponding to the legend shown right.
The black line depicts the free boundary. The arrows are directed into the
direction of the flow and their length is proportional to the magnitude of the
velocity.

4.3 Results for the controlled case

Fist we examine the control with the container wall temperature, i.e. β = β1

and δ = 0. We begin our numerical investigation with the setting λT = 0.
This means that the error of the free boundary at time T is not penalized.

Figure 6 shows the shape of the free boundary, the temperature and the
velocity at two different time instances and after different gradient iterations
and when the stopping criterion (37) is met (k = kmax). (The plots for t = 0
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are omitted, since the temperature and the free boundary for all k are equal to
the temperature and free boundary, respectively of the uncontrolled problem.)
Figure 7 presents the cost functional J for every gradient iteration k. As can
be seen the functional

J0 :=
1

2T

T∫
0

∫
G

(
f(t, y)− f(t, y)

)2
dydt (38)

is reduced very quickly, and that the optimized evolution of the free boundary
delivers a nearly flat graph at all time instances.

Next, we set λT = 0.3, β = β1 and δ = 0. The numerical results are
presented in Figure 8 (cost Functional) and Figure 9 (temperature, velocity
and free boundary). With this parameter choice

JT :=
1

2

∫
G

(
f(T, y)− f(T, y)

)2
dy (39)

is penalized. As expected, our numerical algorithm quickly reduces this func-
tional, see Figure 15, where the behaviour of this part of the functional is

Figure 4: The temperature u (white and grey stripes), the velocity (arrows)
and the free boundary (black line) for the uncontrolled problem after three
time instances.
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illustrated also for different parameter settings. The behaviour of J0 for the
same parameter settings is shown in Figure 14. Again, the graph of the opti-
mized evolution is nearly flat.

Now we investigate the control with near-wall Lorentz forces, i.e. we set
β = 0, δ = 1 and λT = 0.3. The numerical results are presented in Figure 10
(temperature, velocity and free boundary), 11 (Lorentz forces) and 12 (cost
Functional). It can be seen, that the control with Lorentz forces does not
work as well as with container wall temperature (compare Figure 9). This
can be explained using Figure 13. The area around the intersection of the
free boundary with the container wall is the coldest zone in the liquid phase.
To make the free boundary flat the material of this zone must be transported
to the center (dashed arrow). Therefore the Lorentz forces should act in the
direction sketched in Figure 13, compare also Figure 11. But the flow driven
by that Lorentz forces (and also by the convection) has only a small effect since
the velocity is limited due to vvv = 0 at ∂Ωl and ε > 0, so that the cold material
arrives at the center delayed, i.e. the free boundary is ,,hanging back”. (If the
Lorentz forces would act in the opposite direction as sketched in Figure 13 the
material would be heated up at the container wall and hot material (instead
of cold material) would flow to the center.)

Figure 5: The grid for the uncontrolled problem at three different time in-
stances, see Figure 4. The black line represents the free boundary.
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t = 20s

t = 40s

Figure 6: The temperature u (white and grey stripes), velocity (arrows) and
free boundary (black line) after several gradient iterations k and at two time
instances for the problem with container wall temperature control with λT = 0.
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Figure 7: Iteration history of
√
J for the controlled problem with λT = 0 for

each gradient step k for the problem with container wall temperature control.
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Figure 8: Iteration history of
√
J for the controlled problem with λT = 0.3 for

each gradient step k for the problem with container wall temperature control.
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t = 20s

t = 40s

Figure 9: The temperature u (white and grey stripes), velocity (arrows)
and free boundary (black line) after several gradient iterations k and at two
time instances for the problem with container wall temperature control with
λT = 0.3.
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t = 20s

t = 40s

Figure 10: The temperature u (white and grey stripes), velocity (arrows) and
free boundary (black line) after several gradient iterations k and at two time
instances for the problem with Lorentz force control.
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t = 20s

Figure 11: The Lorentz forces (arrows), the temperature u (white and grey
stripes) and the free boundary (black line) after several gradient iterations k
at t = 20s for the problem with Lorentz force control.
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Figure 12: Iteration history of
√
J for the controlled problem with λT = 0.3

for each gradient step k for the problem with Lorentz force control.
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coldest zone in the liquid phase

container wall

Lorentz forces

R0

Figure 13: Influence of the flow. In order to achieve a flat free boundary,
the cold material must be transported to the center. This is done be Lorentz
forces as depicted. Compare also Figures 11 and 10.
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Figure 14: Iteration history of the error of the free boundary
√
J0 (compare

(38)).

20



 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  2  4  6  8  10  12  14  16

Gradient iteration number k

β=β1,  δ=0, λT=0
β=β1,  δ=0, λT=0.3
β=0,  δ=1, λT=0.3

Figure 15: Iteration history of the error of the free boundary
√
JT (compare

(39)). As expected, for λT > 0 the functional JT delivers smaller errors than
for λT = 0.

4.4 Second test configuration

To demonstrate the scope of control with near-wall Lorentz forces we inves-
tigate a melting problem as second test configuration. As above we consider
an aluminium melt in a rotation symmetric cylinder with a diameter of 5cm
and a height of 10cm. The melting process is optimized over the time period
[0, 62.5s]. For αs/l we now choose

αs = 50
J

s · cm2 ·K
and αl = 200

J

s · cm2 ·K
.

The desired free boundary is the moving plane f(t, y) = 0.075m − 1
1250

m
s
· t

(t ∈ [0, T ], y ∈ G). As initial condition for the temperature we choose

u0(y, h) = uM + u′s/l(h− 0.075m) for y ∈ G and h ∈ H, (40)

where u′s and u′l are equal to

u′s/l :=
Lραs/l

ks/l(αl − αs)
· 1

1500
· m
s

.
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For the boundary value ub0 we choose

ub0

(
t, (y, h)

)
= uM +u′s/l

(
h−f(t, y)

)
for t ∈ [0, T ], y ∈ ∂G and h ∈ H.

(41)

Since we control only using near-wall Lorentz forces, we set

β = 0 , δ = 1 and λT = 0.3 .

As above, the spatial mesh contains 100 cells in height and 25 cells in radial
direction and we make use of the rotation symmetry.

The numerical results are presented Figure 16 (temperature, velocity and
free boundary), 17 (Lorentz forces) and 18 (cost Functional). It can be seen,
that the control with Lorentz forces now delivers good results. The free bound-
ary becomes flat by applying Lorentz forces directed upwards at the container
wall, see Figure 17. With such a force the hot material is transported to the
center with the consequence that the free boundary becomes flat.

4.5 Stopping criterion

Table 3 shows the number of iterations kmax resulting from the stopping crite-
rion (37) with the limit ε = 10−4. The algorithm converges quickly, and needs
only 12 iterations; except for the first test configuration with Lorentz force
control only, where the shape of free boundary is improved only very slightly.
For this case the stopping criterion is already reached after 4 iterations.

Test configuration # 1 1 1 2
β β1 β1 0 0
δ 0 0 1 1

λT 0 0.3 0.3 0.3
kmax 13 12 4 12

Table 3: The number of iterations kmax resulting from the stopping criterions
(37) for all considered cases. As tolerances we set ε = 10−4.
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t = 20s

t = 40s

Figure 16: The temperature u (white and grey stripes), velocity (arrows)
and free boundary (black line) after several gradient iterations k and two time
instances for the melting problem with Lorentz force control.
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t = 20s

Figure 17: The Lorentz forces (arrows), the temperature u (white and grey
stripes) and the free boundary (black line) after several gradient iterations k
at t = 20s for the melting problem with Lorentz force control.
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Figure 18: Iteration history of
√
J for the controlled problem with λT = 0.3

for each gradient step k for the melting problem with Lorentz force control.
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Conclusion

We present a control algorithm for the solidification process of a two phase
Stefan problem considering flow using a sharp interface model. The control
goal consists of tracking a prescribed evolution of the free boundary.

Our optimization approach ensures that the physical laws constituted by
our mathematical model hold at every stage of the optimization process. This
is accomplished by regarding the interface itself as the optimization variable.
We present several numerical examples which demonstrate the scope of our
method. It is one result of this work, that the tracking of the interface works
very well with container wall temperature control. However with near-wall
Lorentz force control only a slight improvement of the shape of the free bound-
ary was possible for the considered solidification problem. On the other hand
for the investigated melting problem Lorentz force control also works very
well.
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