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Structure exploiting discretization

This can be best explained in the case without control constraints, i.e. U,y = U.
Then the first order necessary optimality conditions for (P) read

VI(u) = au + RB*S*(SBu — z) = au+ RB*p =0 in U.

For proceeding on the numerical level this identity clearly gives us the advice to
relate to each other the discrete Ansdtze for the control u and the adjoint
variable p.

This remains true also in the presence of control constraints, for which this
smooth operator equation has to be replaced by the nonsmooth operator
equation

1
u=Py,(u—o(au+RB*p))=__1 Py, (—ERB*p> in U, (0.1)

where Py_, denotes the orthogonal projection in U onto the admissible set of
controls.

In any case, optimal control and corresponding adjoint state are related to each
other, and this should be reflected by numerical approaches to be taken for the
solution of problem (P).
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Controls should be discretized conservative, i.e. according to the relation between
the adjoint state and the control given by the first order optimality condition.
This rule should be obeyed in both, the First discretize, then optimize, and in the
First optimize, then discretize approach.
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A structure exploiting discretization concept

Let us closer investigate (0.1) in terms of the simple fixpoint iteration given next.

Algorithm

@ u given

@ do until convergence
ut =Py, (—éRB*p(u)), u=ut.

In this algorithm p(u) is obtained by first solving y = SBu, and then
p = S*(SBu — z).
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To obtain a discrete algorithm we now replace the solution operators S, S* by
their discrete counterparts Sp,, S; obtained by a Finite Element discretization,
say. The discrete algorithm then reads

Algorithm

@ u given
@ do until convergence
ut = PUad (—éRB*ph(u)), u= U+,

where pj(u) is obtained by first solving y = S,Bu, and then solving
pn = S;(SpBu — 2).

We note that in this algorithm the control is not discretized. Only state and
adjoint state are discretized.
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Two questions immediately arise.

@ Is Algorithm 3 numerically implementable?

@ Do Algorithms 2, 3 converge?

Let us first discuss question (2). Since both algorithms are fixpoint algorithms,
sufficient conditions for convergence are given by the relations

a > ||RB*S*SB||c(u)
for Algorithm 2, and by

a > [[RB*S;ShB|| £ (u)
for Algorithm 3, since Py , : U — U,q denotes the orthogonal projection which
is Lipschitz continuous with Lipschitz constant L = 1.
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Question (1) admits the answer Yes, whenever for given u it is possible to
numerically evaluate the expression

Pu,, (—éRB*Ph(U))

in the i — th iteration of Algorithm 3 with an numerical overhead which is
independent of the iteration counter of the algorithm.
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To illustrate this fact let us turn back to Example ?7(1), i.e. U = L?(Q) and B
denoting the injection, with a = constl, b = const2. In this case it is easy to

verify that

Py,y (v) (x) = Pa,p) (v(x)) = max {a, min {v(x), b}},
so that in every iteration of Algorithm 3 we have to form the control

W) = Posy (— 5P 02)

which for in the onedimensional setting is illustrated in Figure 8.

P(—p/alpha)

P(—p_h/alpha)

Continuous setting  Active set

FE Discretization Active set
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A 1-d example

Discrete active set
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A 2—d example

“1 08 06 04 02 0 02 04 06 08 1
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To construct the function u™ it is sufficient to characterize the intersection of
the bounds a, b (understood as constant functions) and the function —X p;, on
every simplex T of the triangulation = = 7},. For piecewise linear finite element
approximations of p we have the following theorem.

Let ut denote the function of (0.2), with py, denoting a piecewise linear, continuous
finite element function, and constant bounds a < b. Then there exists a partition
kn = {Ki, ... Kin)} of Q such that u* restricted to K; (j = 1,...,1(h)) is a
polynomial either of degree zero or one. For I(h) there holds

I(h) < Cnt(h),

with a positive constant C < 3 and nt(h) denoting the number of simplexes in Tp. In
particular, the vertices of the discrete active set associated to ut need not coincide
with finite element nodes.
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Proof: Abbreviate £ := —%p;‘; — a, 5,’; = b — ép; and investigate the zero
level sets 07 and OZ of £ and 52, respectively.

Case n = 1: 07 N T; is either empty or a point S7 € T;. Every point S7
subdivides T; into two sub-intervals. Analogously 02 N T; is either empty or a
point Sl.b € T;. Further S? # Sib since a < b. The maximum number of

sub-intervals of T; induced by 07 and Oﬁ therefore is equal to three. Therefore,
I(h) < 3nt(h), i.e. C = 3.

Case n € N: 07 N T; is either empty or a part of a k—dimensional hyperplane

(k < n) L} C T;, analogously OZ M T; is either empty or a part of k—dimensional
hyperplane (k < n) Lf’ C T;. Since a < b the surfaces L? and Lf’ do not
intersect. Therefore, similar considerations as in the case n = 1 yield C = 3.
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@ It is now clear that the proof of the previous theorem easily extends to
functions p, which are piecewise polynomials of degree kK € N, and bounds
a, b which are piecewise polynomials of degree /] € N and m € N,
respectively, since the difference of a, b and p;, in this case also represents a
piecewise polynomial function whose projection on every element can be
easily characterized.

@ We now have that Algorithm 3 is numerically implementable, but only
converges for a certain parameter range of a.. A locally fast (superlinear)
convergent algorithm for the numerical solution of equation (0.3) is the
semi-smooth Newton method, if the function G is semi-smooth in the sense
of [HIK03],[MUO03, Example 5.6].
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Let us recall that (0.1) for every o > 0 is equivalent to the equation

G(u) =u— Py, (u — aVJ(u)) =u— Py, (u—o(au + RB*p)) =

1
=,_1u— Py, (——RB*p) =0in U, (0.3)
a (o1

so that we may apply a semi-smooth Newton algorithm, or a primal-dual active
set strategy to its numerical solution.

For the choice o = é we in certain situations obtain that the semi-smooth
Newton method and the primal-dual active set strategy are equivalent, and are
both numerically implementable in the discrete case.
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What is the underlying discrete problem?
Let us define

In(u) := J(ShBu,u), ue U

and consider the following infinite dimensional optimization problem

min Jy(u). (0.4)

u€Uyg

According to (7?) this problem admits a unique solution up € U,q which is
characterized by the variational inequality

(VJ;,(u;,), v —up)y > 0 forall v € Uyg, (0.5)
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This variational inequality is equivalent to the non-smooth operator equation
(compare (0.3))

Gh(u) = u — Py, (u — anh(u)) =u— Py, (u—o(au+ RB*py)) =_

o=

1
u— Py, (_ERB*Ph> =0in U,

1
o

where similar as above

VIn(u) = au + RB*S}(SpBu — z) = awu + RB* pp(u).

The considerations made above now imply that the unique solution uj, of the
infinite dimensional optimization problem (0.4) can be numerically computed
either by Algorithm 3 (for o large enough), or by a semi-smooth Newton method
(which for o = é coincides with the primal-dual active set strategy) (since the
function G, also is semi-smooth), however in both cases without a further
discretization step.
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Primal-dual active set strategy

Solve (B = Id)

(ax+ S;Sp)u + X= Spz=—r

W(u, X; u) := max(A + o(u — b),0) + min(A + o(u — a),0) = X
Primal-dual active set strategy:

Initialize up = 0, Ao = —r; set I = 1, € > 0 small.

Loop /
.A.Ia = {X/_l +o(uy_1—a)<0} (={-r— S;:‘Shu,_l — aa < 0}, if
o= a),
A;’ = {5\,_1 + o(ui—1 — b) > 0} (= {—r— S,’;‘Shu,_l — ab > 0}, if
o= a),

= Q\ (A7 U AD).
1>2, A7 =A2 |, A=AV | or |W(u_1, A1) — N4 < e
u=u_1, A =X, RETURN.
Otherwise R
uy = aon A7, u,=bonAf’, A=0o0onZ
Solve for u|z,, /\1|Aqu?
(Ot + S,’,"Sh)u, + AN =—r
l:=1+1.
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Semi-smooth Newton method

@ u given, solve until convergence
Gl (u)ut = —Gp(u) + G/ (v)u, u=u".

1. This algorithm is implementable whenever the fix—point iteration is, since

— Gn(u) + Gp(u)u =

1 1 1
= _PUad (—ERB*ph(U)) - prad (_ERB*ph(u)) RB*S,TShBU.

2. In certain settings (e.g. Example 77,(1)) this algorithm for every o > 0 is
locally fast convergent.
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Neumann (Robin) boundary control

U= L(F), Bu:= ffu-dl € (H)*(Q), R: U* — U with R(u,-)y = u.
Discrete weak form
a(yn, vn) = /uvhdl' for all v, € W,
r

discrete adjoint equation

a(vp, pp) = /(Yh — Z)vpdx for all v, € W,
Q

Thus

RB*pp, = (pn)r piecewise polynomial, continuous on the boundary grid.

With U,y = {a < u < b} we have for the variational discrete u, € U,qg

up = max{a, min{—l(ph)r, b}} simple cut—off at the bounds.
a
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Dirichlet boundary control

U = L%(T), Bu := — Jrudy -dr e (H&(Q) N H2(R))*, R : U* — U with
R(u,-)y = u.
Discrete weak form; find y, € W, with

a(yn, vp) = 0 for all v, € Y}, and y, = N(u) € Trace(W,,)

discrete adjoint equation for p, € Y}
a(vp, pp) = /(y,, — z)vpdx for all v, € Yy,
Q

Thus 1
up = PUad(aK’h)’

where k;, € Trace(W),) denotes the discrete adjoint flux satisfying
/nhw,,dr = a(wp, pn) — /(}'h — z)wpdx for all wy, in W,
r Q
With U,y = {a < u < b} we have for the variational discrete u, € U,y

1
up = max{a, min{;nh, b}} simple cut—off at the bounds.
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Dirichlet boundary control
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Error estimates

Let u denote the unique solution of (??), and uy, the unique solution of (0.4). Then
there holds

1
allu — uylly + S lly(w) — yull? <

< (B*(p(u) — Pr()), un — w)uw,u + Slly () = (@), (06)

where pp(u) := Sp(SBu — z), yp(u) := SpBu, and y(u) := SBu.
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Proof: We switch back to the variational inequalities

(I (u), v — u)y=,y > 0 forall v € Uyg,

and

(I (up)s v — up)y=,u > 0 forall v € U,g.

Crucial:
The unique solution u of the continuous problem (upper inequality) is an
admissible test function for the discrete problem (lower inequality).

Let us emphasize, that this is different for approaches, where the control space is
discretized explictly. In this case we may only expect that uj, is an admissible
test function for the continuous problem (if ever).
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So let us test the optimality condition for u with up, and the optimality condition
for up with u, and then add the resulting variational inequalities. This leads to

(a(u — up) + B*S*(SBu — z) — B*S;(ShBup — z),up — u)y=,y > 0.

This inequality is equivalent to

allu = uylly < (B*(p(u) — Bn(u)) + B*(Br(u) — Pa(un)); up — u))ux,u-

Let us investigate the second addend on the right hand side of this inequality.
By definition of the adjoint variables there holds

(B*(Pn(u) — pn(u), up — u) ys y = (Pn(u) — pn(u), B(up — u))y,y~ =

[ ) = yh(@))3(@) = i) =
Q

= a(yn — yn(u), Pn(u) — pn(u))

1 1
=—llyn—yl*+ /(y =)y = yn(u))dx < —Zllyn = yII? + Slly = yn(u)]®
Q

so that the claim of the theorem follows.
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What are the consequences of this Theorem?

From the structure of this estimate we immediately infer that an error estimate
for ||u — up||y is at hand, if

@ an error estimate for ||B*(p(u) — pp(u)||u* is available, and

@ an error estimate for ||y(u) — yn(u)|l 2(q) is available.

This means, that the error of ||u — up||y is completely determined by the
approximation properties of the discrete solution operators S, and S;.
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The error ||u — up||y between the solutions u and uy, is completely determined by the
approximation properties of the discrete solution operators S and Sj:.
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Let us revisit our first example with U = L2(Q2) and B denoting the injection.
Then y = SBu € H%(Q) N H}(Q) (if for example 2 € C1'1 or Q polygonal,
convex). Let us estimate the right side of our error estimate. There holds

(RB™(p(u) — pn(u)), u — up)y = /(P(U) — Pr())(u — up)dx <
Q

< llp(u) — Ba(W)ll 2(@)llu — unll2) <

< ch?|ly(u) — 2||L2(9)||“ - Uh||L2(Q)’

and

Iy () = ya(@)ll2 < ch?|lulli2(q)-
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Let u and uy, denote the solutions of the continuous and the discrete problem,
respectively in the setting of the first example,(1). Then there holds

llu — upllj2() < ch? {||Y(") — Zlli2(q) + ||u||L2(Q)} .

And this theorem is also valid for the setting of this example,(2) if we require
F; € L12(Q) (j =1,...,m). This is an easy consequence of the fact that for a
function z € Y there holds B*z € R™ with (B*z); = (F;, z)y=,y for
i=1,...,m.
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Let u and uyp, denote the solutions of problem (??) and (0.4), respectively in the
setting of Example 7?(2). Then there holds

llu — upllzm < ch® {lly(u) — zll 29) + llullzm } »

where the positive constant now depends on the functions F; (j = 1,...,m).
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It suffices to estimate

(RB*(p(u) — pn(u)), u — up)pm =

=3 { [ Fitpt) = pa(u))ax(u - uh),-} <
Q

j=1

1
m 2
< lIp(u) — Br()ll 2 (Z / |F,-|2dx) llu — upllzm <

j=14

< ch?|ly(u) — zll 20 llu — up|lzm.
(2)

The reminder terms can be estimated as above.
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Numerical example distributed control

We consider our optimal control problem with Q denoting the unit circle,

Uag = {v € 12(2); —0.2 < u < 0.2} C L%(Q)

and B : L2(Q) — Y*(= H—1(Q)) the injection. Further we set
z(x) := (1 — |x|?)x1 and & = 0.1. The numerical discretization of state and
adjoint state is performed with linear, continuous finite elements.

Here we consider the scenario that the exact solution of the problem is not
known in advance (although it is easy to construct example problems where
exact state, adjoint state and control are known, see [T05]). Instead we use the
numerical solutions computed on a grid with h = ﬁ as references.
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h=1,a=0.01
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To present numerical results it is convenient to introduce the Experimental Order
of Convergence, brief EOC, which for some positive error functional E is defined

by
In E(hl) —1In E(hz)
E = —_——

oc In h1 —1In hz

EOC for the state y
h Ey L2 E.Ysup E.Ysem Ey Hy EO C.V L2 E OCYsup EOC}' Hy
1/1 1.47e-2 1.63e-2 5.66e-2 5.85e-2 - - -
1/2 5.61le-3 6.02e-3 2.86e-2 2.92e-2 1.39 1.44 1.00
1/4 1.47e-3 1.93e-3 1.38e-2 1.3%e-2 1.93 1.64 1.08
1/8 3.83e-4 5.02e-4 6.89e-3 6.90e-3 1.94 1.95 1.01
1/16 9.65e-5 1.26e-4 3.44e-3 3.45e-3 1.99 2.00 1.00
1/32 2.40e-5 3.14e-5 1.71e-3 1.71e-3 2.01 2.00 1.01
1/64 5.73e-6 7.78e-6 8.37e-4 8.37e-4 2.06 2.01 1.03

1/128 1.16e-6 1.85e-6 3.74e-4 3.74e-4 2.30 2.07 1.16
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EOC for the adjoint state p

h EPL2 EPsup EPsem EPHI EO CPL2 EO CPsup EO CPHI
1/1  2.33e-2 2.62e-2 8.96e-2 9.26e-2 - - -
1/2 6.14e-3 7.75e-3 4.36e-2 4.40e-2 1.92 1.76 1.07
1/4 1.59e-3 2.50e-3 2.17e-2 2.18e-2 1.95 1.64 1.02
1/8 4.08e-4 6.52e-4 1.09e-2 1.09e-2 1.97 1.94 0.99

1/16 1.03e-4 1.64e-4 5.48e-3 5.48e-3 1.99 1.99 1.00
1/32 2.54e-5 4.14e-5 2.73e-3 2.73e-3 2.01 1.99 1.01
1/64 6.11e-6 1.04e-5 1.33e-3 1.33e-3 2.06 1.99 1.03

1/128 1.27e-6 2.6le-6 5.96e-4 5.96e-4 2.27 1.99 1.16
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EOC for the control u

h E., Evw Eueern E., EOC,, EOC,, EOC,,
1/ 2.18e-1 2.00e-1 8.66e-1 8.93e 1 - - =
1/2 5.54e2 7.75e2 4.78¢e-1 4.8le-1 1.97 1.37 0.89
1/4 1.16e2 2.30e2 22lel 2221 2.25 1.75 1.12
1/8 3.02e-3 5.79e-3 1.15e-1 1.15e-1 1.94 1.99 0.95

1/16 7.66e-4 1.47e-3 6.09e-2 6.09e-2 1.98 1.98 0.92
1/32 1.93e-4 3.67e-4 2.97e-2 2.97e-2 1.99 2.00 1.03
1/64 4.82e5 9.38e-5 1.4le-2 1.4le2 2.00 1.97 1.07
1/128 1.17e5 2.37e5 6.40e-3 6.40e-3 2.04 1.98 1.14

EOC for the control u, conventional approach

h [ Euop [ E.,, EOC,, EOC,, EOC,,
1/T 2.18e1 2.00e-1 8.66e-1 8.93e1 - - -
1/2 6.97e-2 9.57e-2 5.10e-1 5.15e-1 1.64 1.06 0.79
1/4 1.46e-2 3.44e2 2.3%-1 2.40e-1 2.26 1.48 1.10
1/8 4.66e-3 1.65e-2 1.53e-1 1.54e-1 1.65 1.06 0.64

1/16 1.57e-3 8.47e-3 9.94e-2 9.94e-2 1.57 0.96 0.63

1/32 5.5le4 4.33e-3 6.70e-2 6.70e-2 1.51 0.97 0.57

1/64 1.58e-4 2.09¢-3 4.05e-2 4.05e-2 1.80 1.05 0.73

1/128 4.91e-5 1.07e-3 2.50e-2 2.50e-2 1.68 0.96 0.69
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Ea:=|(A\ Ap) U (Ap\ A)|

denotes the symmetric difference of discrete and continuous active sets. EOC
with the corresponding subscripts denotes the associated experimental order of

convergence.

EOC for active set
conventional approach our approach
h E, EOC, E, EOC,
1/1 5.05e-1 - b5.1le1 -
1/2 5.05e-1 0.00 3.38e-1 0.60
1/4 5.05e-1 0.00 1.25e-1 1.43
1/8 2.60e-1 0.96 2.92e-2 2.10
1/16 1.16e-1 1.16 7.30e-3 2.00
1/32 4.98e-2 1.22 1.81e-3 2.01
1/64 1.88e-2 1.41 4.08e-4 2.15

1/128 6.98e-3 1.43 8.5le-5 2.26
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Postprocessing

Let us note that similar numerical results can be obtained by an approach of
Meyer and Résch presented in [MR04]. The authors in a preliminary step
compute a piecewise constant optimal control & and with its help compute in a
post-processing step a projected control u through

1
u= PUad(_ERB*ph(a))'

The numerical analysis requires the assumption, that the measure of the set of
elements intersected by the boarder of the active set of the control can be
bounded in terms of the grid size.
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Bang—Bang control

1
in J - = _ 2
Jmin J(u) = 3 /ﬂ ly = yol
subject to y = G(u).

Here,
Uag :={v € L3(Q);a < u < b} C L3(Q)

with a < b constants, and y = G(Bu) iff
—Ay =uin Q, and y = 0 on 89.

More general elliptic operators may be considered, and also control operators
which map abstract controls to feasible right-hand sides of the elliptic equation.
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Existence and uniqueness, optimality conditions

The optimal control problems admits a unique solution.

The function u € U,y is a solution of the optimal control problem iff there exists
an adjoint state p such that y = G(u), p = G(y — y) and

(p,v—u) >0forall v e Uy.

There holds
= a, p(X) >0,
u(x) { €labl, p(x)=0,
= b, p(X) <.

Strict complementarity requirement for the solution u:
3C > 0Ve > 0: L({x € Q;|p(x)| < €}) < Ce
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Variational discretization

Discrete optimal control problem:

1
in J = = — yl?
Jmin Jn(u) 2/Qlyh Yol
subject to y, = Gp(u).

Here, G,(u) denotes the piecewise linear and continuous finite element
approximation to y(u), i.e.

a(yns vh) := (Vyn, Vvp) = (u, vp) for all v, € X,
where on a given, quasi-uniform triangulation 7,
Xp, == {w € C*(Q); w,, =0, w|, linear for all T € T;}.

This problem is still co—dimensional.

Ritz projection Ry, : H&(Q) — Xp,
a(Rpw, vp) = a(w, vy) for all v, € Xj
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Existence and uniqueness, optimality conditions for discrete problem

The variational-discrete optimal control problems admits a unique solution.

The function up, € U, is a solution of the optimal control problem iff there
exists an adjoint state pj, such that y, = Gn(up), pn = Gn(yn — yo) and

(Phyv —up) > 0 forall v € Uy.

There holds
= a, ph(x) >0,
up(x) € [a,b], pn(x) =0,
= b, Ph(X) <.
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Error estimate

Let u, up, denote the unique solutions of the optimal control problems with
corresponding states y = G(u) and y, = Gp(up), resp. Then

[lu — upllp1s ly — yalls lp — Palleee < C {h2 +llp— RhP||L°°}

Sketch of proof:

o |lu—upllp < (b—a)C({p>0,py <0}U{p <0,p, >0})

© {p>0,p, <0}U{p<0,p, >0} C{lp(x)| < llp = Pnllc} =

o |lu—upllx < Cllp— prlleo

 |lp — Phlloo < |lP — Ruplloo + lIRhP — Phlloo

® [|IRnp — phlloo < Clly — yall-

@ Combine these estimates with (p, up, — u) > 0 and (pp, u — up) > 0 (note

that u is admissible as testfunction for the discrete problem!).
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Numerical example with 2 switching points

t
rete
* FEgid [

Experimental order of convergence:
@ Active set 3.00073491, (here =) ||u — up]|;1: 3.00077834
Function values 1.99966106
[lp — phllLee: 1.99979367
lly — ynllLee: 1.9997965
llp — pnll2: 1.99945711
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Time—dependent problems

For the time—dependent case we sketch the analysis of Discontinuous Galerkin
approximations w.r.t. time for an abstract linear—-quadratic model problem. The
underlying analysis turns out to be very similar to that of the previous section for
the stationary model problem.

Let V, H denote separable Hilbert spaces, so that (V,H = H*, V*) forms a
Gelfand triple. We denote by a: V X V — R a bounded, coercive (and
symmetric) bilinear form, and again by U the Hilbert space of controls, and by
B : U — L%(V*) the linear control operator. Here, T > 0. For yo € H we
consider the state equation

0}-((Bu)(t), Wy-vdt Yvel2(V), L. _rp,

(yO’V)H Yveyv,

{T()’t, vYv=,v + a(y, v)dt
(y(0), v)y

which for every u € U admits a unique solution
y=y(u) € W:={w € L’(V),w: € L>(V*)}.
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Optimization problem

s.t. y = T Bu,
where U,q C U denotes a closed, convex subset. Introducing the reduced cost
functional N
J(u) := J(y(u), u),

the necessary (and in the present case also sufficient) optimality conditions take
the form

(7P) { min(y,mewx Uy 405 u) = 3lly — zli%,) + 5 llull}y ©7)

(¥ (u),v — uyy=,y > 0 forall v € Upg.
Here .
VJ(u) = au + B*p(y(u)),
where the adjoint state p solves the adjoint equation

T T
J{=pt,w)v=, v + a(w, p)dt Jly—z,w)y VYwew,
0 0

(p(T)7 V)H 0’ v e V

This variational inequality is equivalent to the semi—smooth operator equation

u= Py, (—iRB*p(y(u))) :
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Discretization

Let V;, C V denote a finite dimensional subspace, and let
0=ty <t <:-+-<tm= T denote a time grid with grid width §t. We set

In := (th—1,tn] for n =1,..., m and seek discrete states in the space
Vise = {1 [0, TI X @ = R, (t, )|, € Vi, $(-,x)|, EPrforn=1,..

i.e. yn s is a polynomial of degree r € N w.r.t. time. Possible choices of Vj, in
applications include polynomial finite element spaces, and also wavelet spaces,
say. We define the discontinuous Galerkin w.r.t. time approximation
(dG(r)-approximation) ¥ = y, 5:(u) = Th,s:Bu € Vp s5: of the state y as unique

.,m}.

solution of
m m
A(y,v) = Z /(_7:, v)u + a(y, v)dt + Z([y]"_la VT + (50, V) =
n=1 In n=1
T
= (yo, V0+)H + /((Bu)(t), v)y=,vdt forall v € Vj, 5.. (0.8)
0
Here,
v

vt = tlin:n v(t,-), v = t&n:n v(t,-), and [v]" := v"



Mathematics of PDE constrained optimization
Michael Hin:g

UH
i
n

Discrete optimal control problem

The discrete counterpart of the optimal control problem reads for the variational
approach

(Ph,se)  min Jp se(u) := J(yn,s¢(u), u)
u€Uyqg
and it admits a unique solution up 5¢ € U,g. We further have

Vhse(v) = av + B*pp se(yn,s5¢(v))s
where pp, 5:(Yh,5:(v)) € Vi s: denotes the unique solution of

.
A(v, pp,st) = /(yh,ét — z,v)pdt for all v € V, 5.
0

Further, the unique discrete solution up, 5, satisfies
(un,5t + B*pn,sts v — tpse)ux,u > 0 for all v € Uyg.
As in the continuous case this variational inequality is equivalent to a

semi—smooth operator equation, namely

-
up st = Pu,y (_ERB Ph,dt(.Yh,zSt(uh,cSt))) .
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Error estimate

Let u, up 5+ denote the unique solutions of (P) and (Pp,s¢), respectively. Then

allu — upsell?) + llyn,se(un,se) — Yh,ét(u))”iz(H) <
< (B*(p(u) — Pn,st(u)), up,st — vyu=,u + lly(u) — }’h,st(u)”fz(,.,), (0.9)
where pp 5¢(u) := 777”:&(’7'Bu — 2), yn,5¢(u) := Th,5:Bu, and y(u) := T Bu.

As a result of estimate (0.9) we have that error estimates for the variational
discretization are available if error estimates for the dg(r)-approximation to the
state and the adjoint state are available. Using the setting for the heat equation
investigated by Meidner and Vexler we recover with the help of [?, Prop. 4.3,4.4]
their result of [?, Corollary 5.9] for variational discretization obtained with dG(0)
in time and piecewise linear and continuous finite elements in space, namely

allu — upselly + Ilyn,se(un,se) — Yh,ét(u))”iZ(H) < Cc{ot + h?}.
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