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Abstract

Derivative-based solution algorithms for optimal control problems of time
dependent non-linear PDE systems require multiple solutions of backward-in-
time adjoint systems. Since these adjoint systems in general depend on the
primal state, and thus on forward information, the storage requirement for
such solution algorithms is very large.

This paper proposes stable and memory efficient checkpointing techniques
for evaluating gradients and Hessian times increment for such solution al-
gorithms, and presents numerical tests with the instationary Navier-Stokes
system which demonstrate that huge memory savings are achieved by the
proposed approach while the increase in runtime is moderate. More precisely,
a memory reduction of two orders of magnitude causes only a slow down factor
of two in run-time.

Key words. Optimal control, Newton-CG approach, checkpointing, Navier-Stokes
system

1 Introduction

To develop ideas let us consider the equation

G(y, u) = G1(y) − Bu = 0 in Z∗ (1)

as abstract realization of a time-dependent, nonlinear PDE, say here, G : Y × U →
Z∗ denotes a sufficiently smooth mapping, and Y , U , and Z denote Hilbert spaces,



and B : U → Z∗ a linear, bounded control operator. In the present paper we
develop checkpointing techniques for derivative based solution algorithms for the
following optimal control problem: Find an optimal control u∗ ∈ U which minimizes

the functional

Ĵ(u) := J(y(u), u) = J1(y) + J2(u), (2)

where y ∈ Y and u are related through the equality constraints (1).
To simplify the exposition we assume that J = J1(y) + J2(u) : Y × U → R and

that J is sufficiently smooth. From now onwards we further assume that equation (1)
for every u ∈ U admits a unique solution y(u) and that Gy(y, u) admits for every
(y, u) ∈ Y × U a bounded inverse.

As model algorithm for the numerical solution of problem (1) - (2) we consider
the Newton-CG method. It iteratively determines the Newton direction by applying
the conjugate gradient method to the Newton equation

Ĵ
′′

(u)δu = −Ĵ
′

(u). (3)

Here we assume that Ĵ
′′

(u) is positive definite which certainly is satisfied in a small
neighborhood of a nonsingular local minimum of Ĵ

′

(u). The whole optimization
algorithm is then defined in terms of the following procedure:

Algorithm 1.1. (Newton-CG)
Given initial point u0

For k = 0, 1, 2, ...
Compute the increment δuk by applying the CG method to
Ĵ

′′

(uk)δuk = −Ĵ
′

(uk), starting from δuk = 0.
CG method

Set i = 0, δuk
0 = 0, r0 = Ĵ

′′

(uk)δuk
0 + Ĵ

′

(uk), p0 = −r0.
While ‖ri‖ > TOL

1. αi =
r>i ri

p>i Ĵ
′′(uk)pi

,

2. δuk
i+1 = δuk

i + αipi,

3. ri+1 = ri + αiĴ
′′

(uk)pi,

4. βi+1 =
r>i+1ri+1

r>i ri
,

5. pi+1 = −ri+1 + βi+1pk,
6. i = i + 1.

End CG method
Set uk+1 = uk + δuk

i .
End For

To perform Alg. 1.1 we first need expressions for the gradient Ĵ
′

(u) and the
reduced Hessian Ĵ

′′

(u) of the objective function Ĵ(u). Moreover, step 1. and step 3.
of CG method require the evaluation of Ĵ

′′

(uk)pi using the reduced Hessian Ĵ
′′

(uk)
evaluated at the current Newton iterate uk. Here, pi denotes the conjugate direction.

2



Algorithms for computing the gradient Ĵ
′

(u) and the product of reduced Hessian
times vector are specified in the following.

Introducing the adjoint variable λ ∈ Z as a solution of the adjoint equation

Gy(y, u)∗λ = −Jy(y, u), (4)

it is well known that the gradient of Ĵ can be expressed as

Ĵ
′

(u) = Ju(y(u), u) + Gu(y(u), u)∗λ = J2u
(u) + Gu(y(u), u)∗λ. (5)

Calculation of the gradient Ĵ
′

(u) thus can then be summarized to the following
procedure:

Algorithm 1.2. (Gradient)

1. Solve G(y(u), u) = 0 for y ∈ Y ,

2. solve Gy(y(u), u)∗λ = −Jy(y, u) for λ ∈ Z,

3. set Ĵ
′

(u) = Ju(y(u), u) + Gu(y(u), u)∗λ.

In the present situation the reduced Hessian is given by

Ĵ
′′

(u) = Gu(y(u), u)∗Gy(y(u), u)−∗ {Jyy(y(u), u)+

〈Gyy(y(u), u)(·, ·), λ〉Z∗,Z}Gy(y(u), u)−1Gu(y(u), u) + Juu(y(u), u), (6)

where we have used Gyu = Guy = 0. From its structure we conclude that the

application of Ĵ
′′

(u) to an element δu ∈ U amounts to

Algorithm 1.3. (Reduced Hessian times vector)

1. Solve Gy(y(u), u)v = Gu(y(u), u)δu for v ∈ Y ,

2. form rhs := Jyy(y(u), u)v + 〈Gyy(y(u), u)(v, ·), λ〉Z∗,Z ,

3. solve Gy(y(u), u)∗µ = rhs for µ ∈ Z,

4. evaluate µ̃ := Gu(y(u), u)∗µ, and finally

5. set Ĵ
′′

(u)δu = µ̃ + Juu(y(u), u)δu = µ̃ + J2uu
(u)δu.

One observes, that the adjoint operator Gy(y(u), u)∗ comes into play to provide
λ in step 2. of Alg. 1.2 and µ in step 3. of Alg. 1.3. Now, we think of (1) as the
abstract realization of a time-dependent nonlinear PDE system on the time horizon
[0, T ] with y denoting the state variables and u serving as control variables. Then,
for given control u the computation of λ requires knowledge of the state y(u) on the
whole time horizon. Similar, the computation of µ in Alg. 1.3 requires knowledge
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of the state variables y and v on the whole time horizon. In particular, for large
time horizons with y and v representing a two- or three-dimensional quantities field
storage may form a serious bottleneck. In the present paper we propose efficient
checkpointing strategies to circumvent this storage problem.

Let us briefly comment on contributions to memory reduced computation of
adjoints. Static and adaptive checkpointing techniques for the realization of Alg. 1.2
are developed in [3, 4, 11, 9, 16, 17, 15, 18]. Optimal checkpointing strategy is
applied to the Burgers equation in [12]. The optimal static approach is applied to
the Navier-Stokes system in [13], and in [14] for the same problem is extended to an
adaptive memory and run-time reduced checkpointing strategy.

In the present paper we introduce checkpointing strategies for the memory-
efficient implementation of Alg. 1.1. These strategies combine adaptive checkpoint-
ing of [9, 14] with static checkpointing for non-uniform step cost distributions as
follows: An adaptive schedule is used to compute Ĵ

′

(u), which in turn induces a
time discretization as well as a step cost distribution, which is kept fixed for per-
forming subsequent static checkpointing in the CG-iteration. To evaluate Hessian-
vector products in the CG method, i.e. to implement Alg. 1.3, efficient checkpoint-
ing strategies are developed in the present paper. The computer implementation
is based on the routine a-revolve, combining static and adaptive checkpointing for
uniform and non-uniform step cost. This algorithmical tool is an extension of the
package revolve which A. Griewank and A. Walther developed in [4].

The evaluation of the Hessian-vector product, particularly the realization of
Alg. 1.3, can be interpreted as the evaluation of tangents of adjoints and is equivalent
to the implementation by Algorithmic Differentiation (AD). The forward simulation,
i.e. the time integration of the equality constraints (1), is divided into a sequence
of elementary steps or operations through the time horizon, which are evaluated
successfully. Parallel to this, we perform step 1. of Alg. 1.3, provided values of the
direction δu are available. This procedure can be interpreted as a forward propaga-
tion of tangents, i.e. the forward mode of AD. Then, we evaluate adjoint variables
during the reverse propagation of gradients, i.e. the reverse mode of AD. Parallel to
this procedure, also in the reverse mode, we perform step 3. of Alg. 1.3 as a forward
propagation of tangents applied to the evaluation of adjoints. During this procedure
the so called tangents of adjoints are evaluated. For more details concerning forward
and reverse mode of AD see [3] (Chapter 3 and 4).

The remaining part of this paper is organized as follows. Section 2 introduces
checkpointing techniques, particularly efficient reversal schedules. In Section 3 the
instationary Navier-Stokes equations are adapted to the setting introduced in Sec-
tion 1. Section 4 describes the implementation of efficient checkpointing strategies
applied to the optimal control problem governed by the Navier-Stokes equations. We
illustrate the capabilities of efficient reversal schedules w.r.t. memory reduction and
run-time effort in the calculation of the tangents of adjoints. Finally, in Section 5
we present some conclusions.
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2 Reversal schedules

In this section we describe reversal schedules based on checkpointing techniques and
develop new static checkpointing strategies for step sequences with non-uniform
step cost. They can be applied to numerical calculation of adjoints and tangents of
adjoints. In this context we refer to (1) and (4) as the realization of a forward-in-time
PDE and a backward-in-time adjoint PDE, respectively.

2.1 Tangents of adjoints, basic, and binomial approaches

The numerical calculation of tangents of adjoints is based on appropriate discretiza-
tions of forward and adjoint PDEs. For calculating an approximation of y(u) and v
one has to evaluate subfunctions Yj+1 and Vj+1, 0 ≤ j < `, resulting from the time
discretization of the forward PDE. These subfunctions act on the states yj and vj to
calculate the subsequent intermediate states yj+1 and vj+1 for 0 ≤ j < ` depending
on a control action ūj, i.e.,

yj+1 = Yj+1(y
j, ūj) and vj+1 = Vj+1(y

j, vj, ūj) . (7)

We combine two subfunctions Yj+1 and Vj+1 to the forward time step Fj+1 =

(Yj+1, Vj+1)
> , 0 ≤ j < `. In order to compute tangents of adjoints the discretization

of the adjoint PDE yields subfunctions Ȳj+1 and V̄j+1 for ` > j ≥ 0 with

λj = Ȳj+1(y
j, ūj, λj+1) and µj = V̄j+1(v

j, ūj, µj+1, yj, λj+1) , (8)

which are combined to the adjoint time step

F̄j+1(y
j, vj, ūj, λj+1, µj+1) =

(
Ȳj+1(y

j, ūj, λj+1), V̄j+1(v
j, ūj, µj+1, yj, λj+1)

)>
. (9)

The evaluation of F̄j+1 may require some intermediate results calculated during the
computation of yj+1 and vj+1 from the previous states yj and vj, respectively. Hence,
it is supposed that for each 0 ≤ j < `, there exists a recording step

F̂j+1(y
j, vj, ūj) =

(
Ŷj+1(y

j, ūj), V̂j+1(y
j, vj, ūj)

)>

, (10)

which causes the recording of intermediate values required during the evaluation of
the time step Fj+1 onto a data structure called tape. Using the recording step F̂j+1

and adjoint time step F̄j+1 the basic way to compute tangents of adjoints reads as
follows.

Algorithm 2.1. (Basic approach)
Recording: Set y and v to the initial values y0 and v0.

do j = 0, ` − 1
Perform (yj+1, vj+1)

>
= F̂j+1(y

j, vj, ūj)
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end do
Reverse: Set λ and µ to the end values λ` and µ`

do j = ` − 1, 0,−1
Perform (λj, µj)

>
= F̄j+1(y

j, vj, ūj, λj+1, µj+1)
end do

The storage requirement of the basic approach is proportional to the number ` of
time steps because intermediate data of ` time steps are stored during the recording
steps. Thus, the memory requirement of the basic approach may become a prob-
lem if we consider real-world problems, for example computing adjoints of 3D flows.
Therefore, due to their size, only a very limited number of intermediate states,
called checkpoints, can be kept in memory. Applying a checkpointing technique,
the required intermediate values are generated piecewise by restarting the evalua-
tion repeatedly from the suitably placed checkpoints. Therefore, the calculation of
tangents of adjoints can be performed based on a checkpointing strategy, even in
such cases where the basic method fails due to excessive memory requirement (see
e.g. [4, 5]). These checkpointing strategies, the so called reversal schedules, can be
formalized as follows.

Definition 2.2 (Reversal Schedule S). For an evolution of ` time steps and c avail-
able checkpoints a reversal schedule S initializes j = 0 and subsequently performs a
sequence of basic actions

Am ≡ Increment j by m ∈ {1, . . . , ` − j − 1}, Am = Fj+1 ◦ ... ◦ Fj+m

D ≡ Decrement ` by 1 if j = ` − 1, D = F̂` ◦ F̄`

Wi ≡ Copy state j to checkpoint i ∈ {1, 2, . . . , c}
Ri ≡ Reset state j to checkpoint i

until j has been reduced to 0, i.e., the reversal is finished.

To derive optimal reversal schedules, i.e. schedules that minimize the overall
evaluation time, one has to take into account following parameters:

1. the number ` of time steps to be reversed;

2. the number c of checkpoints that can be accommodated; and

3. the step cost: tj = TIME(Fj), t̂j = TIME(F̂j), t̄j = TIME(F̄j).

To classify available reversal schedules we introduce some notations, needed in the
following. Step cost are called uniform if t = tj for all 1 ≤ j ≤ `, and non-
uniform if ti 6= tj for some i 6= j. Reversal schedules for a given and adaptive
determined number of time steps are called static and adaptive reversal schedules,
respectively. According to [9] we denote by Sbin(`, c) and Sopt(t`, c) the optimal
static reversal schedules for uniform and non-uniform step cost, respectively, where
t` =< t1, ..., t` > denotes a step cost distribution in the non-uniform case. Analo-
gously, we denote by Sadapt(`, c) and Sadapt(t`, c) adaptive reversal schedules for the
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uniform and non-uniform case, respectively (see [9, 14]). Optimal static reversal
schedules Sbin(`, c) for uniform step cost are called binomial reversal schedules.
One such binomial reversal schedule is shown in Fig. 1. Here, time steps are plotted
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Figure 1: Binomial reversal schedules Sbin(10, 3)

along the vertical axis and computing time is represented by the horizontal axis.
Hence, the horizontal axis can be thought of as the computational axis. Each solid
horizontal line including the computational axis itself represents a checkpoint. The
writing Wi and reading Ri of a checkpoint is marked with a dot. The solid slanted
lines represent the actions Am, i.e. the execution of time steps Fj without recording.
The returning actions D are visualized by dotted slanted lines.

The explicit representations for the minimal evaluation cost Tbin(`, c) of binomial
reversal schedules is

Tbin(`, c) = r` − β(c + 1, r − 1), (11)

with r being the unique integer satisfying

(c + r − 1)!

c! (r − 1)!
= β(c, r − 1) < ` ≤ β(c, r) =

(c + r)!

c! r!
. (12)

For the derivation of this expression we refer to [3, 4]. The concept of binomial
reversal schedules and its evaluation cost is crucial for the construction of efficient
reversal schedules, which will be described in the following.

2.2 Efficient reversal schedules

According to [11], in the case of non-uniform step cost the complexity for determining
an optimal reversal schedule Sopt(t`, c) is O(`2c). Thus, its computation is extremely
expensive, especially for large time horizons. For this situation we propose a heuristic
reversal schedule, which is proved to be a very efficient, and performs very well
in many numerical tests. In what follows let us denote static reversal schedules
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constructed by this heuristic by Sef(t`, c), where ef stands for efficient. Tef(t`, c)
denotes the related evaluation cost of the reversal schedule Sef(t`, c). To construct
efficient reversal schedules we first apply binomial reversal schedules to reverse step
sequences with non-uniform step cost.

2.2.1 Upper bound for Tbin(t`, c)

Consider the binomial reversal schedule Sbin(`, c), applied for reversing a sequence
of ` time steps with up to c checkpoints available and non-uniform step cost distri-
bution t`. We denote the resulting evaluation cost Tbin(t`, c). Firstly, we construct
an upper bound G

ˇ̀
bin(t`, c) for the evaluation cost Tbin(t`, c). Binomial reversal

schedules are constructed without regarding temporal complexities of single time
steps. For more or less homogeneous step cost distributions the application of such
schedules may lead to acceptable results. But for step cost distributions with an
essential difference in temporal complexities of single steps it can happen that the
most expensive steps are evaluated most frequently, since a particular step cost
distribution has no influence on the construction of a binomial reversal schedule.
Examples for such situations are discussed in [9]. To avoid the high costs of revers-
ing such step sequences the application of schedules constructed without regarding
temporal complexities of single steps is not advisable.

Nevertheless, although binomial reversal schedule Sbin(`, c) can not be accepted
as an efficient reversal schedule Sef(t`, c) for variable step cost distributions, we can
use an upper bound for its evaluation cost as an upper bound for the cost Tef(t`, c).
The evaluation cost Tbin(t`, c) is calculated in the following way:

Tbin(t`, c) =
∑̀

i=1

ri · ti, (13)

where ri denotes how many times a time step Fi is evaluated during the execution
of the binomial reversal schedule Sbin(`, c). We refer to ri as a repetition number
of Fi.

There is no explicit formula for calculating a repetition number ri for each time
step Fi, 1 ≤ i ≤ `. If one is interested in this task, the best way to proceed would
be to follow the application of the binomial reversal schedule Sbin(`, c) step by step.
This obviously would result in additional costs. However, we are more interested
in the upper bound G

ˇ̀
bin(t`, c), than in the exact value for Tbin(t`, c). Therefore,

we evaluate values of maximal repetition numbers r(c, ˇ̀) and r(c − 1, ` − ˇ̀) for
sequences (F1, ..., Fˇ̀) and (Fˇ̀+1, ..., F`), respectively, with ˇ̀ being the number of
the intermediate state stored into the second checkpoint. Furthermore, on most
numerical examples the repetition numbers ri in most steps take one of the values
of r(c, ˇ̀) or r(c − 1, ` − ˇ̀), respectively, or their difference to these values is small.
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The value of G
ˇ̀
bin(t`, c) then is evaluated as

G
ˇ̀
bin(t`, c) =

∑̀

i=1

r̂i · ti, (14)

where the quantities r̂i, 1 ≤ i ≤ `, are specified in Table 1. Let us explain the
construction of G

ˇ̀
bin in terms of an example.

Example 2.3. Consider a sequence of 30 time steps with a non-uniform step cost
distribution t` = 〈t1, ..., t30〉 = 〈1, 2, ..., 29, 30〉. Let the number of available check-
points be three. In Fig. 2 we sketch, which values r̂i, 1 ≤ i ≤ 30, are taken for
evaluating the upper bound G16

bin(t30, 3).
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Data of the 16th intermediate state is stored in the second checkpoint in this
example. The values r(c, ˇ̀) and r(c − 1, ` − ˇ̀) for maximal repetition numbers are
evaluated as follows:

r(c, ˇ̀) = r(3, 16) = 3 from β(3, r(3, 16) − 1) < 16 6 β(3, r(3, 16)), (15)

r(c − 1, ` − ˇ̀) = r(2, 14) = 4 from β(2, r(2, 14) − 1) < 14 6 β(2, r(2, 14)). (16)

The following values are assigned to the quantities r̂i:

r̂i = r(3, 16) + 1, i = 1, ..., 16 − r(3, 16),
r̂i = 17 − i, i = 17 − r(3, 16), ..., 16,
r̂i = r(2, 14), i = 17, ..., 30 − r(2, 14),
r̂i = 30 − i, i = 31 − r(2, 14), ..., 30.

2
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r̂i = r(c, ˇ̀) + 1, i = 1, ..., ˇ̀− r(c, ˇ̀)

r̂i = ˇ̀− i + 1, i = ˇ̀− r(c, ˇ̀) + 1, ..., ˇ̀

r̂i = r(c − 1, ` − ˇ̀), i = ˇ̀+ 1, ..., ` − r(c − 1, ` − ˇ̀)

r̂i = ` − i, i = ` − r(c − 1, ` − ˇ̀) + 1, ..., `

Table 1: Evaluation of r̂(G
ˇ̀
bin(t`, c)) = 〈r̂1, ..., r̂`〉

The computation of r(c, ˇ̀), r(c− 1, `− ˇ̀), r̂i and of the upper bound G
ˇ̀
bin(t`, c)

can be generalized for any arbitrary values of ` and c. First, r(c, ˇ̀) and r(c−1, `− ˇ̀)
are computed by the relations:

r(c, ˇ̀) from β(c, r(c, ˇ̀) − 1) < ˇ̀6 β(c, r(c, ˇ̀)), and (17)

r(c − 1, ` − ˇ̀) from β(c − 1, r(c − 1, ` − ˇ̀) − 1) < ` − ˇ̀6 β(c − 1, r(c − 1, ` − ˇ̀)),(18)

where β(c, r) = (c+r)!
c! r!

. The computation of values r(c, ˇ̀) and r(c−1, `− ˇ̀) can be very

effectively arranged by iteration. With r(c, ˇ̀) and r(c−1, `− ˇ̀) available, the values
of r̂i, i = 1, ...`, are obtained according to Table 1. Therefore, the relationship (14)

for the evaluation of the upper bound G
ˇ̀
bin(t`, c) can be represented in the following

way:

G
ˇ̀
bin(t`, c) =

∑̀

i=1

r̂i · ti = (r(c, ˇ̀) + 1) ·

ˇ̀−r(c,ˇ̀)∑

i=1

ti +

ˇ̀∑

i=ˇ̀−r(c,ˇ̀)+1

(ˇ̀− i + 1) · ti+

+r(c − 1, ` − ˇ̀) ·

`−r(c−1,`− ˇ̀)∑

i=ˇ̀+1

ti +
∑̀

i=`−r(c−1,`− ˇ̀)+1

(` − i) · ti,

(19)

where ˇ̀= ˇ̀(`, c) is a fixed value for given ` and c (see [4, 11]).
Discrepancies between the upper bound G

ˇ̀
bin(t`, c) and the evaluation cost Tbin(t`, c)

are illustrated in Fig. 3 for a set of step sequences of length `, 0 ≤ ` < 300 with
step cost distribution t` = 〈t1, ..., t`〉. The latter is illustrated for ` = 300 in Fig. 3,
left. For c = 4 the evaluation costs Tbin(t`, 4) and the upper bound G

ˇ̀
bin(t`, 4) are

depicted in Fig. 3, right.

2.2.2 Construction of efficient reversal schedules

To construct efficient reversal schedules we proceed in a similar way as for construct-
ing binomial reversal schedules (see [4, 11]): determine a position for the second
checkpoint, store a corresponding intermediate state into the second checkpoint,
and consider the resulting time step subsequences separately.

For this purpose, the principle of computing the upper bound G
ˇ̀
bin(t`, c) is used.

An upper bound Gef(t`, c) for the evaluation cost Tef(t`, c) is computed in the
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Figure 3: Left: Step cost distribution t300, right: Binomial evaluation cost Tbin(t`, 4)
and its upper bound G

ˇ̀
bin(t`, 4)

following way. Suppose, that ˇ̀ is a position where the second checkpoint is stored.
Then the corresponding upper bound G

ˇ̀
ef(t`, c) is evaluated by

G
ˇ̀
ef (t`, c) = G

ˇ̀
bin(t`, c) with 0 < ˇ̀< `. (20)

and
Gef(t`, c) := min

0<ˇ̀<`
{G

ˇ̀
ef(t`, c)}. (21)

The value of ˇ̀ where this minimum is attained determines the position where the
second checkpoint is placed. In this way we establish a rule to determine a number
of an intermediate state, which data should be stored into the second checkpoint
during the execution of the efficient reversal schedule Sef(t`, c). This concept is
applied to the subsequences (F1, ..., Fˇ̀) and (Fˇ̀+1, ..., F`) with c and (c−1) available
checkpoints, respectively. If all available checkpoints are occupied, the remaining
steps are reversed one by one. The described method is applied recursively till all
time steps Fi, 1 ≤ i ≤ `, are reversed. This approach is summarized in

Algorithm 2.4. (Efficient Reversal Schedules)
tb0+1,`0 = 〈tb0+1, ..., t`0〉; Tef(tb0+1,`0, c) = 0; b := b0; e := `0;
efficient(b,e,c)
begin

if ((e − b > c) and (c > 1))
k = argminb<ˇ̀<e{G

ˇ̀
ef(tb+1,e, c)}

store kth intermediate state into the second checkpoint

Tef(tb0+1,`0, c) + =
k∑

i=b+1

ti;

efficient(b,k,c);
efficient(k,e,c-1);
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fi;
if (e − b ≤ c)

Tef(tb0+1,`0, c) + =

e−1∑

i=b+1

ti;

fi;
if (c = 1)

Tef(tb0+1,`0, c) + =
e∑

j=b+1

(e − j) · tj;

fi;
end

As can be seen in Alg. 2.4, in order to determine a place for the second checkpoint
we have to compare certain values of G

ˇ̀
ef . However, in general these numbers are

rapidly reduced in subsequent algorithmic steps, except for the extremal situation
where all checkpoints have to be set each time at the very end of the step sequence.
Concluding, the temporal complexity needed for construction of efficient reversal
schedules Sef(t`, c) as proposed in Alg. 2.4, is in most cases negligible compared to
that for the construction of optimal reversal schedules Sopt(t`, c) in the non-uniform
case.

The example in Fig. 4 shows an efficient reversal schedule Sef(t`, c) constructed
using Alg. 2.4. Consider a sequence of seven time steps with a step cost distribution
t7 = 〈t1, ..., t7〉 = 〈1, 2, ..., 6, 7〉. Three checkpoints are available. The evaluation
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Figure 4: Efficient reversal schedule Sef(t7, 3)

cost Tef(t7, 3) needed for the execution of this reversal schedule amounts to 27
units. The effort Tbin(t7, 3), resulting from the reversal of this step sequence using
the binomial reversal schedule Sbin(7, 3), amounts to 30 units. Further numerical
comparisons of efficient, optimal, and binomial reversal schedules are presented in
[9] and in Section 4 of this paper, where efficient reversal schedules are applied to
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implement the inexact Newton method for the optimal control problem governed by
the Navier-Stokes equations.

2.2.3 Computer implementation of efficient reversal schedules

Alg. 2.4 is implemented in the computer routine a-revolve, involving static and adap-
tive checkpointing techniques. The corresponding checkpointing algorithm for im-
plementing the Newton-CG method (Alg. 1.1) is defined in terms of the following
procedure:

Algorithm 2.5. (Checkpointing Algorithm for Newton-CG)
snaps = c capo = 0 adaptive = 0 or 1 check = -1 turn = 0
if (adaptive = 0): fine = `
else: fine = 0
do

tcapo = ∆tcapo

whatodo = a-revolve(check,capo,fine,tcapo,w)
switch(whatodo)

case advance: Fcapo, t = t + ∆tcapo

case takeshot: store(y,ystor,check)

case firsturn: F̂capo ◦ init(lam) ◦ F̄capo, turn = 1

case youturn: F̂capo ◦ F̄capo

case restore: restore(y,ystor,check)
case error: print(schedule error!)

end switch
if (turn = 0) and (adapt = 1)

fine = fine+1
while((whatodo 6= terminate) && (whatodo 6= error))

The first line of Alg. 2.5 contains initializations. Variable adapt = 1 if the number
of time steps is unknown. Then, fine = 0 and we apply adaptive reversal schedules
(for details see [9, 14]). This situation corresponds to the calculation of the gradient
Ĵ

′

(u). Variable adapt = 0 if the number ` of time steps is known in advance. Then,
fine = ` and efficient reversal schedules are applied to calculate the product reduced
Hessian times vector which corresponds to Ĵ

′′

(u)δu. Fcapo, F̂capo, and F̄capo denote
forward, recording, and adjoint steps, respectively, specified in Section 2.1.

The adjoint and the tangent of adjoint calculation is performed within a do-while-
loop. Each execution of the loop-body starts with a call of a-revolve. Here, capo
and fine determine the time steps to be reversed actually. The variables snaps and
check denote the number of available and the number of actually stored checkpoints,
respectively. tcapo denotes the cost of the forward time step Fcapo. In our example
tcapo is set to be equal to the time step size, tcapo = ∆tcapo. By w an array is denoted,

13



which stores costs of all time steps. The value of turn shows whether the reversal
sweep has been initialized or not.

Depending on the actual state of the reversal process, a-revolve returns a basic
action according to Definition 2.2 of reversal schedules: advance = A1, takeshot =
Wcheck, restore = Rcheck, firsturn or youturn = D. As can be seen, the do-while-loop is
completely independent of the actual problem to be reversed. The functions Fcapo,

F̂capo, and F̄capo are required also for the basic approach to calculate adjoints and
tangents of adjoints. Hence, in order to apply a reversal schedule to reduce the
memory requirement, one has to code only the routines for storing and retrieving a
checkpoint in addition to the already written software. Therefore, it is usually no
problem to incorporate a reversal schedule into the calculation.

To implement a single Newton step in Alg. 1.1 we have to apply the Check-
pointing Alg. 2.5 at least twice. Firstly, initializing adapt = 1 and utilizing adaptive
reversal schedules to evaluate adjoints of the state equations in order to determine
the value of the gradient Ĵ

′

(u), the number of time steps, and the step cost distribu-
tion, needed for the subsequent CG approach. Secondly, initializing adapt = 0 and
utilizing static efficient reversal schedules to evaluate adjoints of the linearized state
equations in order to calculate the product reduced Hessian times vector Ĵ

′′

(u)δu.
The last scheme has to be applied for each conjugate direction and each increment
δu within a single CG step.

3 Application to the Navier-Stokes system

As model application we now illustrate how derivatives of the reduced functional Ĵ
in control of the instationary Navier-Stokes equations can be numerically realized
utilizing the formalism developed in the previous sections. Since the focus of the
present paper is a purely algorithmical one we reduce the presentation of functional
analytic prerequisites to a necessary minimum. Interested readers are referred to
[7, 8, 13]. Let us introduce the solenoidal spaces

H := {v ∈ L2(Ω)2, div v = 0}clos
L2 and V := {v ∈ L2(Ω)2, div v = 0}clos

H1 .

From here onwards it is convenient to formulate the controlled instationary Navier-
Stokes system in its primitive setting: given a control u ∈ U , find a solenoidal state
y together with a pressure p such that

yt − ν∆y + (y · ∇)y + ∇p = Bu in Q,
−div y = 0 in Q,
y(x, t) = 0 on ∂Ω × (0, T ),
y(x, 0) = y0(x) in Ω





(22)

is satisfied, where y0 ∈ H denotes the initial value. Here, Ω ⊂ R
2 denotes the spatial

domain, Q := (0, T )×Ω is the time-space cylinder and B denotes the control operator
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which maps elements of the abstract Hilbert space U of controls to admissible right-
hand sides. In the formalism of Section 1 this system is represented in the form of
the operator equation G(y, u) = 0, where G : Y × U → Z∗ := L2(V ∗) × H and
Y := {v ∈ L2(V ), vt ∈ L2(V ∗)}. For details and notation we refer to the book [10]
of Temam.

In order to express the actions of Ĵ
′

(u) and Ĵ
′′

(u) for the cost functional given
in equation (2) we have to provide those of G−1

y (y, u) and G−∗
y (y, u), respectively.

To describe these actions let for given Jy(y, u) ∈ Y ∗ the vector function λ ∈ Z be
defined by

λ = (λ1, λ2) = −Gy(y, u)−∗Jy(y, u), (23)

and let for (f, v0) ∈ Z
v := Gy(y, u)−1(f, v0). (24)

It is shown in [7, 8] that under suitable regularity assumptions on J the adjoint
variable λ of (23) together with the adjoint pressure ξ satisfies the system

−λ1
t − ν∆λ1 − (y · ∇)λ1 + (∇y)tλ1 + ∇ξ = −J

(t)
1y

(y) in Q,

−div λ1 = 0 in Q,
λ1(x, t) = 0 on ∂Ω × (0, T ),

λ1(x, T ) = −J
(T )
1y

(y) in Ω,





(25)

and λ2 = λ1(0). The superscripts (t), (T ) refer to a possible dependence of the
functional J1y

on the time instances (t) and (T ), respectively. Finally, together with
some pressure ρ the function v of (24) satisfies

vt − ν∆v + (y · ∇)v + (v · ∇)y + ∇ρ = f in Q,
−div v = 0 in Q,
v(x, t) = 0 on ∂Ω × (0, T ),
v(x, 0) = v0(x) in Ω.





(26)

Now, let λ ≡ λ1. In order to compute approximations of (y, p), (λ, ξ), and (v, ρ) the
partial differential equations have to be discretized appropriately. For the numeri-
cal tests presented in the subsequent section, Taylor-Hood finite elements are used
for spatial discretization, i.e. continuous, piecewise quadratic polynomials for the
velocity approximation and continuous, piecewise linear polynomials for the pres-
sure approximation. As time discretization scheme for the Navier-Stokes system
(22) we apply the semi-implicit Euler-method which performs implicit time step-
ping w.r.t. diffusive terms, while the convective terms are treated explicitly. The
time integration is performed adaptively by the rule

∆tj = 0.7
h

maxx∈Ω | y(tj) |
, (27)

where h denotes the grid size of the spatial discretization. We note that y(tj) ∈ C(Ω̄)
can be guaranteed for tj ∈ (0, T ) if Bu ∈ L2(Q)2 and y0 ∈ V ∩ H2(Ω)2. These
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conditions form the minimal regularity requirements for proving error estimates for
numerical approximation schemes of the Navier-Stokes system, compare [2, 6]. Since
∆tj depends on the flow field y(tj) it is only possible to evaluate ∆tj for the current
time step. Therefore, the number l of time steps is not known in advance. The
resulting numerical scheme for a state yj ∼ y(tj) with 0 ≤ j < ` is given by

yj+1 − yj

∆tj
− ν∆yj+1 + ∇pj+1 = (Bu)j − (yj∇yj) in Ω

−div yj+1 = 0 in Ω, yj+1 = 0 in ∂Ω

(28)

with y0 = y(0). In the setting of Section 2 this forward integration scheme may be
rewritten as

yj+1 = Yj+1(y
j, ūj), (29)

where the time step function Yj+1 is given by Yj+1(y
j, ūj) = Y (∆tj, y

j, (Bu)j) with

Y (∆t, y, z) := ∆t (P − ∆tνS)−1 (z − (y∇) y) + Py.

Here, S denotes the Stokes Operator and P defines the Leray projection L2(Ω)2 →
H, see [1].

The time discretization scheme of the adjoint variables λ in (25) is more involved.
Here we take the transpose of the semi-implicit time discretization of eqs. (26) given
next; for 0 ≤ j < ` let

vj+1

∆tj
− ν∆vj+1 + ∇ρj+1 = f j +

vj

∆tj
− (yj∇vj) − (vj∇yj) in Ω

−div vj+1 = 0 in Ω, vj+1 = 0 on ∂Ω,

(30)

where v0 = v(0). To derive the time integration scheme for the adjoint variables it
is convenient to reformulate the initial condition for v in the form

v0

∆t0
− ν∆v0 + ∇ρ0 =

v0

∆t0
− ν∆v0 in Ω

−div v0 = 0 in Ω, v0 = 0 on ∂Ω,

(31)

where we set ρ0 ≡ 0 and require v0 ∈ V ∩ H2(Ω)2.
Formally transposing the scheme (30), (31) we obtain for the adjoint equations

and j = ` − k ≥ 0 the integration scheme

λ`−k

∆t`−k

− ν∆λ`−k =
λ`−k+1

∆t`−k

−∇ξ`−k − J
(t`−k)
1y

(y`−k)

+ (λ`−k+1∇y`−k) − (∇y`−k)tλ`−k+1 in Ω,

−div λ`−k = 0 in Ω, λ`−k = 0 on ∂Ω,

(32)
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where the states y`−k are given by the solution of (28). We note, that the final state
λ` in this integration scheme satisfies the quasi-Stokes system

λ`

∆t`
− ν∆λ` −∇ξ` = −J

(t`)
1y

(y`, u`) in Ω,

−div λ` = 0 in Ω, λ` = 0 on ∂Ω.

The adjoint integration scheme may be rewritten as

λj = Ȳj+1(y
j, ūj, λj+1) = Ȳ (∆tj, y

j, λj+1), (33)

where

Ȳ (∆t, y, z) := ∆t (P − ν∆tS)−1
(
−J

(t)
1y

(y) + (z∇) y − (∇y)t z
)

+ Pz. (34)

Furthermore, one finds that the recording step Ŷ (yj, (Bu)j) consists of the evaluation
of Y (∆tj, y

j, (Bu)j) and the storage of the new state vector yj+1.

Next, let us discuss the time discretization of Ĵ
′′

(u)δu described in Alg. 1.3. To
begin with we note that

〈Gyy(y(u), u)(a, b), (λ, λ2)〉Z∗,Z = 〈(a∇)b + (b∇a), λ〉L2(V ∗),L2(V ),

which is independent of y and u, and Gu(y, u) = (−B, 0). To discretize step 1. of
Alg. 1.3 we propose to apply scheme (30) for the computation of v with v0 ≡ 0, and
y taken from (28). We recall that the time grid obtained from (27) is also used in
this scheme, but now the number of time steps and the step length ∆tj are fixed.
In the setting of Section 2 this forward integration scheme may be rewritten as

vj+1 = Vj+1(y
j, vj, ūj) = V (∆tj, y

j, vj, (Bu)j), (35)

with

V (∆t, y, v, z) := ∆t (P − ∆tνS)−1 (f(z) − (y∇) v − (v∇) y) + Pv.

As can be seen, equations (29) and (35) exactly match the time stepping (7) which
forms the basis for the reversal schedules presented in Section 2.

In step 2. of Alg. 1.3 the numerical results of schemes (28) for y and (32) for λ
are utilized to evaluate rhs. Finally, for the numerical computation of µ in step 3.
we propose to use again scheme (32), where the terms containing the functional J
have to be replaced by the corresponding terms of rhs from step 2. We emphasize
that in general both, the state y and the variable v enter into rhs. This adjoint
integration scheme may be rewritten as

µj = V̄j+1(v
j, ūj, µj+1, yj, λj+1) = V̄ (∆tj, v

j, µj+1, yj, λj+1), (36)
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where

V̄ (∆t, v, µ, y, µ) := ∆t (P − ν∆tS)−1 (
rhs(y, λ) + (µ∇) v − (∇v)t µ

)
+ Pµ. (37)

Then, (33) and (36) exactly match (8), e.g. the adjoint time steps exactly fit for the
application of the reversal schedules. Furthermore, one finds that the recording step
V̂j+1(y

j, vj, ūj) consists of the evaluation of V (∆tj, y
j, vj, (Bu)j) and the storage of

the new state vector vj+1.

4 Numerical results

A cavity flow problem serves as numerical example. The domain is defined by the
unit square Ω := (0, 1)× (0, 1). The final time is normalized to one, i.e., T = 1, and
ν = 1/Re with Re= 10. The vector

y0(x) = e

[
(cos 2πx1 − 1) sin 2πx2

− (cos 2πx2 − 1) sin 2πx1

]

with e denoting the Euler number is used as initial condition. The control goal
consists in approximating the time-dependent desired state given by

z(x, t) =

[
ϕx2(x1, x2, t)
−ϕx1(x1, x2, t)

]
.

Here, ϕ is defined through the stream function

ϕ(x1, x2, t) = θ(x1, t)θ(x2, t) with θ(y, t) = (1 − y)2(1 − cos 2kπt), y ∈ [0, 1].

In order to measure the quality of the approximation the tracking-type cost function

Ĵ(u) = J(y, u) =
1

2

∫ T

0

∫

Ω

| y − z |2 dx dt +
c

2

∫ T

0

∫

Ω

| u |2 dx dt (38)

with c = 0.01 is chosen. Fig. 5 shows the cavity flow at t = 0.01 together with the
desired flow at T = 1.

To solve this optimal control problem we apply Newton-CG method described
in Alg. 1.1. An implementation of this algorithm using the basic approach would
require large memory amounts. Reversal schedules presented in Section 2 offer an
opportunity to reduce this memory requirement drastically, while increasing the
run-time only moderately. For this purpose, the routine a-revolve may be applied
to compute the gradient Ĵ

′

(u) and the product of reduced Hessian times vector
Ĵ

′′

(u)δu (see Alg. 2.5).
In the remainder of this section we investigate the numerical performance of

a-revolve. The application of adaptive reversal schedules for evaluating adjoints of
Navier-Stokes systems is analyzed in [14]. Thus, in the sequel of this paper we focus
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Figure 5: Left: Cavity flow at t = 0.01, right: Desired flow at T = 1
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Figure 6: Evaluation cost needed to compute Ĵ
′′

(u)δu using efficient and optimal
reversal schedules
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Figure 7: Run-time needed to compute Ĵ
′′

(u)δu using efficient and optimal reversal
schedules

on the application of efficient reversal schedules for evaluating the product Ĵ
′′

(u)δu
of reduced Hessian times vector.

Fig. 6 shows the ratio for the evaluation cost of efficient and optimal reversal
schedules applied to compute Ĵ

′′

(u)δu. This ratio is given by

T (Sef(t`, c)) − T (Sopt(t`, c))

T (Sopt(t`, c))
∗ 100, (39)

and presented on the vertical axis. As can be seen T (Sef(t`, c)) − T (Sopt(t`, c))
varies between 5 and 12 % relative to the optimal evaluation cost T (Sopt(t`, c)) for
2 ≤ c ≤ 40 checkpoints. The evaluation cost ratio only compares the algorithmical
performance of efficient and optimal reversal schedules in terms of step costs. For
practical implementations it is more reasonable also to investigate the resulting
computational run-time, which is shown in Fig. 7.

The product Ĵ
′′

(u)δu is computed applying a-revolve with various numbers of
checkpoints. Fig. 7 shows the observed run-time behavior for different number of
time steps. Here, the vertical axis gives the ratio of the run-time needed to com-
pute Ĵ

′′

(u)δu using efficient and optimal reversal schedules. The horizontal axis
denotes the number of checkpoints used by the reversal schedule. As can be seen,
the computational run-time resulting from the application of efficient reversal sched-
ules compares to that needed by optimal reversal schedules, and sometimes is even
smaller. This can be explained by the additional computational requirement for
constructing an appropriate optimal reversal schedule.

Fig. 8 illustrates the ratio of run-time needed to compute Ĵ
′′

(u)δu formed with
the run-time to compute Ĵ(u). To compare the achieved results with the basic ap-
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Figure 8: Run-time needed to compute Ĵ
′′

(u)δu using efficient reversal schedules
compared to that needed to compute the functional Ĵ(u)

proach for computing tangents of adjoints, we note that the run-time for computing
Ĵ

′′

(u)δu is bounded by a small constant times the run-time to compute Ĵ(u). The
value of the constant varies between seven and ten depending on the specific oper-
ation counts and memory accesses [3]. As can be seen, the run-time ratio for the
checkpointing approach varies between four and seven for a reasonable number of
checkpoints. This behavior results in a slow down factor up to two compared to
the basic approach, where a complete trajectory is stored to compute the tangents
of adjoints values. That is, using the checkpointing approach the computation of
tangents of adjoints is at most twice as slow as the basic approach, where a complete
forward trajectory is stored. Nevertheless, the memory requirement can be reduced
enormously. Using a discretization with 2113 velocity nodes and 545 pressure nodes,
one needs 76 kByte to store one checkpoint. Hence, if the reversal schedule utilizes
six checkpoints, the memory requirement equals 456 kByte for calculating tangents
of adjoints with the efficient reversal schedule. If the basic approach is applied, the
memory requirement amount to 7.6 MByte. Therefore, efficient reversal schedules
enable an immense memory reduction at a slight increase in run-time.

We observe that the dependence on the spatial discretization of all ratios pre-
sented so far is negligible. Fig. 8 therefore indicates that above a certain lower bound
the number of checkpoints can be varied without having a considerable influence on
the run-time behavior. This fact is also illustrated by the flat development of the
run-time ratios in Fig. 8 if the number of checkpoints exceeds eight.
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5 Conclusions

For adjoint and tangent of adjoint calculations one has to provide information com-
puted during the forward integration in reverse order. The basic approach, namely
the complete recording of the required information onto one stack, causes an enor-
mous memory requirement. This paper presents efficient reversal schedules that
allow a drastic reduction of the memory requirement while run-time compared to
the basic approach increases only slightly. Moreover, efficient checkpointing causes
only a slight increase in run-time compared to the optimal checkpointing. The re-
sulting memory reduction and run-time behavior is studied for an optimal control
problem based on incompressible Navier-Stokes equations by applying the check-
pointing routine a-revolve. For this example it is shown that a memory reduction of
two orders of magnitude causes only a slow down factor of two in run-time
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