
A Space-Time Multigrid Method for Optimal Flow Control

Michael Hinze, Michael Köster and Stefan Turek

Abstract. We present a hierarchical solution concept for optimization prob-
lems governed by the time-dependent Navier–Stokes system. Discretisation
is carried out with finite elements in space and a one-step-θ-scheme in time
to generate a space-time mesh hierarchy. By combining a Newton solver for
the treatment of the nonlinearity with a space-time multigrid solver for lin-
ear subproblems, we obtain a robust solver whose convergence behaviour is
independent of the refinement level of the discrete problem. A set of numeri-
cal examples analyses the solver behaviour for various problem settings with
respect to efficiency and robustness of this approach.

Mathematics Subject Classification (2000). 35Q30, 49K20, 49M05, 49M15,
49M29, 65M55, 65M60, 76D05, 76D55.

Keywords. distributed control, finite elements, time-dependent Navier–Stokes,
Newton, space-time multigrid, optimal control.

1. Introduction

Active flow control plays a central role in many practical applications such as e.g.
control of crystal growth processes [9, 16, 15, 17], where the flow in the melt has
a significant impact on the quality of the crystal. Optimal control of the flow by
electro-magnetic fields and/or boundary temperatures leads to optimisation prob-
lems with PDE constraints, which are frequently governed by the time-dependent
Navier-Stokes system.

The mathematical formulation is a minimisation problem with PDE con-
straints. By exploiting the special structure of the first order necessary optimality
conditions, the so called Karush-Kuhn-Tucker (KKT)-system, we are able to de-
velop a hierarchical solution approach for the optimisation of the Stokes– and
Navier–Stokes equations which satisfies

effort for optimisation

effort for simulation
≤ C, (1)

2 Michael Hinze, Michael Köster and Stefan Turek

for a constant C > 0 of moderate size, independent of the refinement level. Tests
show a factor of 20 − 30 for the Navier–Stokes equations. Here, the effort for the
simulation is assumed to be optimal in that sense, that a solver needs O(N) op-
erations, N denoting the total number of unknowns for a given computational
mesh in space and time. This can be achieved by utilising appropriate multigrid
techniques for the linear subproblems in space. Because of (1), the developed so-
lution approach for the optimal control problem has also complexity O(N); this is
achieved by a combination of a space-time Newton approach for the nonlinearity
and a space-time multigrid approach for linear subproblems. The complexity of this
algorithm distinguishes our method from adjoint-based steepest descent methods
used to solve optimisation problems in many practical applications, which in gen-
eral do not satisfy this complexity requirement. A related approach can be found,
e.g. in [4] where multigrid methods for the numerical solution of optimal control
problems for parabolic PDEs are developed based on Finite Difference techniques
for the discretisation. In [6] a space-time multigrid method for the corresponding
integral equation approach of [10] is developed, compare also [8].

The paper is organised as follows: In Section 2 we describe the discretisation
of a flow control problem and give an introduction to the ingredients needed to
design a multigrid solver. The discretisation is carried out with finite elements in
space and finite differences in time. In Section 3 we propose the basic algorithms
that are necessary to construct our multigrid solver for linear and a Newton solver
for nonlinear problems. Finally, Section 4 is devoted to numerical examples which
we present to confirm the predicted behaviour.

2. Problem formulation and discretisation

We consider the optimal control problem

J(y, u) :=
1

2
||y− z||2L2(Q) +

α

2
||u||2L2(Q) +

γ

2
||y(T)− z(T)||2L2(Ω) −→ min! (2)

s.t. yt − ν∆y + y∇y +∇p = u in Q,
−div y = 0 in Q,
y(0, ·) = y0 in Ω,

y = g at Σ.

Here, Ω ⊂ Rd (d = 2, 3) denotes an open bounded domain, Γ := ∂Ω, T > 0 defines
the time horizon, andQ = (0, T)×Ω denotes the corresponding space-time cylinder
with space-time boundary Σ := (0, T)×Γ. The function g : Σ→ Rd specifies some
Dirichlet boundary conditions, u denotes the control, y the velocity vector, p the
pressure and z a given target velocity field for y. Finally, γ ≥ 0, α > 0 denote
constants. For simplicity, we do not assume any restrictions on the control u.

The first order necessary optimality conditions are then given through the so
called Karush-Kuhn-Tucker system

Space-Time Multigrid Techniques for Optimal Flow Control 3

yt − ν∆y + y∇y +∇p = u in Q
−div y = 0 in Q
y(t, ·) = g(t, ·) on Γ for all t ∈ [0, T]
y(0, ·) = y0 in Ω

−λt − ν∆λ− y∇λ+ (∇y)tλ+∇ξ = y − z in Q
−div λ = 0 in Q
λ(t, ·) = 0 at Γ for all t ∈ [0, T]
λ(T) = γ(y(T)− z(T)) in Ω

u = − 1
αλ,

where λ denotes the dual velocity and ξ the dual pressure. We eliminate u in the
KKT system, and (ignoring boundary conditions at the moment), we obtain

yt − ν∆y + y∇y +∇p = − 1

α
λ, (3)

−div y = 0,

y(0, ·) = y0,

−λt − ν∆λ− y∇λ+ (∇y)tλ+∇ξ = y − z, (4)

−div λ = 0,

λ(T) = γ(y(T)− z(T))

where we call (3) the primal and (4) the dual equation.

Coupled discretisation in time. For the discretisation of the system, we follow the
approach first optimise, then discretise: We semi-discretise the KKT-system in
time. For stability reasons (cf. [22]) we prefer implicit time stepping techniques.
This allows us to be able to choose the timestep size only depending on the accuracy
demands, independent of any stability constraints. The approach is demonstrated
on the standard 1st order backward Euler scheme as a representative of implicit
schemes. Higher order schemes like Crank-Nicolson are possible as well but lead to
a more complicated matrix structure (with a couple of nonlinear terms also on the
offdiagonals) and, depending on the time discretisation, some less straight-forward
time prolongation/restriction.

The time discretisation of (3) yields

yk+1 − yk
∆t

− ν∆yk+1 + yk+1∇yk+1 +∇pk+1 = − 1

α
λk+1 (5)

−div yk+1 = 0

y0 = y0

whereN ∈ N, k = 0, ..., N−1 and ∆t = 1/N . To (3), (4) we apply the discretisation
recipe from [3]. For this purpose, we define the following operators: Av := −ν∆v,

4 Michael Hinze, Michael Köster and Stefan Turek

Iv := v, Gq := ∇q, Dv := −div v, Knv := K(yn)v := (yn∇)v, Knv := K(yn)v :=
(v∇)yn and Cnv := C(yn)v := Av + K(yn)v for all velocity vectors v and and
pressure functions q in space, n ∈ N.

As the initial solution y0 may not be solenoidal, we realise the initial condition
y0 = y0 by the following solenoidal projection,

1

∆t
y0 − ν∆y0 + y0∇y0 +∇p0 =

1

∆t
y0 − ν∆y0 + y0∇y0

−div y0 = 0.

This projection operator uses the same operations like the backward Euler scheme
which allows for a more consistent notation. Using x := (y0, p0, y1, p1, ..., yN , pN),
this yields the nonlinear system of the primal equation,

Hx := H(x)x

=



I
∆t + C0 G
D
− I

∆t
I
∆t + C1 G
D
. . .

. . .
. . .

− I
∆t

I
∆t + CN G
D





y0
p0
y1
p1
...
yN
pN


=

(
(
I
∆t

+ C0)y0, 0, −
λ1

α
, 0, ..., −λN

α
, 0,

)
which is equivalent to (5) if y0 is solenoidal. In the second step, we focus on the
Fréchet derivative of the Navier–Stokes equations. For a vector (ȳ, p̄) the Fréchet
derivative in (y, p) reads

F(y, p)
(

ȳ
p̄

)
:=

(
ȳt − ν∆ȳ + (ȳ∇y + y∇ȳ) +∇p̄

−div ȳ

)
.

We again carry out the time discretisation as above. For vectors x := (y0, p0, y1, p1,
..., yN , pN) and x̄ := (ȳ0, p̄0, ȳ1, p̄1, ..., ȳN , p̄N) this results in the scheme

Mx̄ :=M(x)x̄

=



I
∆t +N0 G
D
− I

∆t
I
∆t +N1 G
D
. . .

. . .
. . .

− I
∆t

I
∆t +NN G
D





ȳ0
p̄0
ȳ1
p̄1
...
ȳN
p̄N


with the additional operator Nn := N (yn) := A + K(yn) + K(yn). The time
discretisation of the dual equation corresponding toH is now defined as the adjoint

Space-Time Multigrid Techniques for Optimal Flow Control 5

M∗ ofM,

(Mx̄, λ) = (x̄,M∗λ),

where λ := (λ0, ξ0, λ1, ξ1, ..., λN , ξN). With N ∗
n := N ∗(yn) = A−K(yn) +K

∗
(yn),

K∗
(yn)v = (∇y)tv for all velocity vectors v, this reads

M∗λ =M∗(x)λ

=



I
∆t +N

∗
0 G − I

∆t
D

I
∆t +N

∗
1 G − I

∆t
D

. . .
. . .

. . .
I
∆t +N

∗
N G

D


λ

=
(
y0 − z0, 0, y1 − z1, 0, ..., (1 +

γ

∆t
)(yN − zN), 0

)T

where the right hand side and terminal condition is chosen in such a way that the
optimise-then-discretise approach we are using here commutes with the discretise-
then-optimise approach. This corresponds to the time discretisation scheme

λk − λk+1

∆t
− ν∆λk − yk∇λk + (∇yk)tλk +∇ξk = yk − zk (6)

−div λk = 0

λN = γ(yN − zN).

of (4). Here we have used D∗ = G and A∗ = A. Now let us define wn :=
(yn, pn, λn, ξn) and

w := (w0, w1, ...) := (y0, λ0, p0, ξ0, y1, λ1, p1, ξ1, y2, λ2, p2, ξ2, ...).

After shifting the terms with λk+1 and yk in (5) and (6) from the right hand side
to the left hand side and mixing the two matrices stemming from H andM∗, we
obtain a semi-discrete system

G(w)w = f. (7)

The right hand side is given by

f =

(
(I/∆t+ C0)y0,−z0, 0, 0︸ ︷︷ ︸ , 0,−z1, 0, 0︸ ︷︷ ︸ ,

..., 0,−zN−1, 0, 0︸ ︷︷ ︸ , 0,−(1 + γ/∆t)zN , 0, 0︸ ︷︷ ︸
)

6 Michael Hinze, Michael Köster and Stefan Turek

and the operator reads

G = G(w) =


G0 Î0
Ĩ1 G1 Î1

Ĩ2 G2 Î2
. . .

. . .
. . .

ĨN GN

 (8)

with

G0 =


I
∆t + C0 0 G 0
−I I

∆t +N
∗
0 0 G

D 0 0 0
0 D 0 0

 , Gi =


I
∆t + Ci

I
α G 0

−I I
∆t +N

∗
i 0 G

D 0 0 0
0 D 0 0


for i = 1, ..., N − 1,

Ĩi+1 =


− I

∆t
0

0
0

 , Îi =


0
− I

∆t
0

0


for i = 0, ..., N − 1 and

GN =


I
∆t + CN

I
α G 0

−(1 + γ
∆t)I

I
∆t +N

∗
N 0 G

D 0 0 0
0 D 0 0

 .

At this point, we discretise in space with a finite element approach. The fully
discrete version of the KKT system is defined by replaceing the operators I, A, D,
... by their finite element versions Ih, Ah, Dh, ... and by incorporating boundary
conditions into the right hand side f . We finally end up with the nonlinear system

Gh(wh)wh = fh (9)

with the vector wh := (wh
0 , w

h
1 , ...) and wh

n := (yhn, λh
n, phn, ξhn). Note that the

system matrix is a block tridiagonal matrix of the form

Gh = Gh(wh) =


G0 M̂0

M̃1 G1 M̂1

. . .
. . .

. . .

M̃N GN

 (10)

where N ∈ N denotes the number of timesteps. This way, the solver for optimal
control problem reduces to a solver for a sparse block tridiagonal system where
the diagonal blocks Gn = Gn(wh) correspond to the timesteps of the fully coupled
KKT system. This system does not have to be set up in memory in its complete

Space-Time Multigrid Techniques for Optimal Flow Control 7

form: Utilising defect correction algorithms reduces the solution process to a se-
quence of matrix vector multiplications in space and time. A matrix-vector multi-
plication of a solution wh with the space-time matrix Gh on the other hand reduces
to 3N +1 local matrix-vector multiplication sequences, one in each timestep with
subsequent M̃n, Gn and M̂n.

Discretisation of the Newton system associated to (7). The Newton algorithm in
space and time can be written in defect correction form as follows:

wi+1 := wi + F (wi)
−1(f −G(wi)wi), i ∈ N

with F (w) being the Frechét derivative of the operator G(w)w which is given by
the Newton matrix

F (w) =


F0 Î0
Ĩ1 F1 Î1

Ĩ2 F2 Î2
. . .

. . .
. . .

ĨN FN


with

F0 =


I
∆t +N0 0 G 0
−I +R0

I
∆t +N

∗
0 0 G

D 0 0 0
0 D 0 0

 , Fi =


I
∆t +Ni

1
αI G 0

−I +Ri
I
∆t +N

∗
i 0 G

D 0 0 0
0 D 0 0


for i = 1, ..., N − 1 and

FN =


I
∆t +NN

1
αI G 0

−(1 + γ
∆t)I +RN

I
∆t +N

∗
N 0 G

D 0 0 0
0 D 0 0

 .

Here, we use the additional operator Rnv := R(λn)v := −(v∇)λn + (∇v)tλn for
all velocity vectors v.

3. The Newton-Multigrid solver

The KKT-system represents a boundary value problem in the space-time domain.
It is shown e.g. in [6] that, assuming sufficient regularity on the state (y, p) and
the adjoint state (λ, ξ), it can equivalently be rewritten as higher-order elliptic
equation in the space-time domain for either the state or the adjoint state. This
indicates that multigrid can be used as efficient solver for the (linearised) KKT
system as it is an ideal solver for elliptic PDEs.

We formally define the solution approach as outer nonlinear loop that has to
solve a linear subproblem in each nonlinear step.

8 Michael Hinze, Michael Köster and Stefan Turek

3.1. The outer defect correction/Newton loop

To treat the nonlinearity in the underlying Navier–Stokes equations, we use a stan-
dard nonlinear fixed point iteration as well as a space-time Newton iteration. Both
algorithms can be written down as fully discrete preconditioned defect correction
loop,

1.) C(wh
i)di = gi :=

(
fh −Gh(wh

i)w
h
i

)
2.) wh

i+1 := wh
i + di.

For the fixed point method, we choose C(wh) := Gh(wh) as preconditioner, while
the space-time Newton method is characterised by C(wh) := Fh(wh) with Fh(wh)
being the discrete analogon to F (w) from Section 2. The solution of the auxiliary
problem C(wh

i)di = gi is obtained by applying the following space-time multigrid
method.

3.2. The inner multigrid solver

Let Ω1, ..., ΩNLMAX be a conforming hierarchy of triangulations of the domain
Ω in the sense of [7]. Ω1 is a basic coarse mesh and Ωl+1 stems from a regular
refinement of Ωl (i.e. new vertices, cells and edges are generated by connecting
opposite midpoints of edges). We use V1, ..., VNLMAX to refer to the different Finite
Element spaces in space built upon these meshes. Furthermore, let T1, ..., TNLMAX

be a hierarchy of decompositions of the time interval [0, T], where each Tl+1 stems
from Tl by bisecting each time interval. For each l, the above discretisation in
space and time yields a solution space Wl = Vl × Tl and a space-time system

Glwl = f l, l = 1, ...,NLMAX

of the form (9). fNLMAX = fh, wNLMAX = wh and GNLMAX = Gh identify the
discrete right hand side, the solution and system operator on the finest level,
respectively.

Algorithm 1 Space-time multigrid

function SpaceTimeMultigrid(w;f ;l)
if (l = 1) then

return (G1)−1f ◃ coarse grid solver
end if
while (not converged) do

w ← S(Gl, w, f,NSMpre) ◃ presmoothing
d← R(f −Glw) ◃ restricion of the defect
w ← w + P (SpaceTimeMultigrid(0; d; l − 1)) ◃ coarse grid correction
w ← S(Gl, w, f,NSMpost) ◃ postsmoothing

end while
return w ◃ solution

end function

Space-Time Multigrid Techniques for Optimal Flow Control 9

Let us denote by I : Wl → Wl+1 a prolongation operator and by R : Wl →
Wl−1 the corresponding restriction. Furthermore, let S : Wl →Wl define a smooth-
ing operator (see the following sections for a definiton of these operators). Let us
denote with NSMpre, NSMpost the numbers of pre- and postsmoothing steps, re-
spectively. With these components and definitions, Algorithm 1 implements a basic
multigrid V-cycle. For variations of this algorithm which use the W- or F-cycle,
see [2, 11, 28]. The algorithm is called on the maximum level by

SpaceTimeMultigrid(wNLMAX;fNLMAX;NLMAX)

and implicitely uses the matrices G1, ..., GNLMAX.

3.3. Prolongation/Restriction

Our discretisation is based on Finite Differences in time and Finite Elements in
space. The operators for exchanging solutions and right hand side vectors between
the different levels therefore decompose into a time prolongation/restriction and
space prolongation/restriction. Let k be the space level, IS : Vk → Vk+1 the
prolongation operator in space and RS : Vk+1 → Vk the corresponding restriction.
The prolongation for a space-time vector wl = (wl

0, ..., w
l
N) on space-time level l

can be written as:

P (wl) :=

(
PS(w

l
0),

PS(w
l
0) + PS(w

l
1)

2
, PS(w

l
1),

PS(w
l
1) + PS(w

l
2)

2
, ... , PS(w

l
N)

)
and is a composition of the usual Finite Difference prolongation in time (see also
[12]) and Finite Element prolongation in space. The corresponding restriction for
a defect vector dl = (dl0, ..., d

l
2N) follows directly:

R(dl) :=

(
RS(

1

4
(2dl0 + dl1)), RS(

1

4
(dl1 + 2dl2 + dl3)), ... , RS(

1

4
(dl2N−1 + 2dl2N))

)
Our numerical tests in Section 4 are carried out with the nonconforming Q̃1/Q0

Finite Element pair in space. For these elements, we use the standard prolonga-
tion/restriction operators which can be found e.g. in [18, 22].

3.4. Smoothing operators and coarse grid solver

The special matrix structure of the global space-time matrix (9) allows to define
iterative smoothing operators based on defect correction. Note that usually, every
smoother can also be used as coarse grid solver to solve the equation (G1)−1f
in the first step of the algorithm; for that purpose, one has to replace the fixed
number of iterations by a stopping criterion depending on the residuum.

Let us first introduce some notations. The space-time matrix Gl at level l can
be decomposed into the block submatrices as follows with diagonal submatrices

10 Michael Hinze, Michael Köster and Stefan Turek

Gl
i for the timesteps i = 1, ..., N :

Gl =


Gl

0 M̂ l
0

M̃ l
1 Gl

1 M̂ l
1

. . .
. . .

. . .

M̃ l
N Gl

N

 , Gl
i =:


Aprimal

i Mdual
i B 0

Mprimal
i Adual

i 0 B
BT 0 0 0
0 BT 0 0


Aprimal

i , Adual
i are velocity submatrices, Mprimal

i and Mdual
i coupling matrices be-

tween the primal and dual velocity and B and BT clustering the gradient/diver-
gence matrices which are independent of the timestep i. For simplicity, we dropped

the index l here. Furthermore, we assume the decompositions xi = (xy
i , x

λ
i , x

p
i , x

ξ
i)

and di = (dyi , d
λ
i , d

p
i , d

ξ
i) of vectors into primal/dual subvectors.

We introduce three iterative block smoothing algorithms. Let ω, ω1, ω2 ∈ R
be damping parameters. The special matrix structure suggests the use of a Block-
Jacobi method in the form of Algorithm 2.

Similar to a Block-Jacobi algorithm, it is possible to design a forward-back-
ward block SOR algorithm for smoothing, see Algorithm 3. (For the sake of nota-

tion, we define x−1 := xN+1 := 0, M̃0 := M̂N := 0.) In contrast to Block-Jacobi,
this algorithm exploits basic coupling in time without significant additional costs.
The algorithm allows to specify an additional parameter NSMinner which defines
how many forward-backward-sweeps are calculated before updating the flow; in
our computations however, we always use NSMinner=1.

Above smoothers always treat the primal and dual solution in a coupled
way. On the other hand, one can also decouple these solution parts and perform
a forward simulation for the primal solution, followed by a backward simulation
for the dual solution, see Algorithm 4. This type of algorithm, which we call
‘forward-backward simulation algorithm’ is rather natural and was used in a similar
form by other authors before as a solver (see e.g. [9, 25]). It is expected to be a
compromise in speed and stability: Fully coupled systems in space are avoided, so

Algorithm 2 Space-time Block-Jacobi smoother

function JacSmoother(Gl,w,f ,NSM)
for j = 0 to NSM do

d← f −Glw ◃ Defect
for i = 0 to N do

di ← (Gl
i)

−1di ◃ Block-Jacobi preconditioning
end for
w ← w + ωd

end for
return w ◃ Solution

end function

Space-Time Multigrid Techniques for Optimal Flow Control 11

Algorithm 3 Forward-Backward Block-SOR smoother

function FBSORSmoother(Gl,w,f ,NSM)
for istep = 1 to NSM do

r ← f −Glw ◃ Defect
x← 0 ◃ correction vector
for istepinner = 1 to NSMinner do

xold ← x
for i = 0 to N do ◃ Forward in time

di ← ri − M̃ixi−1 − M̂ix
old
i+1 ◃ Defect in time

xi ← (1− ω1)x
old
i + ω1(G

l
i)

−1di
end for
xold ← x
for i = N downto 0 do ◃ Backward in time

di ← ri − M̃ix
old
i−1 − M̂ixi+1 ◃ Defect in time

xi ← (1− ω1)x
old
i + ω1(G

l
i)

−1di
end for

end for
w ← w + ω2x ◃ Correction

end for
return w ◃ Solution

end function

the computation of each timestep is faster. On the other hand, due to the reduced
coupling, the convergence speed of the overall smoother might be reduced.

Note that the key feature of all algorithms is the solution of saddle point
subsystems of the form

(
AV B
BT 0

)(
c1
c2

)
=

(
d1
d2

)
⇔: Aspc = d

in one time step. AV contains here all velocity submatrices and B, BT all gra-
dient/divergence submatrices.. The full space-time algorithm therefore reduces to
an algorithm in space. All space-time operations (e.g. matrix-vector multiplica-
tions) can therefore be carried out without setting up the whole space time matrix
in memory. The system Aspc = d is a coupled saddle point problem for primal
and/or velocity and pressure. It can be solved e.g. by using direct solvers (as long
as the number of unknowns in space is not too large) or sophisticated techniques
from computational fluid dynamics, namely a spatial multigrid with Pressure-
Schur-Complement based smoothers. A typical approach is presented in the next
section.

12 Michael Hinze, Michael Köster and Stefan Turek

Algorithm 4 Forward-Backward simulation smoother

function FBSimSmoother(Gl,w,f ,NSM)
for istep = 1 to NSM do

r ← f −Glw ◃ Defect
x← 0 ◃ correction vector
for i = 0 to N do ◃ Forward in time

di ← ri −Gl
ixi − M̃ixi−1(

xy
i

xp
i

)
←

(
xy
i

xp
i

)
+ ω1

(
Aprimal

i B
BT 0

)−1 (
dyi
dpi

)
end for
for i = N downto 0 do ◃ Backward in time

di ← ri −Gl
ixi − M̂ixi+1(

xλ
i

xξ
i

)
←

(
xλ
i

xξ
i

)
+ ω1

(
Adual

i B
BT 0

)−1 (
dλi
dξi

)
end for
w ← w + ω2x ◃ Correction

end for
return w ◃ Solution

end function

3.5. Coupled multigrid solvers in space

Systems of the form Aspc = d for subproblems in space can efficiently be solved
with a multigrid solver in space. For a proper description, we have to formulate pro-
longation, restriction and smoothing operators. Prolongation and restriction oper-
ators based on the applied Finite Element spaces are standard and well known (see
e.g. [2, 5, 11, 28, 22]). Smoothing operators acting simultaneously on the primal
and dual variables can be constructed e.g. using the pressure Schur complement
(‘PSC’) approach for CFD problems (see also [21, 26, 27]). We shortly describe
this approach here; a complete overview and in-depth description of all operators
and smoothers will be given in [19].

We first introduce some notations. In each timestep, a linear system Ax = b
has to be solved; in our case, this system can be written in the form(

AV B
BT 0

)(
x1

x2

)
=

(
b1
b2

)
which is a typical saddle point problem for primal and/or dual variables, with AV

being a velocity submatrix and B and BT clustering the gradient/divergence ma-
trices. Depending on the type of the underlying space-time smoother, this system
contains either only primal or dual variables, or it represents a combined system
of primal and dual variables. In the latter case, AV , B and BT decompose into
proper 2× 2 block submatrices.

Space-Time Multigrid Techniques for Optimal Flow Control 13

Let iel denote the number of an arbitrary element in the mesh. Furthermore,
let I(iel) identify a list of all degrees of freedom that can be found on element
iel, containing numbers for the primal and/or dual velocity vectors in all spatial
dimensions and the primal and/or dual pressure. With this index set, we define
AI(iel) to be a (rectangular) matrix containing only those rows from A identified
by the index set I(iel). In the same way, let xI(iel) and bI(iel) define the subvectors
of x and b containing only the entries identified by I(iel). Furthermore we define
AI(iel),I(iel) to be the (square) matrix that stems from extracting only those rows
and columns from A identified by I(iel).

Algorithm 5 PSC-Smoother for smoothing an approximate solution to Ax = b

function PSCSmoother(A,x,b,NSM)
for ism = 1,NSM do ◃ NSM smoothing sweeps

for iel = 1 to NEL do ◃ Loop over the elements
xI(iel) ← xI(iel) + ωC−1

iel (bI(iel) −AI(iel)x) ◃ Local Correction
end for

end for
return x ◃ Solution

end function

This notation allows to formulate the basic PSC smoother in space, see Al-
gorithm 5; ω ∈ R is used here as a damping parameter with default value ω = 1.
Of course, this formulation is not yet complete, as it is lacking a proper defini-
tion of the local preconditioner C−1

iel which is a small square matrix with as many
unknowns as indices in I(iel).

There are two basic approaches for this preconditioner. The first approach,
which we entitle by PSCSmootherFull, results in the simple choice of Ciel :=
AI(iel),I(iel) and calculating C−1

iel by invoking a LU decomposition, e.g. with the
LAPACK package [20]. That approach is rather robust and still feasible as the

system is small; for the Q̃1/Q0 space that is used in our discretisation (see [22]),
the system has 18 unknowns.

The second approach, which we call PSCSmootherDiag, results in taking
a different subset of the matrix A for forming CI(iel). To describe this approach,
we define

Â :=

(
diag(AV) B
BT 0

)
where diag(·) refers to the operator taking only the diagonal elements of a given

matrix. The local preconditioner can then be formulated as Ciel := ÂI(iel),I(iel).
If the local system is a combined system of primal and dual variables, this ap-
proach decouples the primal from the dual variables. Applying Â−1

I(iel),I(iel) then

decomposes into two independent subproblems which is much faster but leads to
reduced stability. Most of the numerical tests in the later sections were carried out
using PSCSmootherDiag except where noted. We note that it is even possible

14 Michael Hinze, Michael Köster and Stefan Turek

to increase the stability by applying this approach to patches of cells (cf. [21]) but
we do not apply this approach here.

4. Numerical examples

In this section we numerically analyse the proposed solver strategies with respect
to robustness and efficiency. The nonlinearity is captured by a space-time fixed
point/Newton iteration, both preconditioned by the proposed space-time multi-
grid.

4.1. The Driven-Cavity example

Example 4.2 (Driven-Cavity configuration). Let a domain Ω = [0, 1]2 be given. On
the four boundary edges Γ1 := {0} × (0, 1), Γ2 := [0, 1] × {0}, Γ3 := {1} × (0, 1),
Γ4 := [0, 1] × {1} we describe Dirichlet boundary conditions as y(x, t) = (0, 0)
for x ∈ Γ1 ∪ Γ2 ∪ Γ3 and y(x, t) = (1, 0) for x ∈ Γ4. The coarse grid consists
of only one quadratic element. The time interval for this test case is [0, T] with
T = 1, the viscosity parameter of the uncontrolled and controlled flow is set to
ν = 1/400. The initial flow y0 is the stationary fully developed Navier–Stokes flow
at ν = 1/400, while the target flow z is chosen as the fully developed Stokes–flow.

A stationary analogon of this example was analysed in [1] and in [25] the
authors analyse this problems under constraints, see also [13, 14]. Figure 1 shows
a picture of the streamlines of the target flow and the initial flow with the corre-
sponding velocity magnitude in the background. For better visualisation, we took
a different resolution of the positive and negative streamlines. Figure 2 depicts the
controlled flow and the control at t = 0.075, t = 0.25 and t = 0.5. One identifies
two main vortices which ‘push’ the Navier–Stokes flow to the Stokes-Flow at the

Figure 1. Driven-Cavity example, Streamlines of the stationary
Navier–Stokes (initial) flow (left) and stationary Stokes (target-)
flow (right). Velocity magnitude in the background.

Space-Time Multigrid Techniques for Optimal Flow Control 15

Figure 2. Driven-Cavity example, controlled flow at t = 0.075
(top), t = 0.25 (center) and t = 0.5 (bottom). Left: Streamlines
with primal velocity magnitude in the background. Right: Con-
trol.

beginning of the time interval. Table 1 lists the number of unknowns for a pure
forward simulation and the optimisation for this problem.

In the first couple of tests we analyse the behaviour of the solver when being
applied to the Driven-Cavity example. For our tests, we prototypically choose the
regularisation parameters in the KKT-system to be α = 0.01 and γ = 0 and start
with defining a basic coarse mesh in space and time. We choose ∆tcoarse = 1/10
and hcoarse = 1/4, although any other relation between ∆tcoarse and hcoarse would
be suitable as well. This mesh is simultaneously refined by regular refinement in
space and time. On each space-time level, we perform the following tests:

16 Michael Hinze, Michael Köster and Stefan Turek

simulation optimisation
∆t h #DOF space #DOF total #DOF space #DOF total

1/20 1/8 352 7 392 704 14 784
1/40 1/16 1 344 55 104 2 688 110 208
1/80 1/32 5 248 425 088 10 496 850 176
1/160 1/64 20 736 3 338 496 41 472 6 676 992

Table 1. Driven-Cavity example, problem size. Number of de-
grees of freedom in space (‘#DOF space’) and on the whole space-
time domain including the initial condition (‘#DOF total’).

1.) We calculate an optimal control problem with the target flow as specified
above. The nonlinear space-time solver damps the norm of the residual by εOptNL =
10−5, the linear space-time multigrid in each nonlinear iteration by εOptMG. The
convergence criterion of the innermost spatial multigrid solver in each timestep
was set to damp the norm of the residual by εSpaceMG.

2.) We calculate a pure simulation with a fully implicit Navier–Stokes solver
in time, using the control computed in 1.) as right hand side. In each timestep
the norm of the residual was damped by εSimNL = 10−5. The linear multigrid
subsolver in each nonlinear iteration damps the norm of the residual by εSimMG.

General tests. In the first couple of tests we analyse the behaviour of the nonlinear
space-time solver for optimal control. We fix the space-time mesh to ∆t = 1/40
and h = 1/16 which is already fine enough for a qualitative analysis. The con-
vergence criterion of the innermost solver to εSpaceMG = 10−2. The smoother in
space is PSCSmootherDiag, the space-time smoother FBSORSmoother(ω1 =
0.8, ω2 = 1). From Figure 3 one can see linear convergence for the fixed point it-
eration and quadratic convergence of the Newton iteration. Note that because of
εOptNL = 10−5 the impact of the parameter εOptMG to Newton is rather low, it
does not (yet) influence the number of iterations.

The next test analyses the influence of the innermost stopping criterion
εSpaceMG. For the space-time smoothers JACSmoother(ω = 0.7, NSM = 4),
FBSimSmoother(ω1 = 0.8, ω2 = 0.5, NSM = 4) and FBSORSmoother(ω1 =
0.8, ω2 = 1, NSM = 1) we fix the convergence criterion of the space-time multigrid
to εOptMG = 10−2 (Table 2). Then, we calculate the fixed point and Newton iter-
ation for different settings of εSpaceMG. As one can see from the tables, the solver
behaves very robust against εSpaceMG, so we choose εSpaceMG = 10−2 for all later
tests. Furthermore one can see that the efficiency of FBSimSmoother with four
smoothing steps is comparable to FBSORSmoother with one smoothing step.
JACSmoother on the other hand is the least efficient smoother of these three,
so we omit further investigations of it.

Table 3 reveals that for a reasonable convergence criterion of εOptNL = 10−5,
the number of linear and nonlinear iterations is rather independent of the conver-
gence criterion εOptMG of the space-time multigrid solver. (The smoother in these

Space-Time Multigrid Techniques for Optimal Flow Control 17

computations is FBSORSmoother(ω1 = 0.8, ω2 = 1, NSM = 1).) Furthermore,
the number of linear and nonlinear iterations stays almost constant upon increasing
the resolution of the space-time mesh which confirms the linear complexity of the
algorithm. More precisely, the number of iterations even reduces with increasing
space-time level – an effect which was also observed and proven in [6].

We note that the impact of the setting of εOptMG would be stronger if εOptNL

is set smaller; for such cases, one would prefer an inexact Newton algorithm which
adaptively determins the stopping criterion of the linear space-time solver; for
details see e.g. [14]. In all further tests, we take εOptMG = 10−2.

 1e-013

 1e-012

 1e-011

 1e-010

 1e-009

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0 2 4 6 8 10 12 14 16

R
es

id
uu

m

Iterate

Fixed Point, EPS_OptMG = 1E-2
Fixed Point, EPS_OptMG = 1E-6

Newton, EPS_OptMG = 1E-2
Newton, EPS_OptMG = 1E-6

Figure 3. Driven-Cavity example, convergence of the fixed point
and Newton algorithm.

JACSmoother FBSimSmoother FBSORSmoother
Slv. εSpMG #NL #MG Time #NL #MG Time #NL #MG Time
FP 10−1 15 134 811 15 60 350 15 75 310

10−2 15 134 846 15 60 352 15 75 319
10−6 15 134 2405 15 60 650 15 75 775

N 10−1 4 50 449 4 16 138 4 25 150
10−2 4 50 467 4 16 138 4 25 160
10−6 4 50 1181 4 16 251 4 25 349

Table 2. The influence of εSpaceMG to the Fixed point (‘FP’)
and Newton (‘N’) solver. εOptMG = 10−2. ‘#NL’=number of iter-
ations, nonlinear solver. ‘#MG’=number of iterations, space-time
multigrid. ‘Time’= comp. time in sec.; Driven-Cavity example.

18 Michael Hinze, Michael Köster and Stefan Turek

εOptMG: 10−2 10−6

Nonl. Solv.: fixed point Newton fixed point Newton
∆t h #NL #MG #NL #MG #NL #MG #NL #MG

1/40 1/16 15 75 4 25 14 252 4 80
1/80 1/32 8 40 4 25 8 158 4 87
1/160 1/64 6 33 4 27 6 132 3 68

Table 3. The influence of εOptMG. ‘#NL’=number of iterations,
nonlinear solver. ‘#MG’=number of iterations, space-time multi-
grid. Driven-Cavity example.

Optimisation vs. Simulation. In the following tests we compare the behaviour of
the solver for the optimal control problem with a pure simulation. As conver-
gence criterion for the solver we choose εSimNL = εOptNL = 10−5 and εSimMG =
εOptMG = 10−2. Table 4 depicts the result of a set of forward simulations for var-
ious settings of ∆h and t. We tested both nonlinear solvers, the simple nonlinear
fixed point iteration (entitled by ‘FP’) as well as the Newton iteration (entitled
by ‘N’). The linear subproblems in space were solved by a multigrid solver in
space with a PSCSmootherDiag-type smoother, the space-time multigrid used
an FBSORSmoother(ω1 = 0.8, ω2 = 1, NSM = 1)-smoother.

The columns ⊘#NL and ⊘#MG in this table describe the average number
of linear/nonlinear iterations per timestep in the simulation, which is comparable
to the number of nonlinear/linear iterations of the optimisation (columns #NL
and #MG, compare also Table 3). #MG in the optimisation task differs from
⊘#MG in the simulation by a factor of approx. 2–3, independent of the level,
which means that the effort for both, the simulation and the optimisation, grows
with same complexity when increasing the problem size.

simulation optimisation

Slv. ∆t h ⊘#NL ⊘#MG #NL #MG Tsim Topt
Topt

Tsim

FP 1/40 1/16 4 15 15 75 3 316 124
1/80 1/32 4 16 8 40 21 1414 68
1/160 1/64 3 16 6 33 207 10436 51

N 1/40 1/16 3 9 4 25 3 158 63
1/80 1/32 3 10 4 25 21 1359 63
1/160 1/64 2 11 4 27 219 11359 52

N 1/16 1/16 3 12 4 13 1.2 46 38
1/32 1/32 3 13 4 13 10.4 330 32
1/64 1/64 3 13 4 12 109.9 2275 21

Table 4. Driven-Cavity-example, optimisation and simulation.
Execution time as well as mean number of iterations for a pure
forward simulation and the corresponding optimisation.

Space-Time Multigrid Techniques for Optimal Flow Control 19

coarse mesh fine mesh FBSORSmoother FBSimSmoother
Slv. ∆t h ∆t h #NL #MG Topt #NL #MG Topt

FP 1/4 1/4 1/16 1/16 15 45 99 div div div
1/6 1/4 1/24 1/16 15 59 164 15 46 176
1/8 1/4 1/32 1/16 15 60 197 15 59 279

N 1/4 1/4 1/16 1/16 4 13 45 div div div
1/6 1/4 1/24 1/16 4 17 74 div div div
1/8 1/4 1/32 1/16 4 21 117 4 15 109

Table 5. Driven-Cavity-example. Smoother robustness.

Table 4 furthermore compares the different execution times of the simulation
and optimisation solver. Using the Newton method clearly shows that the execu-
tion time of the optimisation is a bounded multiple of the execution time of the
simulation. One can see a factor of C ≈ 50 − 60 for this example1, even being
better for higher mesh resolutions. This factor depends strongly on the anisotropy
of the space-time coarse mesh: The lower part of the table shows the results for
a time coarse mesh with ∆tcoarse = 1/4 instead of ∆tcoarse = 1/10, which is fully
isotropic in space and time. For this mesh, we obtain factors of C ≈ 20− 30.

Table 5 compares the FBSimSmoother against the FBSORSmoother in
terms of robustness. Both algorithms have a similar efficiency, but the solver does
not converge anymore for large ∆tcoarse if FBSimSmoother is used. Furthermore
one can see, that the number of space-time multigrid steps #MG (and thus the
solver time Topt) increases with finer ∆tcoarse. This behaviour is typical for SOR-
like algorithms and depends on the anisotropy in the space-time mesh.

4.3. Tests with the Flow-around-Cylinder example

In a similar way as above, we now carry out a set of tests for the more com-
plicated Flow-around-Cylinder problem, which is a modification of a well known
CFD benchmark problem in [22]:

Example 4.4 (Flow-around-Cylinder configuration). As spatial domain, we pre-
scribe a rectangle without an inner cylinder Ω := [0, 2.2] × [0, 0.41] \ Br(0.2, 0.2),
r = 0.05. We decompose the boundary of this domain into five parts: Γ1 :=
{0}×[0, 0.41], Γ2 := (0, 2.2]×{0}, Γ3 := {2.2}×(0, 0.41), Γ4 := [0, 2.2]×{0.41} and
Γ5 := ∂Br(0.2, 0.2). Boundary conditions are: y(x, t) := (0, 0) for x ∈ Γ2∪Γ4∪Γ5,
do-nothing boundary conditions on Γ3 and a parabolic inflow profile with max-
imum velocity Umax := 0.3 on Γ1. The time interval for this test case is [0, T]
with T = 1. Similar to the previous Driven-Cavity-example, our initial flow is the

1We note here that the large factors for ‘small’ mesh resolutions (h ≤ 1/16) are merely an effect of

acceleration due to cache effects on the side of the simulation and can be expected: A simulation
with only some hundreds of unknowns is able to rather completely run in the cache, whereas
the optimisation of a fully nonstationary PDE in space and time usually does not fit into the
computer cache anymore. A more detailed analysis and exploitation of the computer cache and

its effects can be found in [23, 24].

20 Michael Hinze, Michael Köster and Stefan Turek

Figure 4. Flow-around-Cylinder example. Velocity magnitude.
Top: Coarse mesh. Center: Initial Navier–Stokes flow. Bottom:
Target Stokes flow.

stationary Navier–Stokes-flow at ν = 1/500 while the target flow is the stationary
Stokes-flow. The viscosity parameter in the optimisation is set to ν = 1/500 as
well (resulting in a Re=10 optimisation).

Figure 4 depicts the basic mesh, the initial flow and the target flow. For
the time discretisation, we choose N = 10 timesteps on time level 1 which leads
to 20, 40 and 80 timesteps on space-time level 2, 3 and 4, resp. In Table 6 the
corresponding problem size for the simulation and optimisation can be seen. The
convergence criteria for the solvers are defined as εSimNL = εOptNL = 10−5 and
εSimMG = εOptMG = εSpaceMG = 10−2. We again focus on the difference in the
execution time between the simulation and a corresponding optimisation and pro-
ceed as in the last section: We first compute a control with the optimisation and
then execute a pure simulation with the computed control as right hand side.

Table 7 compares the mean number of nonlinear and linear iterations per
timestep in the simulation to the number of nonlinear and linear iterations in the
optimisation. We use FBSimSmoother(ω1 = 0.8, ω2 = 0.5,NSM = 4) here as
space-time smoother. Like in the Driven-Cavity example, the number of nonlinear
iterations for the optimisation is comparable to the mean number of nonlinear
iterations in the simulation, and so it does for the number of linear iterations.
The execution time of the simulation and the optimisation2 differs by only a con-
stant factor which is typically decreasing for higher levels of refinement. The table
indicates a factor C ≈ 20− 30 for reasonable levels.

2In the table, the execution time for the simulation using the fixed point algorithm is usually

lower than the execution time with the Newton algorithm. This stems from the fact that when
using Newton, the effort for solving the spatial system in every timestep is much higher, and
due to the convergence criterion εOptNL < 10−5 the Newton and the fixed point method need
approximately the same number of linear/nonlinear iterations. This situation usually changes if

a higher Re number is used as this implies a stronger influence of the nonlinarity!

Space-Time Multigrid Techniques for Optimal Flow Control 21

simulation optimisation
∆t Space-Lv. #DOF space #DOF total #DOF space #DOF total

1/20 2 2 704 29 744 5 408 59 488
1/40 3 10 608 222 768 21 216 445 536
1/80 4 42 016 1 722 656 84 032 3 445 312

Table 6. Flow-around-Cylinder example, problem size. Number
of degrees of freedom in space (‘#DOF space’) and on the whole
space-time domain including the initial condition (‘#DOF total’).

Simulation Optimisation

Slv. ∆t Space-Lvl. ⊘#NL ⊘#MG #NL #MG Tsim Topt
Topt

Tsim

FP 1/20 2 4 19 4 14 3 111 37
1/40 3 4 19 4 17 37 972 26
1/80 4 3 20 4 19 324 9383 29

N 1/20 2 3 12 3 10 3 112 37
1/40 3 3 15 3 13 61 924 15
1/80 4 3 14 3 14 387 9410 24

Table 7. Flow-around-Cylinder example. Simulation and optimisation.

5. Conclusions

Optimal control of the time-dependent Navier–Stokes equations can be carried
out with iterative nonlinear and linear solution methods that act on the whole
space-time domain. As nonlinear solver Newton’s method is used. Because of the
special structure of the system matrix a space-time multigrid algorithm can be
formulated for the linear subproblems in the Newton iteration. All matrix vector
multiplications and smoothing operations can be reduced to local operations in
space, thus avoiding the necessity of storing the whole space-time matrix in mem-
ory. Problems in space can be tackled by efficient spatial multigrid and Pressure-
Schur-Complement techniques from Computational Fluid Dynamics. The overall
solver works with optimal complexity, the numerical effort growing linearly with
the problem size. The execution time necessary for the optimisation is a bounded
multiple of the execution time necessary for a ‘similar’ simulation, where numerical
tests indicate a factor of C ≈ 20−30 for reasonable configurations. Being based on
finite elements, the solver can be applied to rather general computational meshes.

This article concentrated on the basic ingredients of the solver. For simplicity,
we restricted to first order implicit Euler discretisation in time and ignored any
restrictions on the controls. Nevertheless, higher order schemes like Crank-Nicolson
are possible and preferrable for larger timesteps, but the additional coupling leads
to a more complicated matrix structure. Similarly, bounds on the control, other
finite element spaces for higher accuracy and stabilisation techniques which are
necessary to compute with higher Reynolds numbers are topics which have to be
addressed in the future.

22 Michael Hinze, Michael Köster and Stefan Turek

References

[1] G. V. Alekseyev and V. V. Malikin. Numerical analysis of optimal boundary control
problems for the stationary navier-stokes equations. Computational Fluid Dynamics
Journal, 3(1):1–26, 1994.

[2] R. E. Bank and T. F. Dupond. An optimal order process for solving finite element
equations. Math. Comput., 36(153):35–51, 1981.

[3] G. Bärwolff and M. Hinze. Optimization of semiconductor melts. Zeitschrift für
Angewandte Mathematik und Mechanik, 86:423–437, 2006.

[4] A. Borzi. Multigrid methods for parabolic distributed optimal control problems.
Journal of Computational and Applied Mathematics, 157:365–382, 2003.

[5] S. C. Brenner. An optimal-order multigrid method for P1 nonconforming finite ele-
ments. Math. Comput., 52(185):1–15, 1989.

[6] G. Büttner. Ein Mehrgitterverfahren zur optimalen Steuerung parabolischer Prob-
leme. PhD thesis, Fakultät II – Mathematik und Naturwissenschaften der Technis-
chen Universität Berlin, 2004. http://edocs.tu-berlin.de/diss/2004/buettner_
guido.pdf.

[7] Ph. G. Ciarlet. The finite element method for elliptic problems. Studies in mathe-
matics and its applications, Vol. 4. North-Holland Publishing Company, Amsterdam,
New-York, Oxford, 1978. ISBN 0444850287.

[8] H. Goldberg and F. Tröltzsch. On a SQP–multigrid technique for nonlinear parabolic
boundary control problems. In W. W. Hager and P. M. Pardalos, editors, Optimal
Control: Theory, Algorithms, and Applications, pages 154–174. Kluwer, 1998.

[9] M. Gunzburger, E. Ozugurlu, J. Turner, and H. Zhang. Controlling transport phe-
nomena in the czochralski crystal growth process. Journal of Crystal Growth, 234:47–
62, 2002.

[10] W. Hackbusch. Fast solution of elliptic optimal control problems. J. Opt. Theory
and Appl., 31(4):565–581, 1980.

[11] W. Hackbusch. Multi-Grid Methods and Applications. Springer, Berlin, 1985. ISBN
3-540-12761-5.

[12] W. Hackbusch. Multigrid methods for FEM and BEM applications. In E. Stein,
R. de Borst, and Th. J. R. Hughes, editors, Encyclopedia of Computational Mechan-
ics, chapter 20. John Wiley & Sons Ltd., 2004.

[13] M. Hintermüller and M. Hinze. A SQP-semi-smooth Newton-type algorithm applied
to control of the instationary Navier–Stokes system subject to control constraints.
Siam J. Optim., 16:1177–1200, 2006.

[14] M. Hinze. Optimal and instantaneous control of the instationary navier–stokes equa-
tions. Institut für Numerische Mathematik, Technische Universität Dresden, 2000.
Habilitation.

[15] M. Hinze and S. Ziegenbalg. Optimal control of the free boundary in a two-phase
stefan problem. J. Comput. Phys., 223:657–684, 2007.

[16] M. Hinze and S. Ziegenbalg. Optimal control of the free boundary in a two-phase
stefan problem with flow driven by convection. Z. Angew. Math. Mech., 87:430–448,
2007.

Space-Time Multigrid Techniques for Optimal Flow Control 23

[17] M. Hinze and S. Ziegenbalg. Optimal control of the phase interface during solidifi-
cation of a GaAs melt. Proc. Appl. Math. Mech., 311(8):2501–2507, 2008.

[18] M. Köster. Robuste Mehrgitter-Krylowraum-Techniken für FEM-Verfahren, 2007.
Diplomarbeit, Universität Dortmund, Diplomarbeit, http://www.mathematik.

tu-dortmund.de/lsiii/static/schriften_eng.html.

[19] M. Köster. A Hierarchical Flow Solver for Optimisation with PDE Constraints. PhD
thesis, TU Dortmund, To appear 2010.

[20] NETLIB. LAPACK – Linear Algebra PACKage, 1992. http://www.netlib.org/

lapack/.

[21] R. Schmachtel. Robuste lineare und nichtlineare Lösungsverfahren für die inkom-
pressiblen Navier–Stokes-Gleichungen. PhD thesis, TU Dortmund, June 2003. http:
//www.mathematik.tu-dortmund.de/lsiii/static/schriften_eng.html.

[22] S. Turek. Efficient Solvers for Incompressible Flow Problems: An Algorithmic and
Computational Approach. Springer, Berlin, 1999. ISBN 3-540-65433-X.

[23] S. Turek, Ch. Becker, and S. Kilian. Hardware–oriented numerics and concepts for
PDE software. Future Generation Computer Systems, 22(1–2):217–238, 2006. doi:
10.1016/j.future.2003.09.007.

[24] S. Turek, D. Göddeke, Ch. Becker, S. H. M. Buijssen, and H. Wobker. FEAST –
realisation of hardware-oriented numerics for HPC simulations with finite elements.
Concurrency and Computation: Practice and Experience, 2010. Special Issue Pro-
ceedings of ISC 2008, accepted.

[25] M. Ulbrich. Constrained optimal control of Navier–Stokes flow by semismooth new-
ton methods. Systems Control Lett., 48:297–311, 2003.

[26] S. P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive
variables. Journal of Computational Physics, 65:138–158, 1986.

[27] H. Wobker and S. Turek. Numerical studies of Vanka-type smoothers in computa-
tional solid mechanics. Advances in Applied Mathematics and Mechanics, 1(1):29–55,
2009.

[28] H. Yserentant. Old and new convergence proofs for multigrid methods. Acta Numer-
ica, pages 1–44, 1992.

Michael Hinze
Department of Mathematics, University of Hamburg, Bundesstrasse 55, 20146 Hamburg,
Germany
e-mail: michael.hinze@uni-hamburg.de

Michael Köster
Corresponding author. Institut für Angewandte Mathematik, Technische Universität
Dortmund, Vogelpothsweg 87, D-44227 Dortmund, Germany
e-mail: michael.koester@mathematik.tu-dortmund.de

Stefan Turek
Institut für Angewandte Mathematik, Technische Universität Dortmund, Vogelpothsweg
87, D-44227 Dortmund, Germany
e-mail: stefan.turek@mathematik.tu-dortmund.de

