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1 Introduction

Design of semiconductor devices is an important and challenging task in mod-
ern microelectronics, which is more and more carried out via mathematical
optimization with models for the device behavior. The design variable (and
correspondingly the unknown in the associated optimization problems) is the
device doping profile, which describes the (charge) density of ion impurities
in the device and is therefore modeled as a spatially inhomogeneous function.
The optimization goals are usually related to the device characteristics, in
particular to outflow currents on some contacts. This is also the typical setup
we shall confine ourselves to in this paper, namely to (approximately) achieve
a certain goal related the outflow current on a contact (e.g. a maximization
or just an increase of the current), ideally with minimal change of the doping
profile to some given reference state.

In order to solve such optimal design problems it is important to find
suitable models of objective functionals to be minimized, so that a reason-
able compromise between conflicting design goals (e.g. maximizing current
and keeping the doping profile close to the reference state) can be achieved.
We shall study and compare two different models that have been proposed
for the optimization (and used for numerical solutions, cf. [HP02a, HP02b,
BP03, HP05, HP06]). In any of the models, the weighting of the different
goals leads to some parameters in the objective functionals and we shall pay
particular attention to the limiting behavior of minimizers with respect to
these parameters.

We shall start with an overview of models for the simulation and in par-
ticular for the optimization of semiconductor devices, which we carry out in
a rather general setup. Then we turn our attention to a simple model case,
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namely the unipolar drift-diffusion model, for which a very detailed analysis of
the optimization models can be carried out. We shall verify some fundamental
properties such as existence of minimizers and existence of Lagrange multipli-
ers, before we analyze the regularity of minimizers and the quite challenging
problem of existence. Moreover, we also investigate the asymptotic behavior
of the minimizers for large and small parameters in the objective functionals.
Finally, we discuss the numerical solution of the optimization problems for the
particular case of drift-diffusion models, but allowing bipolarity and multiple
dimensions, and give some computational results.

2 Models for Optimal Dopant Profiling

Macroscopic models for semiconductor devices are usually composed of two
basic state variables, namely the electric potential V and a set of densities ρ
(e.g. electron and hole densities), which satisfy a nonlinear system of the form

−λ2∆V = Q(ρ) + C (1)
F (ρ, V ) = 0. (2)

Here λ denotes a scaling parameter (called Debye length), Q(ρ) is the total
charge density generated by ρ, C is the doping profile (modeled as a function
of space) and F symbolizes nonlinear differential equations for ρ (which also
include the electric potential V ). All equations are to be solved in a domain Ω
modeling the device geometry and with suitable boundary conditions, which
we do not further discuss here. For an overview of device models and their
asymptotic relations we refer to [JP01, MRS90].

The primary optimization goal can usually be modeled in a straight-
forward way as a functional of the densities and the voltage, i.e.,

R(V, ρ) → min
(V,ρ,C) satisfying (1),(2)

. (3)

The functional R could e.g. be the negative current outflow on a contact (in
order to maximize the current (cf. [PSSS98, St00, Stea98]) or the square of
current minus a target current (cf. [HP02a, HP02b]).

As an example we consider the most frequently used case, namely the
bipolar drift-diffusion model, where ρ = (n, p) with n being the electron and p
the hole density. In this case the charge density is simply Q = p− n and the
differential operators included in F are given by

F (n, p) =
(∇ · (Dn∇n− µnn∇V )
∇ · (Dp∇p + µpp∇V )

)
.

The current flowing out over a contact Γ ⊂ ∂Ω is then given by

I =
∫

Γ

J · dν, J = Dn∇n− µnn∇V −Dp∇p− µpp∇V,
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and a prototypical optimization problem would be to minimize −I or |I−I∗|2.
It turns out that an optimization problem of the form (3) is not well-posed,

i.e., the existence of solutions and the robustness of the problem cannot be
guaranteed. In order to achieve these goals, a second term has to be introduced
to the objective functional. In [HP02a, HP02b] an optimization of the form

Gα(V, ρ, C) := R(V, ρ) + α‖C − C∗‖2 → min
(V,ρ,C) satisfying (1),(2)

(4)

has been proposed. Here C∗ is a given prior for the doping profile and α is a
positive parameter. If the norm is chosen appropriately it can be shown that
a minimizer of (4) exists for α > 0. Moreover, one can formulate first-order
optimality conditions, as usual in optimization based on the Lagrangian

L(V, ρ, C; p, q) = Gα(V, ρ, C)+
∫

Ω

(
λ2∇V · ∇p−Q(ρ)p− Cp

)
dx+〈F (ρ, V ), q〉

having zero variations with respect to the primal variables (V, ρ, C) and the
dual variables (p, q). The latter just yields the constraints (1),(2), which have
to be coupled with

0 =
∂L

∂V
=

∂R

∂V
(V, ρ)− λ2∆p +

∂F

∂V
(ρ, V )∗q (5)

0 =
∂L

∂ρ
=

∂R

∂ρ
(V, ρ)−Q′(ρ)p +

∂F

∂ρ
(ρ, V )∗q (6)

0 =
∂L

∂C
= αE∗E(C − C∗)− p. (7)

Here A∗ denotes the adjoint of an operator A, and E is the embedding operator
from the space used for C (with norm ‖.‖ as used in the functional Gα) into
L2(Ω). Hence, the optimality conditions yield a system of five strongly coupled
nonlinear equations (1), (2), (5), (6), (12), which is solved by a minimizer of
(4). Both the analysis and the computation of minimizers turn out to be
challenging tasks, which we shall investigate in more detail for a very special
device model in the next section.

As an alternative to (4) a different approach has been introduced in [BP03],
which is motivated from the structure of the above optimality system. It turns
out that the optimality system can be simplified partially if a variable change
from the doping profile C to the total charge density

W := Q(ρ) + C (8)

is performed. Obviously, if one minimizes with respect to (V, ρ, W ) then one
can reconstruct C uniquely from this formula. On the other hand, the Poisson
equation simplifies to

−λ2∆V = W, (9)

i.e., the densities ρ do not appear any more and the coupling between V and
ρ becomes one-directional only. Since one is using a novel design variable W
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in this setup it seems natural to adjust the penalizing term to this fact, i.e.,
to minimize

Hβ(V, ρ,W ) := R(V, ρ) + β‖W −W ∗‖2 → min
(V,ρ,W ) satisfying (9),(2)

. (10)

The Lagrangian associated to (10) is given by

L(V, ρ, W ; p, q) = Hβ(V, ρ, C) +
∫

Ω

(
λ2∇V · ∇p−Wp

)
dx + 〈F (ρ, V ), q〉,

and the optimality conditions are given by (9),(2) together with

0 =
∂L

∂V
=

∂R

∂V
(V, ρ)− λ2∆p +

∂F

∂V
(ρ, V )∗q (11)

0 =
∂L

∂ρ
=

∂R

∂ρ
(V, ρ) +

∂F

∂ρ
(ρ, V )∗q (12)

0 =
∂L

∂C
= βE∗E(W −W ∗)− p. (13)

The structure of the optimality system for (10) turns out to be more conve-
nient than the one for (4). For given design variable W one can subsequently
solve (9) for V , (2) for ρ, (12) for q, and (13) for p. For the case of the drift-
diffusion model as stated above, this can be realized by solving scalar linear
differential equations only instead of nonlinear coupled systems. As a direct
consequence, the analysis of the optimality systems and important properties
such as the existence of Lagrange multipliers p and q are rather straight-
forward (see [BP03] for the drift-diffusion model). Moreover, this decoupling
of the optimality system can be used to construct efficient numerical methods
as we will discuss in Section 4.

3 Optimization of Unipolar Diodes

In the following we provide a detailed analysis for the optimization of the
unipolar drift-diffusion model for diodes. In this situation a spatially one-
dimensional analysis can be carried out, with a single density (namely the
electron density n). For convenience we shall use a scaled version of the model
and a standard transformation to so-called Slotboom variables and consider
the unknown u ∼ e−V n (cf. e.g. [MRS90] for details on scaling and density
variables for the drift-diffusion model).

Motivated by the above discussion we consider the optimization problems
(note from the model below that the current J = eV ux is spatially homoge-
neous, so that I = J)

Gα(u, V, C) :=
1
2

∫ 1

0

|eV ux − J∗|2dx +
α

2
‖C − C∗‖2 (14)



Optimization Models for Semiconductor Dopant Profiling 5

and

Hβ(u, V, C) :=
1
2

∫ 1

0

|eV ux − J∗|2dx +
β

2
‖Vxx − V ∗

xx‖2 (15)

both of them subject to

λ2Vxx − eV u = −C in (0, 1)
(eV ux)x = 0 in (0, 1)

V = V ∗ in {0, 1} (16)
Vxx = V ∗

xx in {0, 1}
u = uD in {0, 1}

In order to keep the notation as unified as possible in this section we shall
not use the variable W but directly write the problems in terms of V and its
derivatives.

Our aim is to study the parametric behavior of these functionals with
respect to the positive real parameters α and β, respectively. In particular we
shall investigate the asymptotic behavior of the minimizers as the parameters
tend to zero or infinity, respectively. In the latter case, it seems obvious that
the design variables (C and V , respectively) converge to their priors, which we
will prove with a rate of at least α−1/2 and β−1/2. In the case of parameters
tending to zero numerical experiments indicate that the current J = eV ux

tends to the desired current J∗, which we will prove in both cases. For the
functional Hβ , we shall even prove that this convergence arises with rate

√
β

as β → 0.

3.1 Optimization for Positive and Finite Parameters

In this section we shall investigate the optimization problems for parame-
ter values α and β in the open interval (0, +∞), which provides some basic
results for the later asymptotic analysis, but also a variety of interesting re-
sults that yield further insight with respect to the parametric behavior of the
optimization problems.

Minimization of Gα

We start with a discussion of basic properties of the optimization problem
(14) subject to (16), which was originally introduced [HP02a, HP02b].

Theorem 1. Let α > 0, J∗ ∈ R, C∗ ∈ H1([0, 1]), and

‖C − C∗‖2 =
∫ 1

0

(
|Cx − C∗x|2 + |C − C∗|2

)
dx

Moreover let u∗ ∈ H1([0, 1]), V ∗ ∈ H3([0, 1]) satisfy
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λ2V ∗
xx = eV ∗u∗ − C∗ in (0, 1)(

eV ∗u∗x
)

x
= 0 in (0, 1)

u∗ = u∗D in {0, 1}.

Then there exists a solution

(u, V , C) ∈ H1([0, 1])×H2([0, 1])×H1([0, 1])

of the optimization problem (14), (16).

Proof. The existence of a solution (u, V , C) ∈ H1([0, 1])3 follows from a more
general result in [HP02b], the additional regularity V ∈ H2([0, 1]) in this
one-dimensional case follows from

V xx = eV u− C ∈ L2([0, 1]).

Besides the existence of a solution, the KKT-system and existence of La-
grange multipliers are of particular interest.

Proposition 1. Under the conditions of Theorem 1, there exist Lagrange mul-
tipliers (p, q) ∈ H1

0 ([0, 1])2 such that a stationary point (u, V , C) of (14), (16)
satisfies

0 = −α(Cxx − C∗xx) + α(C − C∗)− p in (0, 1)

0 =
(
eV ux − J∗

)
eV ux − λ2pxx + eV pu + eV uxqx in (0, 1)

0 = −
(
eV (eV ux − J∗)

)
x

+ eV p− (eV qx)x in (0, 1) (17)

p = 0 in {0, 1}
q = 0 in {0, 1}.

Proof. See [HP02b].

In general, one cannot expect the uniqueness of the Lagrange multipliers
defined (5)–(7). But for the unipolar diodes considered here, the Lagrange
multipliers are unique.

Theorem 2. Under the conditions of Proposition 1, the Lagrange multipliers
(p, q) ∈ H1

0 ([0, 1])2 are unique.

Proof. We consider the homogeneous system

0 = −λ2pxx + eV pu + eV uxqx in (0, 1)

0 = +eV p− (eV qx)x in (0, 1) (18)

with p = q = 0 in {0, 1}. The second equation can be written as
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p = V xqx + qxx

and plugging this in the first equation we get (with n = eV u)

−λ2pxx + (nqx)x = 0.

Hence, −λ2px + nqx = k is constant. Now, we introduce ξ := eV qx and start
again from the second equation to get

ξxx = (eV p)x = eV px + eV V xpx =
1
λ2

(nξ − keV ) + V xξx

as an equation for ξ supplemented with boundary data ξx(0) = ξx(1) = 0.
From the boundary data for q we deduce

∫ 1

0

e−V ξ dx = 0.

Let ξ ≤ ξ ≤ ξ be sharp bounds. Choose a point x0 ∈ [0, 1] such that ξ(x0) = ξ
and ξx(x0) = 0. Then we have

ξxx =
1
λ2

(nξ − keV ) ≤ 0

and hence

ξ ≤ max
x

keV

n
.

In analogy, one shows

ξ ≥ min
x

keV

n
.

We deduce that ξ does not change its sign and thus
∫ 1

0
e−V ξ dx = 0 implies

that ξ ≡ 0 and then q ≡ 0 and p ≡ 0. Hence, the homogeneous problem
has only the trivial solution which implies the uniqueness of the Lagrange
multipliers.

Another typical property of an objective functional like (14) is that non-
smooth features of the solution C correspond to those in the prior C∗, or, in
other words, C − C∗ is very smooth. For rather general semiconductor de-
vices optimized with respect to the objective Gα, this effect was discussed in
a formal way in [HP02b]. In the case of a unipolar diode considered here, this
statement can be made rigorous as follows:

Theorem 3. Under the conditions of Proposition 1, a doping profile C cor-
responding to a stationary point (u, V , C, p, q) solving (16), (17) satisfies

C − C∗ ∈ H6([0, 1]) ↪→ C5([0, 1]). (19)
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Proof. First of all, due to Proposition 1 we have

(C − C∗)xx = (C − C∗) +
1
α

p ∈ L2(Ω),

from which we may conclude that C−C∗ ∈ H2([0, 1]). Moreover, (17) implies
(noticing that eV ux is constant)

pxx = λ−2
[
(eV ux − J∗)eV ux + eV pu + eV uxqx

]
∈ L2([0, 1]),

qxx = p− V x

(
eV ux − J∗

)
∈ L2([0, 1]),

and thus, p ∈ H2([0, 1]) and q ∈ H2([0, 1]). Using thus result, we deduce from
the first line in (17) that

∂3

∂x3
(C − C∗) = (C − C∗)x + α−1px ∈ L2([0, 1]),

∂4

∂x4
(C − C∗) = (C − C∗)xx + α−1pxx ∈ L2([0, 1]),

i.e., C − C∗ ∈ H4([0, 1]).
By a further iteration of this process we obtain that

∂jp

∂xj
∈ L2([0, 1]),

∂jq

∂xj
∈ L2([0, 1]),

for j = 3, 4, and consequently

∂j+2

∂xj+2
(C − C∗) =

∂j

∂xj
(C − C∗) + α−1 ∂jp

∂xj
∈ L2(Ω),

which implies C − C∗ ∈ H6([0, 1]) ↪→ C5([0, 1]).

Note that the above result is obtained by a bootstrapping technique, from
which one often derives C∞-regularity. The reason to stop at the the sixth
derivative of C − C∗ is that one cannot proceed further without assuming
higher regularity than C∗ ∈ L2(Ω). If we want to have a bound on the seventh
derivative of C − C∗, we need bounds on the fifth derivative of p, the third
derivative of V , and consequently, the first derivative of C. But C ∈ H1([0, 1])
is obtained only for

C∗ = C − (C − C∗) ∈ H1([0, 1]).



Optimization Models for Semiconductor Dopant Profiling 9

Minimization of Hβ

For the optimization problem (15), (16) we can prove similar results on the
existence of minimizers and Lagrange multipliers as above:

Theorem 4. Let β > 0, J∗ ∈ R, and V ∗ ∈ H2([0, 1]). Moreover, let C∗ ∈
L2([0, 1]) be defined by

C∗ = λ2V ∗
xx − eV ∗u∗,

where u∗ is the unique solution of

−(eV ∗u∗x)x = 0 in (0, 1),

satisfying u∗ = uD in {0, 1}. Then, there exists a minimizer

(u, V , C) ∈ H1([0, 1])×H2([0, 1])× L2([0, 1])

of (15) subject to (16).

Proof. See [BP03].

Proposition 2. Under the assumptions of Theorem 4, there exists a Lagrange
multiplier q ∈ H1

0 ([0, 1]) such that a stationary point (u, V ) of (15), (16)
satisfies

β(V xx − V ∗
xx)xx + eV ux(eV ux − J∗) + eV uxqx = 0 in (0, 1),

−eV V x(eV ux − J∗)− (eV qx)x = 0 in (0, 1).
(20)

Proof. See [BP03].

The uniqueness of stationary points is a challenging problem, which seems
to depend strongly on the problem setup. Here we consider a case related
to numerical computations in [HP02b, BP03]), where the optimization was
used to amplify an original given current J0 by 50%, i.e., J∗ = 3

2J0. Since an
optimization algorithm will be started with the reference state (and current
J = J0) and then increase the current one can expect that J0 ≤ J ≤ J∗

is the relevant situation for the current, and in this range uniqueness can be
guaranteed:

Theorem 5. Let, in addition to the above conditions, uD(1)−uD(0) > 0 and
J∗ > 0. Then there is a unique stationary point (u, V , q) of (15), (16), (20)
among those functions satisfying satisfying 2

3J∗ ≤ J = eV ux ≤ J∗.

Proof. By integrating the second equation of (20) we obtain (with J = eV ux)

qx = J∗ − J + ce−V

for a constant c, which can be determined after integration from 0 to 1 as
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c =
J − J∗∫ 1

0
e−V dx

=
J

uD(1)− uD(0)
(J − J∗).

After plugging this into the first equation of (20), we end up with the equation

β(V xx − V ∗
xx)xx + Jce−V = 0.

The linearization of this equation is given by

βψxxxx − Jce−V ψ + (J ′c + Jc′)e−V = 0, (21)

where J ′ and c′ denote the derivatives of the functionals J and c with respect
to V in direction ψ, i.e.,

J ′ =
uD(1)− uD(0)

(
∫ 1

0
e−V dx)2

∫ 1

0

e−V ψ dx, c′ =
J ′(J − J∗) + JJ ′

uD(1)− uD(0)
.

Note that for 0 ≤ 2
3J∗ ≤ J = eV ux ≤ J∗ we have

J ′c + Jc′ = J ′J
3J − 2J∗

uD(1)− uD(0)
≥ 0, c =

J

uD(1)− uD(0)
(J − J∗) ≤ 0.

After multiplying (21) with ψ and integration we obtain

∫ 1

0

(
β|ψxx|2 − Jce−V ψ2

)
dx + J

3J − 2J∗

uD(1)− uD(0)

(∫ 1

0

e−V ψ dx

)2

= 0.

Taking into account the signs of all the terms, this implies that ψ = 0. Hence,
the linearized problem has only the trivial solution, which implies the unique-
ness of V , and consequently of u and q.

As for the minimization of Rα, we can also derive a regularity result for
the design variable. Since in this case, the real design variable is V − V ∗ it
should not surprise that high regularity for this function can be obtained:

Theorem 6. Under the assumptions of Theorem 4, a stationary point (u, V , V )
solving (16), (20) satisfies

V − V ∗ ∈ H6([0, 1]) ↪→ C5([0, 1]),
C − C∗ ∈ H2([0, 1]) ↪→ C1([0, 1]).

Proof. First of all, the function w = V − V ∗
xx satisfies the Poisson equation

−wxx = β−1
(
eV ux(eV ux − J∗) + eV uxqx

)
∈ L2([0, 1]),

with homogeneous boundary data, and by standard elliptic regularity we may
conclude that w ∈ H2([0, 1]). Taking into account that eV ux is constant, we
obtain that
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∂j+2w

∂xj+2
= −eV ux

∂j+1q

∂xj+1
,

for j ≥ 0.
Due to (20) we have

∂2q

∂x2
= −V xqx − V x(eV ux − J∗) ∈ L2([0, 1]),

∂3q

∂x3
= −V xqxx − V xxqx − V xx(eV ux − J∗) ∈ L2([0, 1]),

and as a consequence we obtain that q ∈ H3([0, 1]), w ∈ H4([0, 1]), and hence,
V − V ∗ ∈ H6([0, 1]) ↪→ C5([0, 1]).

Finally, from the Poisson equation we deduce

∂j

∂xj
(C − C∗) =

∂j

∂xj

(
λ2W − eV u + eV ∗u∗

)
∈ L2([0, 1]).

for j = 0, 1, 2, and thus, (C − C∗) ∈ H2([0, 1]).

Note that in this case we obtain H6-regularity of the design variable also
with a rather weak penalization term on W in the L2-norm. If we would
use the H1-norm of W for the penalty instead, this would even imply H8-
regularity of V − V ∗. For the change in the doping profile C − C∗ we cannot
obtain higher regularity than H2, since this would enforce the existence of
higher than second derivatives of V and V ∗, or, due to the Poisson equation,
the existence of derivatives for C and C∗, which we do not assume here.

3.2 Asymptotic Behavior

In the following we investigate the two different limits for the parameters α
and β, namely convergence to zero and infinity, respectively

Large Parameters

The limit of the parameter α and β tending to infinity is the easier case, it
seems obvious that the solutions of the optimization problems (14) or (15)
subject to (16) converge to the prior (u∗, V ∗, C∗). From the structure of the
objective we can prove that this convergence happens with rate O(α−1/2) and
O(β−1/2), respectively.

Theorem 7. Let α > 0 and J∗ ∈ R. Moreover, denote by (uα, V α, Cα) the
unique solution of the optimization problem (14), (15) for fixed α. Then there
exists a positive real constant M such that

‖V α − V ∗‖H3 + ‖uα − u∗‖H1 + ‖Cα − C∗‖H1 ≤ M√
α

,

for α sufficiently large. In particular, (uα, V α, Cα) → (u∗, V ∗, C∗).
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Proof. From(14) we immediately obtain

‖eV α

uα
x − J∗‖2L2 + α‖Cα − C∗‖2H1 ≤ ‖eV ∗u∗x − J∗‖2,

and thus,

‖Cα − C∗‖H1 ≤ M0√
α

.

From the well-posedness of the drift-diffusion model for unipolar diodes
[MRS90, GS92] we may conclude that

‖V α − V ∗‖2H1 + ‖uα − u∗‖ ≤ γ‖Cα − C∗‖H1 ≤ γ
M0√

α
,

for some constant γ > 0 independent of α. Finally, from the Poisson equation
we deduce with the above H1-estimates that

∂j+2

∂xj+2
(V α−V ∗) = λ−2 ∂j

∂xj

(
eV α

(uα − u∗) + (eV α − eV ∗)u∗ + (Cα − C∗)
)
∈ L2([0, 1]),

for j = 0, 1, and from the above estimates on the H1-norms we can also
conclude that

‖V α − V ∗‖H3 ≤ M1√
α

,

for some constant M1, which completes the proof.

An analogous result holds for the limit β →∞ in the minimization of Hβ :

Theorem 8. Let β > 0 be sufficiently large, J∗ ∈ R, and denote by (uβ , V β , Cβ)
the unique minimizer of (15), (16) for fixed β. Then there exists a constant
M > 0 such that

‖V β − V ∗‖H2 + ‖uβ − u∗‖H1 + ‖Cβ − C∗‖L2 ≤ M√
β

.

Proof. As in the proof of Theorem 7 we may deduce that

‖eV β

uβ
x − J∗‖2L2 + β‖V β

xx − V ∗
xx‖2L2 ≤ ‖eV ∗u∗x − J∗‖2,

which implies by standard reasoning that

‖V β − V ∗‖H2 ≤ M0√
β

,

for some constant M0. Since
∫ 1

0

eV ∗ |uβ
x − u∗|2 dx =

∫ 1

0

(eV ∗ − eV β

)uβ
x(uβ

x − u∗) dx,

we may conclude from the Cauchy-Schwarz inequality and the uniform bound-
edness of uβ

x that
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‖uβ − u∗‖H1 ≤ γ‖V β − V ∗‖H2 ≤ γ
M0√

β
,

for some constant γ. Finally, the estimate for ‖Cβ − C∗‖L2 follows from

Cβ − C∗ = λ2(V β
xx − V ∗

xx)− eV ∗(uβ − u∗) + (eV ∗ − eV β

)uβ

and a standard Lipschitz estimate.

Small Parameters

We shall now turn our attention to the limit case of α → 0 and β → 0,
respectively, where we may expect that eV u → J∗. In order to obtain further
insight, we directly start with the limit problem, which is the same for α = 0
and β = 0. One might expect that the limit is determined by the equation

eV 0
u0

x = J∗ (22)

subject to (16), for which one has to expect an infinite number of solutions.
Taking into account the fact that we actually want to compute an optimal
design that is as close as possible to the original one, a more suitable limit
problem for (14), (16) is given by

1
2
‖C − C∗‖2H1 → min

(u,V,C)
, (23)

subject to (16), (22). In an analogous way we define a limit problem for (15),
(16) as

1
2
‖Vxx − V ∗

xx‖2L2 → min
(u,V,C)

, (24)

subject to (16), (22).
We first make sure that the feasible set of these problems defined by (16),

(22) is nonempty:

Lemma 1. Let V ∈ H2([0, 1]) satisfy

∫ 1

0

e−V dx =
uD(1)− uD(1)

J∗
6= 0 (25)

as well as the boundary conditions

V = V ∗, Vxx = V ∗
xx in {0, 1}.

Then, there exists u ∈ H1([0, 1]) and C ∈ L2([0, 1]) such that (16) and (22)
hold. Moreover, C ∈ H1([0, 1]) if V ∈ H3([0, 1]) and C∗ ∈ H1([0, 1]).
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Proof. For V satisfying the above conditions, there exists a unique weak so-
lution u ∈ H1([0, 1]) of the elliptic equation

(eV ux)x = 0 in (0, 1)

with boundary values u = uD in {0, 1}. Moreover, there exists a unique doping
profile C ∈ L2([0, 1]) defined via

C = C∗ − λ2(Vxx − V ∗
xx) + eV u− eV ∗u∗.

Since the derivative of the last two terms involves only first derivatives of
the variables, which exist anyway under the above assumptions, we obtain
C ∈ H1([0, 1]) if V ∈ H3([0, 1]) and C∗ ∈ H1([0, 1]).

Now let J := eV ux, which is a constant in (0, 1). Then, from (25) we
deduce that

uD(1)− uD(0) =
∫ 1

0

ux dx = J

∫ 1

0

e−V dx

=
J

J∗
(uD(1)− uD(0)),

and hence, J = J∗. From the above construction we observe that (16) and
(22) hold, which completes the proof.

This result indicates that at least for a reasonable range of parameters, it
should be possible to find a solution of (16), (22). Indeed, we shall show that
this range is determined by the signs of uD(1)− uD(0) only.

Theorem 9. Let uD(1)−uD(0) > 0 (< 0, respectively). Then the feasible set
determined by (16) and (22) is nonempty for each J∗ > 0 (< 0).

Proof. Due to Lemma 1, it suffices to find a V ∈ H3([0, 1]) satisfying the
boundary conditions and (25). Since the right-hand side in this relation does
not change when we change both the sign of (uD(1)−uD(0)) and J∗, we may
restrict our attention to the case of both being positive. Let Ṽ be a function
in H3([0, 1]) that satisfies the boundary conditions in (16), e.g., a polynomial
of order three. Moreover, let W ∈ H3([0, 1]) be a nonnegative function with
compact support and W ≡ 1 for x ∈ [ 14 , 3

4 ]. We define Vt = Ṽ + tW for t ∈ R,
and

I(t) :=
∫ 1

0

e−Vt dx.

It is easy to see that I is a continuous function and

lim
t→−∞

I(t) = 0, lim
t→+∞

I(t) = ∞,

and hence R+ is included in the range of the function I. Consequently, we
can obtain a feasible point of (16), (22) for each J∗ ∈ R+ (by choosing t such
that I(t) = J∗).
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Due to the above result we shall assume in the following that (uD(1) −
uD(0))J∗ > 0, such that there exists a feasible point of the limit problem.

We shall consider the limit problem of minimizing

1
2
‖Vxx − V ∗

xx‖2L2 → min
V ∈H2([0,1])

. (26)

subject to (25) and the boundary conditions in (16). Since the feasible set is
nonempty and weakly closed under the above conditions, we may conclude the
existence of a minimizer. Due to standard first-order optimality, the minimizer
V satisfies ∫ 1

0

(V xx − V ∗
xx)Wxx dx = 0

for all W ∈ H2([0, 1]) with homogeneous boundary values and

∫ 1

0

e−V W dx = 0.

For arbitrary W we can find a decomposition of the form W = µW0 + (W −
µW0) for a fixed element W0 satisfying

∫ 1

0

e−V W0 dx 6= 0

and

µ =

∫ 1

0
e−V W dx∫ 1

0
e−V W0 dx

Thus, we have
∫ 1

0

(V xx − V ∗
xx)Wxx dx− p0

∫ 1

0

eV W dx = 0,

for arbitrary W ∈ H2([0, 1]) with homogeneous boundary values, and the
Lagrange multiplier

p0 =

∫ 1

0
e−V W dx∫ 1

0
(V xx − V ∗

xx)(W0)xx dx
.

That means, V is a weak solution of the fourth-order equation

(Vxx − V ∗
xx)xx = p0 e−V .

As a consequence, we can derive the following result on the existence of La-
grange multipliers for the limit problem:
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Proposition 3. Let (uD(1)−uD(0))J∗ > 0, and let (V , u, C) be a minimizer
of (26) subject to (16), (22). Then there exist Lagrangian variables

(p, q, r) ∈ H1
0 ([0, 1])×H1([0, 1])× L2([0, 1]),

such that
L′(u, V , C; p, q, r) = 0,

for the Lagrangian

L(u, V, C; p, q, r) =
1
2
‖Vxx − V ∗

xx‖2L2 +
∫ 1

0

(
eV (uxpx + uxq)− J∗q + λ2VxrxeV ur − Cr

)
dx.

Moreover, p = r = 0.

Proof. Let q = − p0
J∗ e

−V , with p0 and V as above, and let p = r = 0. Then we
obtain

∂

∂u
L(u, V , C; p, q, r) = −(eV px + eV q)x + eV r =

( p0

J∗

)
x

= 0

∂

∂V
L(u, V , C; p, q, r) = (V xx − V ∗

xx)xx + eV uxq + eV uxpx − λ2rxx + eV ur

= (V xx − V ∗
xx)xx − p0e

−V = 0
∂

∂C
L(u, V , C; p, q, r) = −r = 0.

Since (u, V , C) satisfies the constraints (16) and (22) the derivatives with
respect, to the Lagrangian variables vanish, too, and thus, L′(u, V , V ; p, q, r) =
0.

The existence of Lagrange multipliers for the limit problem allows to derive
a quantitative convergence result for β → 0.

Theorem 10. Let (βk) be a sequence of positive numbers converging to zero,
and let (uk, Vk, Ck) be a sequence of minimizers of (15), (16). Then there
exists a subsequence converging to a minimizer (u, V , V ) of (26), (16). More-
over, each such subsequence (without restriction of generality (uk, Vk, Ck) it-
self) satisfies

‖Vk − V ‖H2 + ‖uk − u‖H1 + ‖Ck − C‖L2 ≤ m
√

βk, (27)

for some constant m ∈ R+. Moreover, the fitting term satisfies

‖eVk(uk)x − J∗‖L2 ≤ m0βk

for some constant m0 ∈ R+.
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Proof. Due to the existence of Lagrangian variables (p, q, r) we obtain that

L(u, V , C; p, q, r) ≤ L(uk, Vk, Ck; p, q, r)

and because of p = r = 0, this implies

1
2
‖V xx − V ∗

xx‖2L2 ≤ 1
2
‖(Vk)xx − V ∗

xx‖2L2 +
∫ 1

0

q(eVk(uk)x − J∗) dx

≤ 1
2
‖(Vk)xx − V ∗

xx‖2L2 + ‖q‖L2‖eVk(uk)x − J∗‖L2 .

On the other hand, since (Vk, uk, Ck) is a minimizer of (15), (16) with
β = βk, we have

1
2
‖(Vk)xx − V ∗

xx‖2L2 +
1
βk
‖eVk(uk)x − J∗‖2L2 ≤ 1

2
‖V xx − V ∗

xx‖2L2 .

By combining these estimates, we may conclude that

‖eVk(uk)x − J∗‖L2 ≤ βk‖q‖L2 ,

and subsequently
∣∣‖V xx − V ∗

xx‖2L2 − ‖(Vk)xx − V ∗
xx‖2L2

∣∣ ≤ 2βk‖q‖L2 .

Thus,

‖V xx − (Vk)xx‖2L2 = ‖V xx − V ∗
xx‖2L2 − ‖(Vk)xx − V ∗

xx‖2L2

−2
∫ 1

0

(V xx − (Vk)xx)(V xx − V ∗
xx) dx

≤ 2βk‖q‖L2 − 2
∫ 1

0

eV (V − Vk)uxq dx

= 2βk‖q‖L2 + 2p0

∫ 1

0

e−V (V − Vk) dx = 2βk‖q‖L2 ,

where we have used q = − p0
J∗ e

−V and J∗ = eV ux in the last identity. From the
first-order optimality for the limit problem the second term on the right-hand
side vanishes and hence,

‖V xx − (Vk)xx‖L2 ≤
√

2‖q‖L2βk.

The estimate (27) follows from Poincaré inequalities and standard stability
estimates for the equations in (16).
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4 Numerical Solution of the Optimization Problems

Numerical algorithms for the solution of (4) are either based on a steepest
descent approach or on the solution of the first order optimality condition
given by (1), (2) and (5)–(7) via Newton’s method (cf. [HP05, HP06]). The
same approaches might be used for the minimization problem (10), but due
to the special structure of the first order optimality condition one might use
a variant of the well–known Gummel iteration instead (cf. [BP03]). All three
approaches are discussed in the following and numerical examples for the op-
timal dopant profiling of an unsymmetric n–p–diode are presented, where the
underlying model equations are given by the stationary bipolar drift diffusion
equations without generation–recombination terms (cf. [MRS90]). Stated on
the interval Ω = (0, 1) the scaled bipolar model reads

Jn = (nx − n Vx) , Jp = − (px + p Vx) , (28)
∂xJn = 0, ∂xJp = 0, (29)

−λ2Vxx = C − n + p. (30)

Here, we only considered regimes in which we can assume the Einstein rela-
tions

Dn = UT µn, Dp = UT µp,

where UT = kB T/q is the thermal voltage of the device and T denotes its
temperature and kB the Boltzmann constant.

This system is supplemented with the following boundary conditions:

n = nD, p = pD, V = VD in {0, 1} ,

where nD, pD, VD are the H1(0, 1)–extensions of

nD =
C +

√
C2 + 4 δ4

2
, pD =

−C +
√

C2 + 4 δ4

2
, (31)

VD = − log
(nD

δ2

)
+ U, (32)

where δ2 = ni/Cm denotes the scaled intrinsic density.

4.1 Gradient-based Methods

The formulation of a gradient-based steepest descent method for the opti-
mization problem (4) relies on the introduction of the so–called reduced cost
functional Ĝα(C) := Gα(V (C), ρ(C), C), where (V (C), ρ(C)) is the solution
of (1),(2). Clearly, this is only possible if the nonlinear system admits a unique
solution. For the unipolar diodes in one spatial dimension, as discussed in Sec-
tion 3, this holds due to a result in [GS92] for the stationary drift diffusion
model. In general, we can expect the uniqueness only near to the thermal
equilibrium state, i.e. for small applied biasing voltages.

The gradient algorithm for the reduced cost functional Ĝα reads (cf.
[HP05]):
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1. Choose an admissible C0.
2. For k = 1, 2, . . . compute

Ck = Ck−1 − δkĜ′α(Ck−1).

The step–size δk is computed by an exact one-dimensional line-search

δk = argminδ Ĝα

(
Ck−1 − δĜ′α(Ck−1)

)
.

and the algorithm is terminated if the relative error ‖Ĝ′α(Ck)‖/‖Ĝ′α(C0)‖ is
less than a specified error tolerance.

The evaluation of Ĝ′α requires the solution of the nonlinear state system
(1), (2) as well as a solution of the linear adjoint system (5), (6). Hence, each
gradient step yields a feasible point. Compared with black–box optimization
we have the advantage that this algorithm is independent of the number of
discrete design variables given by a suitable discretization of C.

Nevertheless, one has to admit that the main part of the numerical work is
hidden in the line search, since each evaluation of the reduced cost functional
also requires the solution of the nonlinear state system. Instead of the exact
line search one could use here e.g. Armijo’s rule, which will still give sufficient
decrease of the cost functional to ensure convergence.

To get an impression of the performance of the algorithm we present in
Figure 1 the optimized doping profiles for an unsymmetric n–p–diode where
the observation is given by

R(Jn · ν|Γ , Jp · ν|Γ ) =
1
2

∣∣∣∣
∫

Γ

Jn · ν ds− I∗n

∣∣∣∣
2

+
1
2

∣∣∣∣
∫

Γ

Jp · ν ds− I∗p

∣∣∣∣
2

and the state system is given by the standard drift diffusion model without
generation–recombination terms. This allows to adjust the electron and hole
current separately. Especially, we present the optimized doping profiles for
different choices of I∗n, I∗p , i.e. we are seeking an amplification of either the hole
current (I∗n = J∗n, I∗p = 1.5 · J∗p ) or of the electron current (I∗n = 1.5 · J∗n, I∗p =
J∗p ) or of both of them (I∗n = 1.5 · J∗n, I∗p = 1.5 · J∗p ) by 50%. To get an
impression of the overall performance of the method we also have to consider
the nonlinear solves needed for the exact one-dimensional line-search. These
are presented in Figure 2 and one realizes that this is indeed the numerically
most expensive part.

4.2 Newton Methods

Newton–type methods for the solution of the optimization problem (4) are
mainly based on the direct solution of the first order optimality condition
given by (1), (2) and (5)–(7) or, with help of the Lagrangian,

L′(V, ρ, C; p, q) = 0.
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This coupled nonlinear system is then solved iteratively using its Jacobian
L′′(V, ρ, V ; p, q), which formally reads

L′′(V, ρ, C; p, q) =


Gα,xx(x,C) + 〈exx(x,C)(·, ·), (p, q)〉 0 ex(x, C)∗

0 Gα,CC(x,C) eC(x,C)∗

ex(x,C) eC(x,C) 0


 ,

where we used for brevity the notation x = (V, ρ) and the operator e is
defined via e(x, C) =

(
F (v, ρ),−λ2∆V −Q(ρ)− C

)
. Further, for notational

convenience we define the state–control pair y
def= (x,C).

If the state system admits a unique solution, we can again introduce the
reduced cost functional Ĝα(C) def= Gα(x(C), C), where x(C) is determined by
e(x(C), C) = 0. The derivative of the reduced cost functional is given by

Ĝ′α(C) = Gα,C(y(C)) + e∗C(y(C))(p, q), (33)

where (p, q) solves the adjoint equations (5), (6). We recall that unique solv-
ability of e(x, C) = 0 is ensured for devices operated near thermal equilibrium,
i.e. for devices with small applied biasing voltages or for the onedimensional
unipolar diode.

Now we derive Newton’s method for the solution of

Ĝ′α(C) = 0,

which has the advantage that we have at each iteration level a feasible solution
for the state equation. We introduce the operator

T (y) def=
[−e−1

x (y)eC(y)
IdC

]
.
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Then, for given Lagrange multipliers (p, q) the reduced Hessian is defined by

H(y; p, q) def= T ∗(y)Lyy(y; p, q)T (y), (34)

and it holds that

H(y) = Gα,CC(y)+e∗C(y)e−∗x (y) {Gα,xx(y)(·, ·) + 〈exx(y)(·, ·), (p, q)〉} e−1
x (y)eC(y).

Then, the Newton algorithm reads as follows:

Let an admissible C0 be given.
i) Set k = 0 and C0 = C0.
ii) Do while the stopping criterion is violated

(1) Set yk = (x(Ck), Ck) and (pk, qk) = −e−∗x (yk)Gα,x(yk)
(2) Solve H(yk; pk, qk)δCk = −Ĝ′α(Ck)
(3) Set Ck+1 = Ck + δCk, k = k + 1

iii) C∗ def= Ck, y∗ def= yk, STOP.

Remark 1. We note that due to the structure of the reduced Hessian the New-
ton system in step ii)(2) has to be solved iteratively using e.g. a conjugate
gradient method. Let us refer to this as the inner iteration. To provide the
right hand side in ii)(2) one has to solve the nonlinear state system (1), (2) for
xk = (V k, ρk), and one needs to solve the adjoint system (5), (6) for (pk, qk).
These are all ingredients for the calculation of Ĝ′α from (33).

Every application of H(yk; pk, qk) in the j–th inner iteration amounts to
two linear solves, namely

vk
j = e−1

x (yk)eC(yk)δCk
j

and

wk
j = e∗C(yk)e−∗x (yk)

{
Gα,xx(yk) + 〈exx(yk)(vk

j , vk
j ), (pk, qk)〉} .

Let us come back to our previous numerical example to get more insight
into the behavior of the algorithm. We tried to achieve an increase of the
electron and hole current by 50 % for the unsymmetric n–p–diode via optimal
dopant profiling (for details we refer to [HP06]).

The conjugate gradient algorithm in the inner loop was terminated when
the norm of the gradient became sufficiently small; to be more precise, in the
j-th conjugate gradient step for the computation of the update in Newton
step k we stop if the residual rk

j satisfies

‖rk
j ‖

‖Ĝ′α(C0)‖ ≤ min

{(
‖Ĝ′α(Ck)‖
‖Ĝ′α(C0)‖

)q

, p
‖Ĝ′α(Ck)‖
‖Ĝ′α(C0)‖

}
or j ≥ 100. (35)

Note, that q ∈ (1, 2) determines the convergence order of the outer Newton
algorithm. The value of p ∈ (0, 1) is important for the first step of Newton’s
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method, as for k = 0 the norm quotients are all 1; for later steps, the influence
of q becomes increasingly dominant. In Figure 3 the decrease of the residual
is depicted for different values of q = 1, 1.5, or 2. As predicted by the general
theory [Kel95] one gets linear, superlinear and quadratic convergence. Clearly,
the parameter q strongly influences the number of conjugate gradient steps,
which can be seen from Figure 4. While in the linear case (q = 1) we have
an almost constant amount of CG steps in each each iteration, we get, as
expected, a drastic increase towards the end of the iteration for the quadratic
case (q = 2). Hence, the overall numerical effort in terms of CG steps is despite
of the quadratic convergence much larger compared to the relaxed stopping
criterion, which only yields linear convergence!

4.3 Gummel Iterations

Finally, we turn our attention to the minimization problem (10). Clearly,
one can here also employ the previously discussed methods. But exploiting
the special structure of the optimality system it is favorable to use a differ-
ent iterative method in the spirit of the well–known Gummel iteration for
the solution of the nonlinear state system [BP03]. Using a lower triangular
approximation of the optimality system, we start with an potential V , and
subsequently the continuity equations (2) with the given potential V for ρ.
With given potential V and given ρ, we solve the adjoint equations (11), (12)
to obtain the Lagrangian variables p and q. Finally, we can perform a gradient
step with respect to the design variable V using the optimality equation (13).
Due to the simple structure of this equation, it seems reasonable to discretize
the Laplace term in an implicit way and thus, to solve

−β(Vxx− V ∗
xx)xx + τ(Vxx− V ∗

xx) = τ(V old
xx − V ∗

xx)− eV uxpx + e−V vxqx, (36)

for an appropriately chosen damping parameter τ . All together, we can write
this iteration in the following form:

1. Choose an admissible V 0.
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2. For k = 1, 2, . . . solve consecutively

∂x(eV k

∂xuk) = 0

∂x(e−V k

∂xvk) = 0

∂x(eV k

∂xpk) = 0

∂x(e−V k

∂xqk) = 0

−β(V k
xx − V ∗

xx)xx + τ(V k
xx − V ∗

xx) = τ(V k−1
xx − V ∗

xx)− eV k

uk
xpk

x + e−V k

vk
xqk

x.

The corresponding value of the doping profile can be computed independently
by

Ck − C∗ = −λ2(V k
xx − V ∗

xx)xx + nk − n∗ − pk + p∗, (37)

where nk = eV k

uk and pk = e−V k

vk.
Finally, we apply this algorithm to our numerical test case, where we want

to have an increase of the overall current by 50 %. But now, we want to
optimize a symmetric n–p–diode.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1

2

3

4

5

6

7
Doping Profile

x

Optimized
Initial

Fig. 5. Optimized Doping Profile

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

Iteration number

Objective, Observation, Energy

Objective functional
Observation
ε*Energy

Fig. 6. Evolution of the Cost Func-
tional

The optimal doping profile is depicted in Figure 5. But more interesting
is the evolution of the cost function which is shown in Figure 6. The objec-
tive functional and the observation are reduced in a few iterations. Even if
more iterations would be necessary, one needs to appreciate this Gummel–like
algorithm, since its overall performance is again independent of the number
of discrete design parameters and due its iterative structure it is a straight-
forward extension of the Gummel method. Hence, it is easy to incorporate
into existing device simulation codes. Moreover, the numerical performance
of this optimization algorithm is optimal, since we need in fact only two Gum-
mel iterations for the solution of the minimization problem, i.e. the numerical
complexity is double compared with a forward solve for the nonlinear state
system. Note, that on the other hand we are here not feasible on each iteration
level.
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