Fachbereich Mathematik 
  UHH > Faculties > MIN-Faculty > Mathematics > Staff > Peter Heinig   STiNE |  KUS-Portal |  Sitemap Search Help hier gehts zur deutschen Seite  

Peter Heinig

 Department of Mathematics
Research Group: Discrete Mathematics
Bundesstr. 55 (Geomatikum)
20146 Hamburg
Room 213 (Geomatikum)
Tel.: +49 40 42838-5138

Office hours Summer term 2016:
Mondays 11-12 am, and by appointment


In general: Combinatorics, Graph Theory. In particular: Cuts, Flows, Graphs on Surfaces, Logical Limit Laws, Matroids.


  • Logical limit laws for minor-closed classes of graphs, (with T. Müller, M. Noy and A. Taraz), accepted for publication in Journal of Combinatorial Theory (Series B) , arXiv:1401.7021
  • On prisms, Möbius ladders and the cycle space of dense graphs, European Journal of Combinatorics 36 (2014), 503--530,
  • Proof of the combinatorial nullstellensatz over integral domains, in the spirit of Kouba, Electronic Journal of Combinatorics 17(1) (2010), N14
  • Embedding into bipartite graphs, (mit Julia Böttcher und Anusch Taraz). SIAM Journal on Discrete Mathematics, Vol. 24, No. 4 (2010), pp. 1215-1233.


  • When Hamilton circuits generate the cycle space of a random graph, arXiv:1303.0026, improved version in preparation
  • Chio Condensation and Random Sign Matrices, arXiv:1103.2717
  • The Erdős bipartification conjecture is true in the special case of Andrásfai graphs, arXiv:0907.3928, improved version in preparation

In preparation (titles tentative; more information upon request)

  • Minimum multiway cuts in infinite trees, with N. Bowler and P. L. Erdős, in preparation
  • The probability threshold for the lattice of integral flows of a random graph to be generated by Hamilton cycles, with T. Łuczak, in preparation
  • When a spanning set of the lattice of integer flows of a three-connected graph contains a basis, in preparation
  • Refined formula for, and new proof of, a theorem on five-cycles in triangle-free graphs, with S. Nieß, in preparation
  • Lattice-point-avoiding affine subspaces and torsion in the integral homology of random simplicial complexes, in preparation


future semesters

•   Summer 16 Lecturer for course ` 65-425: Gerichtete Graphen (Directed Graphs) ', Universität Hamburg

this semester

•   Winter15/16 Lecturer for course ` 65-841: Mathematik I für Studierende der Holzwirtschaft und Geowissenschaften (Elementare Analysis) ', Universität Hamburg

past semesters

•   (past teaching experience: upon request)

  Seitenanfang  Impress 2016-04-06, Peter Heinig