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Abstract. We investigate the connections between tree amalgamations and
quasi-isometries. In particular, we prove that the quasi-isometry type of multi-
ended accessible quasi-transitive connected locally �nite graphs is determined
by the quasi-isometry type of their one-ended factors in any of their terminal
factorisations. Our results carry over theorems of Papasoglu and Whyte on
quasi-isometries between multi-ended groups to those between multi-ended
graphs. In the end, we discuss the impact of our results to a question of
Woess.

1. Introduction

Tree amalgamations can be thought of as an analogue of free products with
amalgamation or HNN-extensions for graphs. (We refer to Section 2 for the precise
de�nitions.) The following theorem of [6] says that every multi-ended locally �nite
connected quasi-transitive graph splits over a �nite subgraph as a tree amalgama-
tion. It is a graph theoretic version of Stallings' splitting theorem of multi-ended
groups [10]. (We refer to Section 2 for the precise de�nitions needed for Theo-
rem 1.1.)

Theorem 1.1. [6, Theorem 5.3] Every connected quasi-transitive locally �nite
graph with more than one end is a non-trivial tree amalgamation of �nite adhe-
sion and �nite identi�cation length of two connected quasi-transitive locally �nite
graphs that respects the group actions and distinguishes ends.

Just like Stallings' theorem enables us to prove theorems about multi-ended
groups having knowledge of their factors, we are aiming for similar results for
graphs. Two such examples are already proved in [6] and [5]: tree amalgamations
respect hyperbolicity, i. e. two locally �nite quasi-transitive graphs are hyperbolic
if and only if their tree amalgamation is hyperbolic, see [5, Theorem 1.1], and a
connected locally �nite quasi-transitive graph has only thin ends if and only if it
has a terminal factorisation of �nite graphs, see [6, Theorem 7.5]. Here, a terminal
factorisation can be seen as analogue of a terminal graph of groups: whenever we
split our multi-ended graphs, we may ask if their factors have more than one end and
apply to those our splitting theorem, too. If we iterate this splitting and eventually
have only factors with at most one end, a terminal factorisation of the original
graph consists of these �nite or one-ended factors. Krön and Möller [7, Theorem
5.5] proved that a connected locally �nite quasi-transitive graph has only thin ends
if and only if it is quasi-isometric to a tree. Before we state the result of [6, Section
7.2], we de�ne quasi-isometries. A map φ : V (G) → V (H) is a quasi-isometry if
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there are constants γ ≥ 1, c ≥ 0 such that

γ−1dG(u, v)− c ≤ dH(φ(u), φ(v)) ≤ γ dG(u, v) + c

for all u, v ∈ V (G) and such that sup{dH(v, φ(V (G))) | v ∈ V (H)} ≤ c. We then
say that G is quasi-isometric to H. Note the being quasi-isometric is an equivalence
relation.

Theorem 1.2. [6, Section 7.2] A connected quasi-transitive locally �nite graph is
quasi-isometric to a tree if and only if it has a terminal factorisation of only �nite
graphs.

In this paper we are looking more into the connections of tree amalgamations
with quasi-isometries. Since tree amalgamations of two graphs do not only depend
on the two graphs themselves but also on how we glue their copies together, the
�rst natural question is whether the quasi-isometry type of a tree amalgamation
depends on these choices. We will prove that (under some mild assumptions) it
does not depend on these choices (see Corollary 3.4).

Our main result consists of two parts. First, we will generalize the property
that the quasi-isometry type of the tree amalgamation of two graphs G1 and G2

does not depend on the particular tree amalgamation: we will prove that a tree
amalgamation of G1 and G2 is quasi-isometric to the tree amalgamation of two
graphs, one of which is quasi-isometric to G1 the other to G2. More generally, our
next result says that even iterated tree amalgamations only depend on the quasi-
isometry type of their in�nite factors if the tree amalgamations have in�nitely many
ends. (This is the �rst statement of Theorem 1.3.)

An obvious question is whether we can also obtain a reverse statement of that,
i. e. if G and H are quasi-isometric graphs, do all factorisations of G and H have
the same set of quasi-isometry types of in�nite parts? In general this is false as an
easy example shows: take a tree; this has a factorisation into �nite graphs, but also
the trivial factorisation into just itself.

In this example, we can still factorise the tree while this is not possible for the
�nite graphs. So we might just ask for a reverse of the above mentioned state-
ment (the �rst statement in Theorem 1.3) for terminal factorisations. We call a
connected quasi-transitive locally �nite graph accessible if it has a terminal fac-
torisation. Note that not all connected locally �nite quasi-transitive graphs have a
terminal factorisation, i. e. there are inaccessible connected quasi-transitive locally
�nite graphs, as examples by Dunwoody [1, 2] show. But the class of accessible
connected quasi-transitive locally �nite graphs is indeed a class where we obtain
the reverse statement for terminal factorisations.

Theorem 1.3. Let G and H be connected locally �nite quasi-transitive graphs with
in�nitely many ends and let (G1, . . . , Gn), (H1, . . . ,Hm) be factorisations of G,H,
respectively. If (G1, . . . , Gn) and (H1, . . . ,Hm) have the same set of quasi-isometry
types of in�nite factors, then G and H are quasi-isometric.

Furthermore, if G and H are quasi-isometric and accessible and the factori-
sations are terminal, then (G1, . . . , Gn) and (H1, . . . ,Hn) have the same set of
quasi-isometry types of in�nite factors.

Let us point out that we just ask for the same sets and not the same multi-sets
in Theorem 1.3.
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Papasoglu and Whyte [9] proved a group-theoretic versions of Theorem 1.3. That
is, they proved the following result.

Theorem 1.4. [9, Theorems 0.3 and 0.4] Let G and H be �nitely generated in-
�nitely ended groups. If they are the fundamental groups of �nite graphs of groups
with the same sets of quasi-isometry types of vertex groups, then G and H are
quasi-isometric.

Furthermore, if G and H are quasi-isometric accessible groups, then any terminal
graph of group decompositions of G and H have the same quasi-isometry types of
one-ended vertex groups.

Our proofs are inspired by their proof ideas from free products with amalgama-
tions and HNN-extensions of groups and indeed their results can be obtained from
ours using Bass-Serre theory. (We refer to [6, Section 7.1] for a discussion of tree
amalgamations and group products via Bass-Serre theory.) After some preliminary
work in Section 2, we prove the �rst statement of Theorem 1.3 in Section 3 and the
second part of Theorem 1.3 in Section 4.

In Section 5, we turn our attention towards a question of Woess that seems
to be a bit unrelated at a �rst glance but which is also a reason why the results
for quasi-transitive locally �nite graphs cannot be obtained from the results for
�nitely generated groups. Woess [12, Problem 1] posed the problem whether there
are locally �nite transitive graphs that are not quasi-isometric to any locally �nite
Cayley graph. His problem was settled in the negative by Eskin et al. [3] who proved
that the Diestel-Leader graphs are counterexamples. While we do not construct any
new counterexamples, we will obtain as a corollary of Theorem 4.2 that in order
to �nd further counterexamples, it su�ces to look at either one-ended graphs or
inaccessible ones.

2. Preliminaries

In this section, we state our major de�nitions and cite several results that we
are going to use in the proofs of our main theorems.

Let G and H be graphs. We call G quasi-transitive if there are only �nitely
many Aut(G)-orbits on the vertex set of G. We call G and H bilipschitz equivalent
if they are quasi-isometric with c = 0.

A tree is semiregular or (p1, p2)-semiregular if for the canonical bipartition V1, V2
of its vertex set into independent sets all vertices in V1 have the same degree p1 ∈
N ∪ {∞} and all vertices in V2 have the same degree p2 ∈ N ∪ {∞}.

Let G1 and G2 be two graphs and let T be a (p1, p2)-semiregular tree with
canonical bipartition V1, V2 of its vertex set into independent sets. Let

c : E(T ) → {(k, ℓ) | 1 ≤ k ≤ p1, 1 ≤ ℓ ≤ p2}
such that for all v ∈ Vi the i-th coordinates of the elements of {c(e) | v ∈ e} exhaust
the set {k | 1 ≤ k ≤ pi}. Note that in particular the i-th coordinates of the elements
of {c(e) | v ∈ e} are all distinct. Let {Si

k | 1 ≤ k ≤ pi} be a set of subsets of V (Gi)
such that all Si

k have the same cardinality. Let φk,ℓ : S
1
k → S2

ℓ be a bijection.
For each v ∈ Vi with i = 1, 2, let Gv

i be a copy of Gi. We denote by Sv
k the

copy of Si
k in Gv

i . Let H := G1 +G2 be the graph obtained from the disjoint union
of all Gv

i by adding an edge between all x ∈ Sv
k and φk,ℓ(x) ∈ Su

ℓ for every edge
vu ∈ E(T ) with c(vu) = (k, ℓ) and v ∈ V1. Let G be the graph obtained from H
by contracting all new edges, i. e. all edges outside of the Gv

i . We call G the tree
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amalgamation of G1 and G2 over T (with respect to the sets Sk and the maps φk,ℓ),
denoted by G1 ∗T G2. If T is clear from the context, we simply write G1 ∗G2. See
Figure 1 for an image of G1 + G2 and of G1 ∗ G2. The sets Si

k and their copies
in G are the adhesion sets of the tree amalgamation. If the adhesion sets of a
tree amalgamation are �nite, then this tree amalgamation has �nite adhesion. Let
ψ : V (H) → V (G) be the canonical map that maps every x ∈ V (H) to the vertex
of G it ends up after all contractions. A tree amalgamation G1 ∗T G2 is trivial if
there is some Gv

i such that the restriction of ψ to Gv
i is bijective. Note that a tree

amalgamation of �nite adhesion is trivial if V (Gi) is the only adhesion set of Gi

and pi = 1 for some i ∈ {1, 2}.

Figure 1. The left �gure is part of the graph G1+G2 with copies
of G1 being the smaller balls and those of G2 the larger ones. On
the right, the same copies are shown after identi�cation. The grey
parts are the adhesion sets.

Rays are one-way in�nite paths and two rays in a graph G are equivalent if they
lie eventually in the same component of G−S for every �nite set S. The equivalence
classes of rays are the ends of G.

The tree amalgamation G = G1 ∗G2 distinguishes ends if there is some adhesion
set Sv

k = Su
ℓ for adjacent vertices u, v of T such that for every component C of

T − uv the graph induced by
⋃

w∈C G
w
i contains an end.

The identi�cation size1 of a vertex x ∈ V (G) is the smallest size of subtrees of T
over which the contractions to obtain x take place, i. e. the size n of the smallest
subtree T ′ of T such that x is obtained by contracting only edges between vertices
in

⋃
u∈V (T ′) V (Gu

j ). The tree amalgamation has �nite identi�cation if every vertex

has �nite identi�cation size. It has bounded identi�cation if the supremum of the
identi�cation sizes is �nite. We note that tree amalgamations may have �nite but
not bounded identi�cation. E. g. this happens if there exists a sequence of vertices
(vi)i∈N such that vi lies in more than i but �nitely many adhesion sets.

Remark 2.1. For a tree amalgamation G1 ∗ G2 of bounded identi�cation, the
canonical map ψ : V (G1 +G2) → V (G1 ∗G2) is a quasi-isometry whose constants

1Equivalently, as in [8], you can de�ne G via identi�cations of vertices in the disjoint union
of the Gv

i instead of contraction of the newly added edges. From this point of view, we get the

justi�cation of the term `identi�cation size'.
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depend only on the identi�cation sizes of the vertices. Thus, if the identi�cation
sizes and the diameters of adhesion sets are bounded, then G1 and G2 embed
quasi-isometrically into G1 +G2 and thus into G1 ∗G2.

If G1 is �nite we de�ne the �nite extension of G2 by G1 (with respect to G1 ∗G2)
to be isomorphic to a subgraph of G1 ∗ G2 that is induced by a copy Gv

2 of G2

and all copies Gu
1 of G1 with uv ∈ E(T ). Figure 2 shows a �nite extension. It is

straightforward to see that the �nite extension of G2 is quasi-isometric to G2 if all
adhesion sets in G2 have bounded diameter.

Figure 2. As in Figure 1, the copies of G1 are the smaller balls
and those of G2 the larger ones. For �nite G1, the shaded graph
shows the �nite extension of G2 by G1.

Remark 2.2. Let T be a (p1, p2)-semiregular tree and let G1 ∗T G2 be a tree
amalgamation, where G1 is �nite. Let G′

2 be the �nite extension of G2 by G1

with respect to G1 ∗T G2. We will de�ne a tree amalgamation G′
2 ∗T ′ G2 with

G′
2 ∗T ′ G2 = G1 ∗T G2, where T

′ will be a (p2(p1 − 1), p2)-semiregular tree. For
that choose u ∈ V2 and let U1 be the set of vertices v ∈ V2 with distance 0 mod 4
to u and U2 := V2 ∖ U1. To obtain T ′ we start with T and contract all edges of T
that are incident with a vertex of U1. The resulting graph is a (p2(p1 − 1), p2)-
semiregular tree. We may assume that the vertex set of T ′ is U1 ∪ U2. For each
vertex in U1 we take a copy of G′

2 and for each vertex in U2 we take a copy of G2.
There is a canonical way of assigning the labels to the edges of T ′ so that the tree
amalgamation G′

2 ∗T ′ G2 is the same as the tree amalgamation G1 ∗T G2.

We will use Theorem 1.1 in a slightly di�erent form to avoid the de�nition of a
tree amalgamation with respect to the group actions. We note that the statement
about the �nite identi�cation varies a bit from [6, Theorem 5.3], but the version we
use here is mentioned in its proof in [6].

Theorem 2.3. [6, Theorem 5.3] Every connected quasi-transitive locally �nite
graph with more than one end is a non-trivial tree amalgamation G1 ∗ G2 that
distinguishes ends and has �nite adhesion and �nite identi�cation of two connected
quasi-transitive locally �nite graphs such that the set of adhesion sets in each factor
has at most two orbits under some group acting quasi-transitively on that factor.
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Note that the properties of the tree amalgamation of Theorem 2.3 imply that it
has bounded identi�cation.

A factorisation of a connected locally �nite quasi-transitive graph G is a tu-
ple (G1, . . . , Gn) of connected locally �nite quasi-transitive graphs such that G is
obtained from the elements of the tuple by iterated tree amalgamations of �nite ad-
hesion and �nite identi�cation such that for each step some group of automorphisms
of each factor acts quasi-transitively on this factor and the set of its adhesion sets.
Note that this implies that the tree amalgamation is of bounded adhesion. So from
now on, we may assume that the conclusion of Theorem 2.3 the tree amalgamation
is of bounded identi�cation. A factorisation is terminal if every element of the tuple
has at most one end.2

Remark 2.4. Let G be an accessible connected quasi-transitive locally �nite graph.
Then there are connected quasi-transitive locally �nite graphs G1, . . . , Gn, H1, . . .,
Hn−1 with G = Hn−1 and trees T1, . . . , Tn−1 such that the following hold:

(1) every Gi has at most one end;
(2) for every i ≤ n − 1, the graph Hi is a tree amalgamation H ∗Ti H

′ of �nite
adhesion and bounded identi�cation, where

H,H ′ ∈ {Gj | 1 ≤ j ≤ n} ∪ {Hj | 1 ≤ j < i}.

Papasoglu and Whyte used a construction in [9] that we will use for our proofs,
too. However, we can express it in terms of tree amalgamations and thus stick
to our notations. Let G1 and G2 be graphs and let vi ∈ V (Gi) for i = 1, 2 be
their base vertices. Let (Si

k)k≤|Gi| be the adhesion sets such that (Si
k)k≤|Gi| forms

a partition of V (Gi) into sets of size 1. Assume that S1
1 = {v1} and S2

1 = {v2}. Let
T be a (|G1|, |G2|)-semiregular tree with canonical vertex partition {V1, V2}, and
let u ∈ V1. Let

c : E(T ) → {(k, ℓ) | 1 ≤ k ≤ |G1|, 1 ≤ ℓ ≤ |G2|}
be as required for a tree amalgamation with the following additional property for
all edges xy ∈ E(T ), where x is closer to u than y:

• if x ∈ V1, let the second coordinate of c(xy) be 1;
• if x ∈ V2, let the �rst coordinate of c(xy) be 1.

We denote the graph G1 + G2 by G1 +v1,v2 G2. Note that there is a unique edge
in T with label (1, 1). We call the corresponding edge in G1 +v1,v2

G2 the base
edge of G1 +v1,v2 G2. It is the unique edge in G1 +v1,v2 G2 that connects two base
vertices.

Papasoglu and Whyte proved several lemmas about (their version of) this special
kind of tree amalgamations. Before we state them, we need a further de�nition. We
call a graph G unvarying if there is some γ such that for every u, v ∈ V (G) there
is a γ-bilipschitz map G → G that maps u to v. Note that every quasi-transitive
graph is unvarying.

Lemma 2.5. [9, Lemma 1.1] Let G and H be unvarying graphs. Let F be a graph
such that there is some γ > 0 such that the following hold.

(1) F contains families (Gi)i∈I and (Hj)j∈J of disjoint subgraphs so that V (F ) is
covered by them.

2We note that the de�nitions for (terminal) factorisations are weaker than in [6] as we do not
care about the speci�c group actions for our results here.
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(2) Every vertex of F is incident with a unique edge that lies outside all Gi, Hj.
(3) Every edge of F outside of all Gi, Hj is incident with a vertex in some Gi and

with a vertex in some Hj.
(4) For every i ∈ I, j ∈ J there is a γ-bilipschitz equivalence Gi → G, Hj → H,

respectively.
(5) Contracting all edges inside the graphs Gi and Hj results in a tree.

Then there is a constant δ (depending only on γ and the unvaryingness-constants
of G and H) such that for any edge e ∈ E(F ) connecting some Gi to some Hj and
any base vertices u in G and v in H there is a δ-bilipschitz equivalence F → G+u,vH
that maps e to the base edge of G+u,v H.

Lemma 2.5 is our main tool to switch from the tree amalgamations we are starting
with to tree amalgamations that are de�ned using base vertices, in order to apply
the two following lemmas.

Let G1 and G2 be graphs with base vertices. The wedge of G1 and G2 is their
disjoint union with an edge joining their base vertices.

Lemma 2.6. [9, Lemma 1.3] Let G1 and G2 be in�nite unvarying graphs with base
vertices u, v, respectively. Then G := G1 +u,v G2 is bilipschitz equivalent to the
wedge of any �nite number of copies of G.

Lemma 2.7. [9, Lemma 1.4] Let G1 and G2 be in�nite unvarying graphs and u, v
be their base vertices, respectively. Then G1 +u,v G2 and G1 +u,v (G2 +v,v G2) are
bilipschitz equivalent.

Together with the quasi-isometry from Remark 2.1, Lemmas 2.5 and 2.7 imply
the following for tree amalgamations.

Corollary 2.8. Let G and H be connected locally �nite graphs. Then G ∗H and
G ∗ (H ∗H) are quasi-isometric, where all adhesion sets of the tree amalgamations
have size 1 and such that every vertex lies in an adhesion set.

Proof. By Remark 2.1, G ∗ H is quasi-isometric to G + H, which is bilipschitz
equivalent to G+u,vH for some base vertices u of G and v of H. This is bilipschitz
equivalent to G+u,v(H+v,vH) by Lemma 2.7, which in turn is bilipschitz equivalent
to G+ (H +H) by Lemma 2.5, since H +H is bilipschitz equivalent to H +v,v H
by the same lemma. Remark 2.1 shows that G + (H + H) is quasi-isometric to
G ∗ (H ∗H) and thus �nishes the proof. □

We end this section by proving two quasi-isometry results regarding in�nitely-
ended trees.

Lemma 2.9. Every two quasi-transitive locally �nite trees with in�nitely many
ends are quasi-isometric.

Proof. It su�ces to prove that every locally �nite tree T with in�nitely many ends
and �nitely many orbits of vertices is quasi-isometric to the 3-regular tree. First, we
note that there are only �nitely many orbits of vertices of degree 2 in T , so replacing
every maximal path with all internal vertices of degree 2 by an edge results in a
tree T ′ that is quasi-isometric to T . Thus, we may assume that T has no vertices
of degree 2. Now we note that, if P is a path with k edges in a tree such that all
vertices of P have degree 3 in that tree, then contracting P to a single vertex leads
to a vertex of degree k + 3. We �x a root u in the 3-regular tree T3 and a root v
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in T . Let Pv be a path in T3 starting at u of length d(v) − 3, where d(v) denotes
the degree of v. Now let us assume that for a subtree T ′ of T that contains v we
have the following:

(1) for each vertex w of T ′ there is a path Pw in T3;
(2) distinct such paths are disjoint; and
(3) x, y ∈ V (T ′) are adjacent if and only if T3 has an edge with one end vertex

in Px and and the other in Py.

We pick a vertex w ∈ T − T ′ that is adjacent to a vertex x of T ′. By (3) there is
a vertex a in T3 adjacent to Px. Also (3) implies that the vertices in T3 that lie on
the paths Py for y ∈ V (T ′) form a subtree. Hence, we �nd a path Pw in T3 that
starts at a, is disjoint from any Py with y ∈ V (T ′) and has length d(w)−3. We end
up with a collection of paths in T3, one for every vertex of T , that partitions V (T3).
Contracting these paths de�nes a quasi-isometry, since the paths have bounded
length, and results in a tree isomorphic to T due to the requirement on the lengths
of the paths Pw. □

The last result of this section is a sharpening of the easy direction of Theorem 1.2.
Generally, this is follows from Theorem 1.2 and Lemma 2.9 combined, if the tree
obtained from Theorem 1.2 was quasi-transitive. Since this is not stated in that
theorem, we will have to prove it.

Lemma 2.10. A connected locally �nite quasi-transitive graph with in�nitely many
ends that has a terminal factorisation of only �nite graphs is quasi-isometric to a
3-regular tree.

Proof. Let (G1, . . . , Gn) be a terminal factorisation of a connected locally �nite
quasi-transitive graph G, where all Gi are �nite. First, we prove by induction on n
that G is quasi-isometric to a tree with in�nitely many ends with at most n orbits
on its vertex set. This su�ces to prove the assertion since such trees are quasi-iso-
metric to a 3-regular tree by Lemma 2.9. If n = 2, then the map G1 +T G2 → T
that maps the vertices in Gu

i to u is a quasi-isometry. So by Remark 2.1 and
as the tree amalgamation of a factorisation is of �nite identi�cation, and thus
bounded identi�cation, G is quasi-isometric to T . Now let n ≥ 3 and let (H1, H2)
be a factorisation of G such that H1 and H2 have terminal factorisations that
are subsequences of (G1, . . . , Gn). Note that these are proper subsequences. So
by induction Hi is quasi-isometric to some tree Ti with �nitely many orbits. Let
αi : Hi → Ti be a quasi-isometry and let T be a tree such that G = H1 ∗T H2. For
each Aut(G)-orbit of E(T ) we choose an edge e = uv in it and an edge xeux

e
v ∈

E(H1 + H2) with x
e
u ∈ Hu

i and xev ∈ Hv
j . We extend the de�nition of xeu and xev

to all edges of T in such a way that it is compatible with the action of Aut(G).
Now we construct a new tree T ′. For that, we replace in T each vertex u with a
copy Tu

i of Ti and replace the edge uv ∈ E(T ) by an edge αi(x
uv
u )αj(x

uv
v ). By

its construction and as T , T1 and T2 are trees, T ′ is a tree, too. There are only
�nitely many orbits on V (T ′) as this is true for the other three involved trees and
as the construction of T ′ respects the action of Aut(G). Finally, we note that the
quasi-isometries α1 and α2 extend to a quasi-isometry α : G → T ′ as the adhesion
sets of H1 ∗T H2 have bounded diameter. □
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3. Tree amalgamations and quasi-isometries

In this section, we shall prove the �rst part of Theorem 1.3. In preparations
for that, we prove that we may assume � up to quasi-isometry � that the tree
amalgamations that we consider have adhesion 1, disjoint adhesion sets and no
vertices outside adhesion sets.

Lemma 3.1. Let G be a locally �nite connected quasi-transitive graph and let
(G1, G2) be a factorisation of G. Then there is a locally �nite connected quasi-
transitive graph H that has a factorisation (H1, H2) such that the following hold.

(1) G is quasi-isometric to H;
(2) Gi is quasi-isometric to Hi for i = 1, 2;
(3) H1 ∗H2 has adhesion 1;
(4) all adhesion sets of H1 ∗H2 are distinct;
(5) the adhesion sets of Hi cover Hi for i = 1, 2.

Proof. We will modify the tree amalgamation G1 ∗T G2 and the involved graphs
G1, G2 so that the resulting graphs and tree amalgamation satisfy our assertions.
We will do this step by step. I. e., �rst we modify them so that (1)�(3) are true,
then modify the resulting so that (1)�(4) are true and �nally modify a last time to
satisfy all �ve statements.

First, choose for each edge uv ∈ E(T ) such that u gets replaced by a copy of G1

when moving to G1 +G2 a vertex xuv in the adhesion set in Gu
1 belonging to this

edge. We do this so that our choices are invariant under Aut(G1 + G2). Now we
delete in G1 +G2 all edges between copies of G1 and copies of G2 except for those
between xuv and φk,ℓ(xuv) where (k, ℓ) = c(uv), where φ and c are given by the
de�nition of G1 ∗T G2. Since (G1, G2) is a factorisation of G, there is a unique orbit
of adhesion sets. Thus, all adhesion sets have bounded diameter and it follows
that the identity map on V (G1+G2) is a quasi-isometry between these two graphs.
Contracting all edges between the copies of G1 and G2 leads to a tree amalgamation
F1 of G1 and G2 of adhesion 1 that is quasi-isometric to G. It follows from the
choice of the vertices xuv that F1 is quasi-transitive and (G1, G2) is a factorisation
of F1. So F1, G1, G2 satisfy (1)�(3).

Now we replace each vertex x in G1 that lies in some adhesion set by copies
x1, . . . , xnx

, where nx denotes the number of adhesion sets in G1 that contain x.
Note that nx is �nite as the tree amalgamation has �nite identi�cation. We add

• all edges xixj for 1 ≤ i, j ≤ nx with i ̸= j and for every x in adhesion sets,
• all edges vxi for every 1 ≤ i ≤ nx and for every edge vx if v lies in no adhesion
set but x lies in an adhesion set, and

• all edges xiyj for all 1 ≤ i ≤ nx and 1 ≤ j ≤ ny and edges xy if x ̸= y lie in
adhesion sets.

Let G′
1 be the new graph. Let α1 : G

′
1 → G1 be the map that �xes all vertices of G′

1

outside of adhesion sets and maps a vertex xi to its origin x otherwise. Analogously,
we de�ne G′

2 for the graph G2 and a map α2 : G
′
2 → G2. It is easy to see that α1 and

α2 are quasi-isometries. Since G1 and G2 are quasi-transitive, so are G′
1 and G′

2.
Choose the adhesion sets of G′

i such that they are mapped by αi to the adhesion
sets of Gi, have size 1, are disjoint and cover all vertices that get mapped into
adhesion sets of Gi by αi. Set F2 := G′

1 ∗G′
2. By construction, F2 is quasi-transi-

tive. Obiously, we can extend the maps α1 and α2 to a map α : G′
1+G

′
2 → G1+G2
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that is a quasi-isometry. By Remark 2.1, we obtain a quasi-isometry F2 → G1 ∗G2.
Thus, F2, G

′
1, G

′
2 satisfy (1)�(4).

As G is quasi-transitive, every vertex has �nite distance to each of the �nitely
many orbits. Since each orbit of vertices either is covered by all adhesion sets or
intersects them trivially, there exists ci ≥ 0 such that every vertex of G′

i has distance
at most ci to some vertex of the adhesion sets in G′

i. We de�ne a new graph Hi

whose vertex set consists of the vertices of G′
i that lie in adhesion sets. It has edges

between every two vertices that have distance at most 2ci+1 in G′
i. Note that this

condition ensures that Hi is connected. The identity maps V (H1) → V (G′
1) and

V (H2) → V (G′
2) are quasi-isometries that extend to a quasi-isometry H1 +H2 →

G′
1+G

′
2. Since Aut(G

′
1),Aut(G

′
2) acts quasi-transitively on the adhesion sets in G′

1,
in G′

2, respectively, the analogue is true for H1 and H2 since their construction is
compatible with the automorphisms. Also, H := H1 ∗ H2 is quasi-transitive and
quasi-isometric to H1 +H2 by Remark 2.1. Then H,H1, H2 satisfy (1)�(5). □

Lemma 3.2. Let G and H be connected graphs. If G is �nite and H in�nite, then
G ∗ H is quasi-isometric to H ∗ . . . ∗ H, where the number of factors equals the
number of adhesion sets of G.

Proof. Let m be the number of adhesion sets in G. Consider the map that �xes in
G+H all vertices in copies of H and that maps the vertices in copies of G to some
neighbour of that copy in a copy of H. Since G is �nite, this map induces a quasi-
isometry G+H → H + . . .+H with m summands and its image is quasi-isometric
to H ∗ . . . ∗H with m factors. □

Theorem 3.3. Let F , G and H be connected quasi-transitive locally �nite graphs
and let T and T ′ be semi-regular trees with in�nitely many ends. If F and G are
quasi-isometric, then any locally �nite tree amalgamations F ∗T H and G ∗T ′ H of
�nite adhesion and bounded identi�cation are quasi-isometric.

Proof. By Lemma 3.1, we may assume that the adhesion sets have size 1, are disjoint
and cover F , G and H.

First, we consider the case that F is �nite. Then G is �nite, too. If H is �nite,
then with the notation used in the de�nition of tree amalgamations we can map
F v to v and Hw to w to obtain a quasi-isometry F + H → T . Similarly, G + H
is quasi-isometric to T ′. Note that �nite identi�cation implies that T and T ′ are
locally �nite since F,G and H are �nite. Since T and T ′ have in�nitely many
ends, they are quasi-isometric by Lemma 2.9 and hence F ∗T H and G ∗T ′ H are
quasi-isometric.

Now assume thatH is in�nite, but F is still �nite. By Lemma 3.2, F∗TH is quasi-
isometric to H ∗ . . .∗H with |F | factors and G∗T ′H is quasi-isometric to H ∗ . . .∗H
with |G| factors. By Lemma 2.5, these are quasi-isometric to H +v,v . . .+v,vH and
H +v,v . . .+v,v H, respectively, for some v ∈ V (H). By Lemma 2.7, we know that
these are quasi-isometric, and hence F ∗T H is quasi-isometric to G ∗T ′ H.

Let us now consider the case that F and thus also G are in�nite. We �rst assume
that H is in�nite. We apply Corollary 2.8 to see that F ∗H is quasi-isometric to
F ∗H ∗H and G ∗H is quasi-isometric to G ∗H ∗H. By replacing H by H ∗H,
we may assume that H is a non-trivial tree amalgamation.

Let φ : F → G be a quasi-isometry. Let B be the image of φ and let A ⊆ V (F )
such that the restriction of φ to A is a bijection A → B. Note that the vertices
of F , of G have bounded distance to A, to B, respectively, as φ is a quasi-isometry.
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We consider the graph F +u,vH, where u ∈ A is the base vertex of F and v ∈ B
is the base vertex of H. Let α map vertices inside copies F t of F to copies of A
such that sup{d(x, α(x)) | x ∈

⋃
F t} is �nite and such that every base vertex is

the image of itself but of no other vertex. Note that α is �nite-to-one as the graphs
are locally �nite.

Let us modify F +u,v H. We replace every edge that is incident with a vertex x
in a copy of F and a vertex y in a copy of H by a new edge α(x)y. Since d(x, α(x))
is bounded, the new graph X is quasi-isometric to F +u,vH and thus it is quasi-iso-
metric to F ∗H by Lemma 2.5. We equip A with a graph structure by adding edges
between any two vertices with distance at most sup{2d(x, α(x)) + 1 | x ∈

⋃
F t}.

As noted earlier, this results in a connected graph. Then A with this new metric is
bilipschitz equivalent to A with the metric induced by F . We change C accordingly,
i. e. we replace every copy of F by a copy of A with the new edges, and obtain a
graph X ′. Extending the map α by the identity on the copies of H, we obtain a
quasi-isometry F +H → X ′.

We change X ′ in the following way: for each a in a copy of A we choose a
neighbour ua outside of the copies of A and we replace all edges au with u outside
of copies of A by uua. Let Y be the resulting graph. By the choice of α, the base
vertex of every copy of F has a unique neighbour outside of its copy of F . It follows
that every component of Y with all copies of A deleted is a wedge of �nitely many
copies of H. As H is a non-trivial tree amalgamation, Lemma 2.6 shows that each
of the components of Y with the copies of A removed is bilipschitz equivalent to H.
So Lemma 2.5 implies that F ∗ H is quasi-isometric to A +u,v H. Analogously,
G∗H is quasi-isometric to B+w,vH, where w ∈ B is the base vertex of G. Since A
and B are bilipschitz equivalent, Lemma 2.5 implies that A+u,v H and B +w,v H
are quasi-isometric and so are F ∗H and G ∗H.

If H is �nite, then Lemma 3.2 implies that F ∗H is quasi-isometric to F ∗ . . .∗F
with |H| copies and G ∗H is quasi-isometric to G ∗ . . . ∗G with |H| copies. Then
Corollary 2.8 implies that F ∗H is quasi-isometric to F ∗F and G ∗H is quasi-iso-
metric to G ∗G. The previous case with both F and H in�nite shows that F ∗F is
quasi-isometric to F ∗G which in turn is quasi-isometric to G ∗G, which completes
the proof. □

Theorem 3.3 is the major step in showing that the quasi-isometry type of a tree
amalgamation does not depend on the particular adhesion sets, provided they are
�nite. Let us now show this result.

Corollary 3.4. Let G1 and G2 be in�nite connected locally �nite quasi-transitive
graphs and G and H be two non-trivial tree amalgamations of G1 and G2 both
having �nite adhesion and bounded identi�cation. Assume that for i = 1, 2 some
group of automorphisms of Gi acts quasi-transitively on Gi and on its adhesion sets
for both tree amalgamations. Then G is quasi-isometric to H.

Proof. Let G = G1 ∗T G2 and H = G1 ∗T ′ G2. Since Gi is in�nite and some
group acts quasi-transitively on its vertices and its adhesion sets, it follows from [6,
Proposition 4.7] and the connection between tree amalgamations and tree-decom-
positions as discussed in [6, Section 5] that all degrees of T are in�nite. As the tree
amalgamations are non-trivial, both T and T ′ have in�nitely many ends. Thus, the
assertion follows from Theorem 3.3. □
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Before we turn our attention to the �rst part of Theorem 1.3, we prove another
small corollary.

Corollary 3.5. Let G be an in�nite locally �nite quasi-transitive connected graph
and let (G1, G2) be a factorisation of G such that G1 is in�nite, G2 is �nite and
the amalgamating tree is not a star. Then G is quasi-isometric to G1 ∗G1.

Proof. By Lemma 3.2, G is quasi-isometric to G1 ∗ . . . ∗G1 with as many factors as
there are adhesion sets in G2. As the amalgamating tree is not a star, this number
is at least 2. Applying Theorem 3.3 repeatedly implies that G is quasi-isometric to
G1 ∗G1. □

We are going to prove a slightly more technical version of the �rst statement of
Theorem 1.3 that together with Theorem 3.3 will imply it.

Theorem 3.6. Let G be a locally �nite quasi-transitive graph with in�nitely many
ends and let (G1, . . . , Gm) be a factorisation of G. Let H1, . . . ,Hn be in�nite factors
in (G1, . . . Gm) consisting of one representative per in�nite quasi-isometry type.
Then exactly one of the following is true.

(1) If H := H1 ∗ . . . ∗Hn has in�nitely many ends, then G is quasi-isometric to H.
(2) If H does not have in�nitely many ends, but there exists a �nite graph Hfin such

that some non-trivial tree amalgamation H ∗Hfin has in�nitely many ends, then
H ∗Hfin is quasi-isometric to G.

(3) G is quasi-isometric to a 3-regular tree.

Proof. We prove the assertion by induction on the number n of in�nite quasi-iso-
metry types of (G1, . . . , Gm). If n = 0, then G is quasi-isometric to a 3-regular tree
by Lemma 2.10. Let n = 1. We distinguish the cases whether (G1, . . . , Gm) has one
or more than one in�nite factor. Let us �rst assume that (G1, . . . , Gm) has only one
in�nite factor, say G1. If it has no �nite factor, the assertion follows immediately.
So we may assume that m ≥ 2. We may assume G = (. . . (G1 ∗ G2) ∗ . . . ∗ Gm).
Repeatedly applying Corollary 3.5 shows that G is quasi-isometric to G1 ∗ . . . ∗G1

with m ≥ 2 factors. Applying Lemma 2.5 and then Lemma 2.7 repeatedly, implies
that G is quasi-isometric to G1 +u,u G1 for the base vertex u of G1. Now if G1

does not have in�nitely many ends, we obtain analogously that for any �nite graph
Hfin and non-trivial tree amalgamation G1 ∗Hfin we have that G1 ∗Hfin is quasi-
isometric to G1 ∗ G1, which shows the assertion in this case. If G1 has in�nitely
many ends, then it has a factorisation (G1

1, G
2
1). If both factors are in�nite, we

can apply Lemmas 2.5 and 2.7 to see that G1 +u,u G1 is quasi-isometric to G1,
since Lemma 2.7 shows that (G1

1 +u,v G
2
1) +u,u (G1

1 +u,v G
2
1) is quasi-isometric to

G1
1 +u,v G

2
1. If G1

1 is in�nite but G2
1 is �nite, G1 is quasi-isometricto G1

1 ∗ G1
1 by

Corollary 3.5. But then Lemmas 2.5 and 2.7 show that G1
1 ∗G1

1 is quasi-isometric
to (G1

1 ∗G1
1) +u,u (G1

1 ∗G1
1), which is quasi-isometric to G1 ∗G1 by Lemma 2.5. If

G1
1 and G2

1 are �nite, then G1 is quasi-isometric to a 3-regular tree by Lemma 2.10
and so is G1 ∗ G1. So by Lemma 2.9, G1 is quasi-isometric to G1 ∗ G1. Thus, we
have shown the assertion in the case that (G1, . . . , Gm) has only one in�nite factor.

So let us assume that (G1, . . . , Gm) has more than one in�nite factor. Since
n = 1, all of them are in the same quasi-isometry class. By Theorem 3.3 and
Corollary 3.5, we may assume that G = H1 ∗ . . . ∗H1. Corollary 2.8 implies that G
is quasi-isometric to H1 ∗H1. If H1 is one-ended, let Hfin be a �nite graph and T
be a semi-regular tree with in�nitely many ends such that Hfin ∗T H1 has in�nitely
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many ends. It follows that Hfin ∗T H1 is non-trivial. By Corollary 3.5, Hfin ∗T H1

is quasi-isometric to H1 ∗H1. So Hfin ∗T H1 is quasi-isometric to G.
If H1 has more than one end, then it splits as a tree amalgamation H1 ∗H2 by

Theorem 1.1. If H1 and H2 are �nite, then H = H1 is quasi-isometric to a 3-regular
tree and so is G by Lemma 2.10. Hence, G is quasi-isometric to H. If H1 and H2

are in�nite, then H1 = H1∗H2 is quasi-isometric to (H1∗H1)∗(H2∗H2) = H1∗H1

by Corollary 2.8. Theorem 3.3 implies that G is quasi-isometric to Gfin ∗ H1 for
any �nite Gfin such that Gfin ∗H1 is non-trivial. If H1 is �nite and H2 is in�nite,
then Corollary 3.5 implies that H1 is quasi-isometric to H2 ∗H2. So Corollary 2.8
implies that H1 is quasi-isometric to H1 ∗H1. As G is quasi-isometric to H1 ∗H1,
it is quasi-isometric to H1.

Let us now assume that n ≥ 2. For i = 0, . . . , n, let G1
i , . . . , G

ki
i be the factors

of (G1, . . . , Gm) that are quasi-isometric to Hi, where H0 is any connected �nite
graph. Then

G = G1
0 ∗ . . . ∗G

k0
0 ∗ . . . ∗G1

n ∗ . . . ∗Gkn
n .

Corollary 3.5 shows that we can replace each �nite factor by G1
1. So we may assume

that k0 = 0. If n = 2 and k1 = 1, then we apply Corollary 2.8 and obtain that G is
quasi-isometric to G1

1∗G1
2. Thus, Theorem 3.3 implies that G1

1∗G1
2, and hence G, is

quasi-isometric to H1 ∗H2 = H. If n ≥ 3 or k1 ≥ 2, then G′ := G1
1 ∗ . . . ∗G

kn−1

n−1 has
in�nitely many ends and by induction it is quasi-isometric to either H1 ∗ . . . ∗Hn−1

or Gfin ∗ H1 for any �nite Gfin such that Gfin ∗ H1 is non-trivial. Once again,
Corollary 3.5 shows that we can replace Gfin by H1 and thus G′ is quasi-isometric
to either H1 ∗ . . .∗Hn−1 or H1 ∗H1. By Theorem 3.3 we may assume that Gj

n = Hn

for every 1 ≤ j ≤ kn. By applying Corollary 2.8, we reduce the multiple factors
of H1 and Hn to just one each and obtain that G is quasi-isometric to H. □

4. Accessibility and quasi-isometries

In this section we shall prove Theorem 4.2. The �rst step is to see that if a
one-ended connected quasi-transitive locally �nite graph embeds quasi-isometrically
into a tree amalgamation, then it embeds already quasi-isometrically into one of
the factors.

Lemma 4.1. Let G and H be connected quasi-transitive locally �nite graphs and
let (G1, G2) be a factorisation of G. If H has precisely one end and embeds quasi-
isometrically into G, then it embeds quasi-isometrically into either G1 or G2.

Proof. Let φ : H → G be a (γ, c)-quasi-isometric embedding. Let S be an adhesion
set in G and let S′ be the set of vertices of G of distance at most γ + c from S. If
there are vertices of φ(H) in di�erent components of G− S′, then their preimages
are not connected in H − φ−1(S′) by the choice of S′, and as H is one-ended and
S′ �nite, there is only one in�nite component C∞

S of H −φ−1(S′) and only �nitely
many �nite components. So we �nd ∆S such that the images of all vertices of �nite
components of H − φ−1(S′) have distance at most ∆S from S. Note that since
we have only �nitely many orbits of adhesion sets, the numbers ∆S are globally
bounded by some ∆.
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Let uv be an edge of T . Then Gu
i ∩Gv

j is an adhesion set. The in�nite component
of C∞

Gu
i ∩Gv

j
gets mapped into either

GTu
:=

⋃
a∈V (Tu)

Ga
i or GTv

:=
⋃

a∈V (Tv)

Ga
i

but not into both, where Tw is the component of T − uv that contains w for
w ∈ {u, v}. We orient the edge uv towards u if the in�nite component gets mapped
into GTu

and we orient it towards v otherwise. It is easy to see that every vertex has
at most one out-going edge and that there is at most one vertex without outgoing
edges in this orientation of T . To see that there is at least one sink, let us suppose
that this is not the case. Then there is a directed ray in the orientation of T . As
G1 ∗ G2 has �nite identi�cation, every φ(a) for a ∈ V (H) lies eventually outside
the adhesion sets on that ray and for every adhesion set on that ray, we �nd a
later one that is disjoint from it. Obviously, there is an adhesion set S on that ray
separating φ(a) from C∞

S . But this is impossible as a must lie eventually within
the ∆-neighbourhood of all later adhesion sets of that ray. So T has a unique sink
Gx

i such that every vertex of H gets mapped by φ into the ∆-neighbourhood of Gx
i .

We can easily modify φ and obtain a maps φ′ that maps H quasi-isometrically
into Gx

i with respect to the metric of G. But since Gx
i has only �nitely many

orbits of adhesion sets, φ′ also maps H quasi-isometrically into Gx
i with the metric

of Gx
i . □

Theorem 4.2. Let G be a connected accessible locally �nite quasi-transitive graph.
A connected locally �nite quasi-transitive graph H is quasi-isometric to G if and
only if it satis�es the following conditions:

(i) H has the same number of ends as G;
(ii) H is accessible; and
(iii) any terminal factorisation of H has the same set of quasi-isometry types of

one-ended factors as any terminal factorisation of G.

Proof. Let us �rst assume that H satis�es (i) to (iii). If G and H have in�nitely
many ends, then it follows directly from Theorem 3.6 with Theorem 3.3 that G
is quasi-isometric to H. If each has exactly two ends, then no factor can be one-
ended, so all are �nite and hence G and H are quasi-isometric to the double ray
and thus quasi-isometric to each other. If each has exactly one end, then each of
the two terminal factorisations has at most one one-ended factor and all others are
�nite as any tree amalgamation of �nite adhesion and �nite identi�cation of two or
more (quasi-transitive) locally �nite graphs has at least two ends that lie in distinct
copies of the factors and are separated by a �nite adhesion set. Moreover, a tree
amalgamation of a one-ended graph and a �nite graph is one-ended only if the non-
trivial amalgamation tree is a star, i. e. a tree of diameter at most 2. For such tree
amalgamations the �nite extension of the one-ended factor by the �nite factor is
just the tree amalgamation itself and thus the tree amalgamation is quasi-isometric
to the one-ended factor by Remark 2.2. Thus, G is also quasi-isometric to H in
this case.

Now let us assume that G is quasi-isometric to H. In [6, Theorem 6.3], it was
shown that accessibility is equivalent to the existence of some n ∈ N such that
every two ends can be separated by at most n vertices, which is the accessibility as
in the sense of Thomassen and Woess [11]. Since this latter property is invariant
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under quasi-isometries, so is accessibility. Since the number of ends is preserved by
quasi-isometries, too, it only remains to prove (iii). Let (G1, . . . , Gn) be a terminal
factorisation of G. Then there exist F1, . . . , Fn−1 such that G = Fn−1 and such
that for every i ≤ n− 1 the graph Fi is a tree amalgamation of �nite adhesion with
factors in

{Gj | 1 ≤ j ≤ n} ∪ {Fj | 1 ≤ j < i}.
LetH ′ be a factor in a terminal factorisation (H1, . . . ,Hm) ofH. By Remark 2.1,H ′

maps quasi-isometrically into H and thus into G. Applying Lemma 4.1 recursively,
we conclude that for some Gi there is a quasi-isometric embedding φ : H ′ → Gi.
Similarly, Gi embeds quasi-isometrically into some factor F of the terminal factori-
sation (H1, . . . ,Hm) of H by a map ψ with ψ ◦ φ = id. Since ψ ◦ φ = id, we know
that F must be mapped by ψ ◦ φ into H ′. As both are one-ended, we conclude
F = H ′. Thus, H ′ is quasi-isometric to Gi. □

We are now ready to combine our results in order to obtain Theorem 1.3.

Proof of Theorem 1.3. Let G and H be connected locally �nite quasi-transitive
graphs with in�nitely many ends and let (G1, . . . , Gn), (H1, . . . ,Hm) be factorisa-
tions of G,H, respectively. Let F1, . . . , Fℓ be representatives of the quasi-isometry
types of in�nite factors in (G1, . . . , Gn). First, we assume that F1, . . . , Fℓ are also
the representatives of the quasi-isometry types of in�nite factors in (H1, . . . ,Hm).
If there are no in�nite factors, then both graphs G and H are quasi-isometric to
the 3-regular tree by Theorem 3.6 (3), so G is quasi-isometric to H in that case. If
F := F1 ∗ . . . ∗ Fℓ has in�nitely many ends, then Theorem 3.6 (1) implies that G
and H are quasi-isometric to F , so again G is quasi-isometric to H. If F does not
have in�nitely many ends, then for every �nite graph Ffin such that F ∗ Ffin has
in�nitely many ends, G is quasi-isometric to F ∗Ffin, which is quasi-isometric to H.
So we also have that G and H are quasi-isometric in this last case, which �nishes
the proof of the �rst statement of Theorem 1.3.

For the second statement, assume that G and H are quasi-isometric, that each
of them is accessible and that (G1, . . . , Gn) and (H1, . . . ,Hn) are terminal factori-
sations. By Theorem 4.2 (iii), the set of quasi-isometry types of one-ended factors
of both factorisations are the same. □

5. Quasi-isometries between transitive graphs and Cayley graphs

Woess [12, Problem 1] asked whether there are transitive locally �nite graphs that
are not quasi-isometric to some locally �nite Cayley graph. Eskin et al. [3] showed
that the Diestel-Leader graphs are examples of transitive graphs that are not quasi-
isometric to some locally �nite Cayley graph. Since the Diestel-Leader graphs are
one-ended, the question arises what can be said about Woess' question for graphs
that need not have one-ended graphs as building blocks in our tree amalgamation
sense, i. e. inaccessible graphs. Dunwoody [2] constructed an inaccessible locally
�nite transitive graph that is another example for a negative answer to Woess'
question. As an application of our previous results, we obtain that one-ended
and inaccessible examples are basically the only ones you have to consider when
understanding the quasi-isometry di�erences between locally �nite transitive graphs
and locally �nite Cayley graphs.

Theorem 5.1. Let G be a locally �nite transitive accessible graph that is not quasi-
isometric to any locally �nite Cayley graph. Then there is a one-ended locally �nite
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transitive graph that is quasi-isometric to some factor in a terminal factorisation
of G and that is not quasi-isometric to any Cayley graph.

Proof. If G has precisely two ends, then it is quasi-isometric to the double ray
by Theorem 1.2, which is a locally �nite Cayley graph. So we may assume that
G has in�nitely many ends. Let (G1, . . . , Gn) be a terminal factorisation of G.
Note that every Gi is quasi-transitive and thus quasi-isometric to some transitive
locally �nite graph, see e. g. Krön and Möller [7, Theorem 5.2]. Suppose that every
Gi is quasi-isometric to some locally �nite Cayley graph Hi. Then (G1, . . . , Gn)
and (H1, . . . ,Hn) have the same quasi-isometry types of in�nite factors. Let Γi =
⟨Si | Ri⟩ be a group that has Hi as Cayley graph. Let Γ be the free product of all
Γi with presentation ⟨S | R⟩, where S =

⋃
1≤i≤n Si and R =

⋃
1≤i≤nRi. Then the

Cayley graph H of Γ with respect to ⟨S | R⟩ is the tree amalgamation of all Hi, i. e.
H = (. . . (H1 ∗H2) ∗ . . .) ∗Hn. By Theorem 1.3, G is quasi-isometric to H, which
is a contradiction. □

We can also restrict Woess' question to certain classes of graphs and groups. If
this class is invariant under quasi-isometries, factorisations and tree amalgamations,
then the proof of Theorem 5.1 stays true for it.

One such class are the hyperbolic graphs and group: a graph is hyperbolic if
there is some δ ≥ 0 such that for every three vertices x, y, z and every three paths,
one between each pair of {x, y, z}, each of the paths lies in the δ-neighbourhood of
the union of the other two paths; and a �nitely generated group is hyperbolic if it
has a locally �nite hyperbolic Cayley graph.

It follows from the de�nition that hyperbolicity is preserved under quasi-isome-
tries. By [5, Theorem 1.1], hyperbolicity is also preserved under factorisations and
tree amalgamations. Additionally, hyperbolic quasi-transitive locally �nite graphs
are accessible by [4, Theorem 4.3]. Thus, if there is a hyperbolic locally �nite quasi-
transitive graph that shows that Woess' question is false, then there is already a
one-ended such graph.
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