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Abstract. We look at tree amalgamations of locally �nite quasi-transitive
hyperbolic graphs and prove that the homeomorphism type of the hyperbolic
boundary of such a tree amalgamation only depends on the homeomorphism
types of the hyperbolic boundaries of their factors. Additionally, we show
that two locally �nite quasi-transitive hyperbolic graphs have a homeomorphic
hyperbolic boundary if and only if the homeomorphism types of the hyperbolic
boundaries of the factors of their terminal factorisations coincide.

1. Introduction

Tree amalgamations o�er a way to construct new graphs out of existing ones
similar as new groups can be constructed via free products with amalgamation or
HNN-extensions. (We refer to Section 2.2 for the de�nition of tree amalgamations.)
In order to investigate geometric properties of multi-ended quasi-transitive graphs,
it is therefore interesting to see how such properties behave with respect to tree
amalgamations. In this paper, we are looking at the interaction of tree amalgama-
tions with hyperbolicity. Hyperbolic groups, graphs or spaces play an important
role since Gromov's paper [6]. A �rst result is the following.

Theorem 1.1. Let G1 and G2 be connected quasi-transitive locally �nite graphs and

let G = G1 ∗G2 be a tree amalgamation of �nite adhesion and �nite identi�cation

such that, for i = 1, 2, some group of automorphisms that acts quasi-transitively

on Gi also acts quasi-transitively on the adhesion sets in Gi. Then G is hyperbolic

if and only if G1 and G2 are hyperbolic.

Hyperbolic graphs are equipped with a natural boundary, the hyperbolic bound-
ary. Our next result says essentially that in a tree amalgamation of hyperbolic
graphs changing the factors without changing the homeomorphism types of their
hyperbolic boundary still leads to a tree amalgamation whose hyperbolic boundary
is homeomorphic to the original one. For this, a factorisation of a quasi-transitive
graph G is a tuple (G1, . . . , Gn) such that G is obtained by iterated non-trivial
tree amalgamations of all the graphs Gi that respect the group actions, have �nite
adhesion and �nite identi�cation and distinguish ends.

Theorem 1.2. Let (G1, . . . , Gn) and (H1, . . . ,Hm) be factorisations of in�nitely-

ended quasi-transitive locally �nite hyperbolic graphs G and H, respectively, such

that the set of homeomorphism types of the in�nite hyperbolic boundaries of the

factors in (G1, . . . , Gn) is the same as that for (H1, . . . ,Hm). Then the hyperbolic

boundaries ∂G and ∂H are homeomorphic.
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The obvious question that arises is what can be said about the reverse implication
of Theorem 1.2? While it is false in general, we will prove that it holds if we ask
it for terminal factorisations. These are factorisations (G1, . . . , Gn), where each
Gi has at most one end. In [7] it was shown that quasi-transitive locally �nite
hyperbolic graphs are accessible in the sense of Thomassen and Woess [15]. Thus,
they have a terminal factorisation by [9, Theorem 6.3].

Theorem 1.3. Let (G1, . . . , Gn) and (H1, . . . ,Hm) be terminal factorisations of in-

�nitely-ended quasi-transitive locally �nite hyperbolic graphs G and H, respectively.

Then the hyperbolic boundaries ∂G and ∂H are homeomorphic if and only if the

set of homeomorphism types of the in�nite hyperbolic boundaries of the factors in

(G1, . . . , Gn) is the same as that for (H1, . . . ,Hm).

Martin and �wi¡tkowski [12] proved group theoretic versions of Theorems 1.2
and 1.3. However, our results do not follow from theirs since it is not known
whether every locally �nite hyperbolic quasi-transitive graph is quasi-isometric to
some hyperbolic group.

The question whether every locally �nite hyperbolic quasi-transitive graph is
quasi-isometric to some hyperbolic group is a special case of Woess' problem [16,
Problem 1] whether every locally �nite transitive graph is quasi-isometric to some
locally �nite Cayley graph. While his problem was settled in the negative by Eskin
et al. [4], their counterexamples, the Diestel-Leader graphs, are not hyperbolic and
neither is another counterexample by Dunwoody [3].

�wi¡tkowski [14] improved the aforementioned result by Martin and himself in
order to obtain more structural control over the hyperbolic boundary of group
products. As suggested by a referee, in view of the present result here, it seems
highly likely that a result similar to the one by �wi¡tkowski holds for the hyperbolic
boundary of tree amalgamations of hyperbolic locally �nite quasi-transitive graphs
as well.

In Section 2.1 we de�ne and discuss hyperbolicity and in Section 2.2 tree amal-
gamations. In both sections, we also state the main preliminary results we need for
our main results, which we will prove in Section 3.

2. Preliminaries

In this section, we state the main de�nitions and preliminary results that we need
for the proofs of our theorems. First, we state some general de�nitions and then
we look at hyperbolic graphs and tree amalgamations more closely in Sections 2.1
and 2.2, respectively.

Let G be a graph. A ray is a one-way in�nite path and a double ray is a two-way
in�nite path. Two rays are equivalent if for every �nite vertex set S ⊆ V (G) both
rays have all but �nitely many vertices in the same component of G−S. This is an
equivalence relation whose equivalence classes are the ends of G. Two ends ω1, ω2

are separated by a �nite edge set E if there are Ri ∈ ωi for i = 1, 2 such that the
two rays R1, R2 lie in di�erent components of G− E.

We call G transitive if its automorphism group acts transitively on its vertex set
and quasi-transitive if its automorphism group acts with only �nitely many orbits
on V (G).

A quasi-transitive graph is accessible in the sense of Thomassen and Woess if
there exists n ∈ N such that every two ends can be separated by at most n edges.
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Let G and H be graphs. A map φ : V (G) → V (H) is a quasi-isometry if there
are constants γ ≥ 1, c ≥ 0 such that

γ−1dG(u, v)− c ≤ dH(φ(u), φ(v)) ≤ γdG(u, v) + c

for all u, v ∈ V (G) and such that sup{dH(v, φ(V (G))) | v ∈ V (H)} ≤ c. We then
say that G is quasi-isometric to H. If we want to emphasise the constants γ and c,
then we also use (γ, c)-quasi-isometric. We note that being quasi-isometric is an
equivalence relation.

A �nite or in�nite path P in G is geodesic if dP (x, y) = dG(x, y) for all vertices
x, y on P . It is (γ, c)-quasi-geodesic if it is the (γ, c)-quasi-isometric image of a
subpath of a geodesic double ray.

2.1. Hyperbolic graphs. In this section, we will give the de�nitions and state the
lemmas regarding hyperbolic graphs that we need for our results. For a detailed
introduction to hyperbolic graphs, we refer to [2, 5, 6].

Let G be a graph and δ ≥ 0. If for all x, y, z ∈ V (G) and all shortest paths
P1, P2, P3, one between every two of those vertices, every vertex of P1 has distance
at most δ to some vertex on either P2 or P3 then G is δ-hyperbolic. We call G
hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

Two geodesic rays in a hyperbolic graph G are equivalent if there is someM ∈ N
such that on each ray there are in�nitely many vertices of distance at mostM to the
other ray. This is an equivalence relation for hyperbolic graphs whose equivalence
classes are the hyperbolic boundary points of G. By ∂G we denote the hyperbolic

boundary of G, i. e. the set of hyperbolic boundary points of G, and we set Ĝ :=
G ∪ ∂G.

For locally �nite hyperbolic graphs, it is possible to equip Ĝ with a metric such
that Ĝ is compact and every geodesic ray converges to the hyperbolic boundary
point it is contained in, see [5, Propositions 7.2.9 and 7.3.10]. For us, it su�ces
to de�ne convergence of vertex sequences to hyperbolic boundary points. Let o ∈
V (G). Let (xi)i∈N be a sequence in V (G). It converges to η ∈ ∂G if for some
geodesic ray y1y2 . . . in η and some sequence (ni)i∈N that goes to ∞ any geodesic
path from xi to yi has distance at least ni to o.

Since the rays in a tree are always geodesic and two rays that are equivalent
regarding the de�nition of ends eventually coincide, these rays are also equivalent
with respect to the de�nition of the hyperbolic boundary. Thus, there is a canonical
one-to-one correspondence between the ends of trees and their hyperbolic boundary.
Since the end space of a tree is totally disconnected, see e. g. Jung [10], we obtain
the following lemma.

Lemma 2.1. The hyperbolic boundaries of trees are totally disconnected sets. □

By its de�nition, the hyperbolic boundary is a re�nement of the end space: every
hyperbolic boundary point lies in a unique end but an end may contain more than
one hyperbolic boundary point. But even more can be said about this relation, cf.
e. g. [11, Section 7]:

Lemma 2.2. The connected components of the hyperbolic boundary of every locally

�nite hyperbolic graph correspond canonically to the ends of that graph. □

We are interested in homeomorphism types of hyperbolic boundaries. That is
why the following result is important for us.
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Lemma 2.3. [1, III.H Theorem 3.9] Quasi-isometries between locally �nite hy-

perbolic graphs induce in a canonical way homeomorphisms between their bound-

aries. □

The following lemma is a direct consequence of a result of Woess [17, Corollary
5].

Lemma 2.4. The hyperbolic boundary of every one-ended quasi-transitive locally

�nite hyperbolic graph is in�nite. □

2.2. Tree-amalgamations. In this section, we state the de�nition of tree amal-
gamations and cite several results about them.

Let p1, p2 ∈ N∪ {∞}. A tree is semiregular or (p1, p2)-semiregular if all vertices
in V1 have the same degree p1 and all vertices in V2 have the same degree p2, where
V1, V2 is the canonical bipartition of its vertex set.

Let G1 and G2 be two graphs and let T be a (p1, p2)-semiregular tree with
canonical bipartition V1, V2 of its vertex set. Let {Si

k | 0 ≤ k < pi} be a family of
subsets of V (Gi) such that all Si

k have the same cardinality and let φk,ℓ : S
1
k → S2

ℓ

be a bijection. Let

c : E(T ) → {(k, ℓ) | 0 ≤ k < p1, 0 ≤ ℓ < p2}

such that for all v ∈ Vi the composition of c and the projection to the i-th coordinate
form a bijection from {e ∈ E(T ) | v ∈ e} to the set {k | 0 ≤ k < pi}.

For every v ∈ Vi with i = 1, 2, let Gv
i be a copy of Gi and let Sv

k be the copy of
Si
k in Gv

i . Let H := G1 + G2 be the graph obtained from the disjoint union of all
graphs Gv

i by adding an edge between all x ∈ Sv
k and φk,ℓ(x) ∈ Su

ℓ for every edge
vu ∈ E(T ) with v ∈ V1 and c(vu) = (k, ℓ). Let G be the graph obtained from H by
contracting all new edges xφk,ℓ(x), i. e. all edges outside of the graphs Gv

i . We call
G the tree amalgamation of G1 and G2 over T (with respect to the sets Si

k and the
maps φk,ℓ) and we denote it by G1 ∗T G2. If the amalgamation tree T is clear from
the context, we simply write G1 ∗G2. The graphs G1 and G2 are the factors of the
tree amalgamation. The sets Si

k and their copies in G are the adhesion sets of the
tree amalgamation. The tree amalgamation has �nite adhesion if each adhesion set
is �nite. It has adhesion 1 if all adhesion sets have size 1. Let ψ : V (H) → V (G)
be such that every x ∈ V (H) is mapped to the vertex of G it ends up after all
contractions. A tree amalgamation G1 ∗G2 is trivial if there is some Gv

i such that
the restriction of ψ to Gi

v is a bijection Gv
i → G1 ∗ G2. So a tree amalgamation

of �nite adhesion is trivial if all adhesion sets of Gi are V (Gi) and either pi = 1
or also all adhesion sets of Gj are V (Gj) for some {i, j} = {1, 2}, note that then
in particular Gi completely lies in Gj and, if T is not a star, then Gi and Gj are
equal.

The identi�cation size of a vertex x ∈ V (G) is the smallest size of subtrees
T ′ of T such that x is obtained by contracting only edges between vertices in⋃

u∈V (T ′) V (Gu
j ). The tree amalgamation has �nite identi�cation if all vertices

have �nite identi�cation size and it has bounded identi�cation if the supremum of
all identi�cation sizes is �nite.

The tree amalgamation G = G1 ∗G2 distinguishes ends if there is some adhesion
set Sv

k = Su
ℓ for adjacent vertices u, v of T such that for every component C of

T − uv the graph induced by
⋃

w∈C G
w
i contains an end.
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The following is a weaker version of [9, Theorem 5.3]. We do not need the full
detail of tree amalgamations respecting group actions and thus the following result
is su�cient for us.

Theorem 2.5. [9, Theorem 5.3] Every connected quasi-transitive locally �nite

graph with more than one end is a non-trivial tree amalgamation G1 ∗ G2 that

distinguishes ends and has �nite adhesion and �nite identi�cation of two connected

quasi-transitive locally �nite graphs such that the set of adhesion sets in each factor

has at most two orbits under some group acting quasi-transitively on that factor. □

Note that the properties of the tree amalgamation of Theorem 2.5 imply that it
has bounded identi�cation.

Also the notions of (terminal) factorisations need not be as strong as those in
the introduction. A factorisation of a connected locally �nite quasi-transitive graph
G is a tuple (G1, . . . , Gn) of connected locally �nite quasi-transitive graphs such
that G is obtained from the elements of the tuple by iterated tree amalgamations
distinguishing ends of �nite adhesion and �nite identi�cation such that for each
step some group of automorphisms of each factors acts quasi-transitively on this
factor and the set of its adhesion sets. A factorisation is terminal if every element
of the tuple has at most one end. A connected quasi-transitive locally �nite graph
is accessible if it has a terminal factorisation.

All following results in this section deal with the interplay of tree amalgamations
with quasi-isometries and are proved in [8].

Lemma 2.6. [8, Remark 2.1] Let G and H be locally �nite graphs and G ∗ H be

a tree amalgamation of �nite adhesion and bounded identi�cation. Then G ∗H is

quasi-isometric to G+H. □

The following lemma enables us to change the factors in a tree amalgamation a
bit while staying quasi-isometric to the original tree amalgamation but in the result
we have more control over the adhesion sets and identi�cation sizes.

Lemma 2.7. [8, Lemma 3.1] Let G be a locally �nite connected quasi-transitive

graph and let (G1, G2) be a factorisation of G. Then there is a locally �nite con-

nected quasi-transitive graph H that has a factorisation (H1, H2) such that the

following hold.

(1) G is quasi-isometric to H;

(2) Gi is quasi-isometric to Hi for i = 1, 2;
(3) H1 ∗H2 has adhesion 1;
(4) all adhesion sets of H1 ∗H2 are distinct;

(5) all vertices of Hi lies in adhesion sets for i = 1, 2. □

Lemma 2.8. [8, Lemma 2.9] A connected locally �nite quasi-transitive graph that

has a terminal factorisation of only �nite graphs is quasi-isometric to a 3-regular
tree. □

The following theorem plays a central role in our proofs and can be seen as an
analogue of Theorem 1.2 for quasi-isometries of graphs instead of homeomorphisms
of hyperbolic boundaries.

Theorem 2.9. [8, Theorem 1.4] Let G and H be locally �nite quasi-transitive

graphs with in�nitely many ends and let (G1, . . . , Gn) and (H1, . . . ,Hm) be factori-

sations of G and H, respectively. If (G1, . . . , Gn) and (H1, . . . ,Hm) have the same

set of quasi-isometry types of in�nite factors, then G and H are quasi-isometric. □
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3. Proofs of the main theorems

In this section we will prove our main results. First, we prove the characterisa-
tion of quasi-transitive locally �nite hyperbolic graphs in terms of their terminal
factorisations.

Proof of Theorem 1.1. If the tree amalgamation does not distinguish ends, then
one Gi has a unique adhesion set and the amalgamation tree is a star. Since Gi is
quasi-transitive, it must be �nite. Then it is easy to see that G is quasi-isometric
to G3−i. Since hyperbolicity if preserved by quasi-isometries and �nite graphs are
always hyperbolic (for a large enough constant), this implies that G is hyperbolic
if and only if G3−i is hyperbolic. So we may assume that the tree amalgamation
distinguishes ends.

Let H = H1 ∗ H2 as in Lemma 2.7. In particular, H, H1 and H2 are quasi-
isometric to G, G1 and G2, respectively, and the tree amalgamation H1 ∗ H2 has
adhesion 1. Since hyperbolicity is preserved by quasi-isometries, see e. g. [1, Theo-
rem III.H.1.9], it su�ces to prove the assertion in the situation of adhesion 1. So
let us assume that G1 ∗G2 already has adhesion 1.

First, let us assume that G is δ-hyperbolic for some δ ≥ 0. Let x, y be vertices of
some Gv

i . If an x-y geodesic leaves Gv
i through some adhesion set, it must re-enter

Gv
i through the same adhesion set. Since the adhesion is 1, every x-y geodesic in G

lies completely in Gv
i . It follows that Gi is δ-hyperbolic.

Now let us assume that G1 and G2 are δ-hyperbolic for some δ ≥ 0. Let x, y, z ∈
V (G). For distinct u, v ∈ {x, y, z}, let Puv be a u-v geodesic. Since the adhesion
sets have size 1, in any Gv

i that intersects non-trivially with the paths Puv, each of
the subpaths in Gv

i induced by Pxy, Pxz and Pyz lies in the δ-neighbourhood of the
other two if it is non-trivial. Thus, G is δ-hyperbolic, too. □

As a corollary of Theorem 1.1, we obtain a characterisation of quasi-transitive
locally �nite hyperbolic graphs in terms of their terminal factorisations.

Corollary 3.1. A connected quasi-transitive locally �nite graph is hyperbolic if

and only if it admits a terminal factorisation such that all its factors are connected

quasi-transitive locally �nite hyperbolic graphs with at most one end.

Proof. Let G be a connected quasi-transitive locally �nite graph. If G is one-ended,
then it is a terminal factorisation of itself and the assertion holds trivially. So let
us assume that G has more than one end.

First, let us assume that G is hyperbolic. By [7, Theorem 4.3], it is a graph that
is accessible in the sense of Thomassen and Woess. Thus it is accessible and has a
terminal factorisation by [9, Theorem 6.3]. So there are connected quasi-transitive
locally �nite graphs G1, . . . , Gn, H1, . . . ,Hn−1 with G = Hn−1 such that each Gi

has at most one end and for every i ≤ n− 1, the graph Hi is a tree amalgamation
H ∗H ′ of �nite adhesion and �nite identi�cation, where

H,H ′ ∈ {Gj | 1 ≤ j ≤ n} ∪ {Hj | 1 ≤ j < i}.

(We may assume that all Gi are indeed needed at some point during these tree
amalgamations.) By repeated application of Lemma 1.1, each Hi, and thus each
Gi is hyperbolic.

Conversely, if G has a terminal factorisation into connected �nite or connected
quasi-transitive locally �nite hyperbolic one-ended graphs, then each of the previous
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factors we considered for obtaining the terminal factorisation are hyperbolic by
Theorem 1.1. In particular, G is hyperbolic. □

Now we will turn our attention to the proofs of the results concerning the hy-
perbolic boundary, Theorems 1.2 and 1.3.

The following lemma is a special case of a result of Steiner and Steiner [13,
Theorem 4]. It is also possible to adapt the proof of Martin and �wi¡tkowski [12,
Lemma 4.2] to our situation to obtain that lemma.

Lemma 3.2. Let G and H be locally �nite quasi-transitive hyperbolic graphs and

let f : ∂G → ∂H be a homeomorphism. Then f extends to a homeomorphism

Ĝ→ Ĥ. □

The next lemma describes the hyperbolic boundary of a tree amalgamation in
terms of its factors and the involved tree. The �rst step of its proof is to reduce the
general case to a special case of the so-called block-graph de�ned by the cutvertices
and 2-connected blocks of a graph.

Lemma 3.3. Let G and H be locally �nite hyperbolic quasi-transitive graphs and

let T be a semiregular tree with canonical bipartition {U, V } of its vertex set. Then

there exists a canonical bijective map

f : ∂T ∪
⋃
u∈U

∂Gu ∪
⋃
v∈V

∂Hv → ∂(G+T H)

such that the following hold.

(1) The preimage of each connected component of ∂(G+T H) is a connected com-

ponent of an element of

{∂T} ∪ {∂Gu | u ∈ U} ∪ {∂Hv | v ∈ V };
(2) every sequence of vertices in some Gu or Hv that converges to some boundary

point η ∈
⋃

u∈U ∂G
u ∪

⋃
v∈V ∂H

v converges to f(η) in (G+T H)∪ ∂(G+T H);
(3) every sequence (vi)i∈N with vi ∈ Gti or vi ∈ Hti such that (ti)i∈N converges to

η ∈ ∂T converges to f(η) in (G+T H) ∪ ∂(G+T H).

Proof. Since quasi-isometries preserve hyperbolicity, we may apply Lemmas 2.7
and 2.6 to assume that G ∗T H is a tree amalgamation of adhesion 1 and distinct
adhesion sets are disjoint. Note for this that quasi-isometries map distinct bound-
ary points to distinct boundary points and distinct connected components of the
boundary to distinct connected components.

Let us de�ne a map

f : ∂T ∪
⋃
u∈U

∂Gu ∪
⋃
v∈V

∂Hv → ∂(G+T H).

Let u ∈ U and η ∈ ∂Gu. Since the adhesion is 1, any geodesic ray in η is a geodesic
ray in G +T H as well. Thus, two geodesic rays in G ∗T H that lie in Gu are
equivalent in G+T H and thus lie in the same boundary point µ. We set f(η) := µ.
Analogously, we de�ne the image of elements of ∂Gv for v ∈ V .

Now we consider a boundary point η of T . Note that since T is a tree, its
boundary points are just its ends. Let R be a ray in η. Since the tree amalgamation
has adhesion 1, there is for each edge uv of T with u ∈ U and v ∈ V a unique edge
of G+T H that corresponds to uv in that its incident vertices lie in Gu and Hv and
get identi�ed when constructing the tree amalgamation. Since distinct adhesion
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sets are disjoint, it follows that for a subpath u0u1u2u3 of R the edges e1, e2, e3,
where ei corresponds to the edge ui−1ui, have the properties that they are distinct
and e2 separates e1 and e3. By joining e1 and e2 by a shortest path inside Gu1 or
Hu1 , we obtain that R de�nes a geodesic ray and no matter how we choose the
shortest paths to connected the edges e1, e2, the resulting rays are equivalent and
thus converge to the same boundary point µ of G+T H. We set f(η) := µ.

While de�ning f , we ensured that it is well-de�ned. Let us show that f is
injective. If we consider hyperbolic boundary points η, µ either of distinct elements
of

X := {∂T} ∪ {∂Gu | u ∈ U} ∪ {∂Hv | v ∈ V }
or both from ∂T , then each of η, µ belongs to either a hyperbolic boundary point
of T or the hyperbolic boundary of a vertex of T and there is an edge of T sep-
arating these hyperbolic boundary points or vertices of T . The edge of G +T H
corresponding to that edge of T separates the f -image of those hyperbolic boundary
points. Thus, f(η) and f(µ) lie in distinct ends of G+T H and hence are distinct.
If η and µ are distinct but in a common element of X, then they lie in either ∂Gu

or ∂Hv for some u ∈ U or v ∈ V . But as geodesic paths and rays in Gu or Hv are
geodesic paths and rays in G ∗T H, inequivalent rays in Gu or Gv stay inequivalent
in G+T H. Thus, we have f(η) ̸= f(µ) in this case, too.

To show that f is surjective, let η ∈ ∂(G+T H) and let R be a geodesic ray in η.
Since the adhesion of G ∗T H is 1, there is either a subgraph Gu or Hv such that R
has all but �nitely many vertices in that subgraph, or not. If R meets every such
subgraph in only �nitely many vertices, let W ⊆ V (T ) consist of those vertices
u ∈ U and v ∈ V for which R meets Gu and Hv. Note that if R leaves Gu or Hv

once, it has to do so through an adhesion set and since it cannot use the same edge
again, it cannot enter the subgraph Gu or Hv anymore. Thus, W de�nes a ray
in T and it is straight-forwards to see that the hyperbolic boundary point µ of T
that contains this ray is mapped to η by f . If R has in�nitely many vertices in a
subgraph Gu or Hv, say Gu, then it has a subray in Gu by the above argument
that if it leaves Gu once, it never reenters Gu. This subray is geodesic in Gu since
the adhesion sets have size 1. It lies in some hyperbolic boundary point µ of Gu

and we have f(µ) = η by construction.
So far, we constructed a canonical bijective map f that satis�es (2) and (3). It

remains to verify (1). For this, we note that the connected components of the hy-
perbolic boundary correspond to the ends of the graph by Lemma 2.2. Analogously
as in the proof that f is injective, it follows that distinct hyperbolic boundary points
in the same end of G+T H are mapped to hyperbolic boundary points of some Gu

or Gv that lie in the same end of that graph. □

The following proposition is the main step towards the proof of Theorem 1.2.

Proposition 3.4. Let G1, G2, H1 and H2 be locally �nite in�nite hyperbolic quasi-

transitive graphs such that ∂G1 and ∂G2 are homeomorphic to ∂H1 and ∂H2, re-

spectively. Let G and H be quasi-transitive locally �nite graphs such that (G1, G2)
is a factorisation of G and (H1, H2) is a factorisation of H. Then ∂G and ∂H are

homeomorphic.

Proof. According to Lemma 2.7, we �nd locally �nite connected quasi-transitive
graphs G′

1, G
′
2, H

′
1, H

′
2 such that the following hold.

(i) Gi and Hi are quasi-isometric to G′
i and H

′
i, respectively, for i = 1, 2,
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(ii) (G′
1, G

′
2) and (H ′

1, H
′
2) are factorisations of graphs G

′ and H ′ that are quasi-
isometric to tree amalgamations G1 ∗G2 and H1 ∗H2, respectively,

(iii) G′
1 ∗G′

2 and H ′
1 ∗H ′

2 have adhesion 1,
(iv) all their adhesion sets are disjoint and
(v) every vertex lies in some adhesion set.

As hyperbolicity is preserved by quasi-isometries, G′
1, G

′
2, H

′
1, H

′
2 are hyperbolic.

By Theorem 1.1, G′ and H ′ are hyperbolic, too. Since quasi-isometric hyperbolic
graphs have homeomorphic hyperbolic boundaries by Lemma 2.3, the hyperbolic
boundaries ∂(G1 ∗G2) and ∂(H1 ∗H2) are homeomorphic to ∂G′ and ∂H ′, respec-
tively. Thus, it su�ces to prove the assertion under the assumption that the tree
amalgamation is of adhesion 1, all adhesion sets are disjoint and the adhesion sets
cover all vertices. By Lemma 2.6 the graphs G1∗G2 and H1∗H2 are quasi-isometric
to G1 +G2 and to H1 +H2, respectively.

For i = 1, 2, let gi : ∂Gi → ∂Hi be a homeomorphism and let fi : Ĝi → Ĥi

be a homeomorphism that extends gi, which exists by Lemma 3.2. Note that the
amalgamation trees in both cases are the ℵ0-regular tree T , i. e. we consider the
tree amalgamations G1 ∗T G2 and H1 ∗T H2. Let cG and cH be the labelings of the
edges of T used for the tree amalgamations G1 ∗T G2 and H1 ∗T H2, respectively.
We are going to construct a map

f : V (G1 +G2) → V (H1 +H2)

with the following properties.

(1) f is a bijection;
(2) f induces an automorphism ft of T ;
(3) f induces homeomorphisms Ĝu

i → Ĥ
ft(u)
i ;

(4) f induces a homeomorphism g : ∂(G1 +G2) → ∂(H1 +H2);
(5) f maps adjacent vertices of G1 + G2 from distinct Gu

i and Gv
j to adjacent

vertices from Hu
i and Hv

j .

The homeomorphisms in (3) will be closely related to the homeomorphisms fi.
First we note that it su�ces to prove the existence of such a map f in order to

prove the assertion. Indeed, by Lemmas 2.6 and 2.3, we obtain that ∂(G1 ∗G2) and
∂(G1 +G2) are homeomorphic and so are ∂(H1 ∗H2) and ∂(H1 +H2). Thus, (4)
implies that ∂(G1 ∗G2) and ∂(H1 ∗H2) are homeomorphic.

Let us now construct f . Let v1, v2, . . . be an enumeration of V (T ) such that
for every i ∈ N the vertices v1, . . . , vi induce a subtree of T . Let fv1i1

be the
map Gv1

i1
→ Hv1

i1
that is induced by fi1 . For j > 1, let uj be the vertex in G

vj
ij

that separates Gvj
ij

from Gv1
i1

and let wj be the vertex in Hvj
ij

that separates Hvj
ij

from Hv1
i1
. Let fvjij

be the map Gvj
ij

→ H
vj
ij

induced by fij . Let g
vj
ij

be hvj

ij
but with

the images of uj and (f
vj
ij
)−1(wj) exchanged, i. e. uj , the vertex that separates Gvj

ij

from Gv1
i1
, is mapped onto wj , the vertex in Hvj

ij
that separates Hvj

ij
from Hv1

i1
.

Exchanging the images of two vertices does not interfere with being a homeo-
morphism on the hyperbolic compacti�cations. Thus, gvjij still induces a homeo-
morphism

hviij : Ĝ
vj
ij

→ Ĥ
vj
ij

by Lemma 2.3.
Let t ∈ {v1, . . . , vj−1} be the unique neighbour of vj in that set. Then the vertex

in Gt
3−ij

that is adjacent to uj in the graph G1 + G2 is mapped by gt3−ij
to the
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neighbour of wj in Ht
i3−j

in the graph H1 +H2. Hence, the union of all gvi for all
v ∈ V (T ) de�nes a map f : G1+G2 → H1+H2 that maps vertices of G1+G2 that
get identi�ed by constructing G1 ∗ G2 to those that get identi�ed by constructing
H1 ∗H2, i. e. the map satis�es (5).

By construction, (1)�(3) hold, too. Since the compacti�cations of locally �nite
hyperbolic graphs are Hausdor�, it su�ces to prove that f induces a bijective
continuous map g : ∂(G1 +G2) → ∂(H1 +H2). For this, we use Lemma 3.3 to get
a map

φ : ∂T ∪
⋃
u∈U

∂Gu
1 ∪

⋃
v∈V

∂Gv
2 → ∂(G1 +T G2)

and a map

ψ : ∂T ∪
⋃
u∈U

∂Hu
1 ∪

⋃
v∈V

∂Hv
2 → ∂(H1 +T H2)

both having the properties as in Lemma 3.3. Let g be the composition of φ−1, then
either the identity on ∂T or some hvjij , and then ψ. Then g is a bijective map and
it follows from the construction of φ and ψ that f induces the restriction of g to
those boundary points of G1 +G2 that are are not in the image of ∂T by φ or ψ.
It is not hard to see that g is also induced by f on the remaining boundary points.
In order to show that g is continuous, we show the slightly stronger assertion that
f ∪ g is continuous. For this, it su�ces to consider a sequence (xi)i∈N in G1 +G2

that converges to some η ∈ ∂(G1+G2) and show that (f(xi))i∈N converges to g(η).
If φ−1(η) ∈ ∂(Gu

i ) for some i ∈ {1, 2} and u ∈ V (T ), let (yi)i∈N be a sequence in
Gu

i such that xi = yi if xi ∈ V (Gu
i ) and such that yi separates xi from Gu

i otherwise.
Then (yi)i∈N converges to η, too, and (f(xi))i∈N and (f(yi))i∈N converge to the same
boundary point of H1 +H2 by construction, in particular by (5). Since (f(yi))i∈N
lies in Hu

i , it converges to g(η) and hence (f(xi))i∈N converges to g(η).
If φ−1(η) lies in no ∂(Gu

i ), then it lies in ∂T . Let t1t2 . . . be a ray in T that
converges to φ−1(η). Let (yi)i∈N be such that yi separates xi and η and such that
yi lies in some Gtk

j . Then (yi)i∈N converges to η, too. As in the previous case,
(f(xi))i∈N and (f(yi))i∈N converge to the same boundary point of H1 +H2, which
is g(η) by construction. Thus, f ∪ g is continuous. □

Now we are able to prove our main theorems.

Proof of Theorem 1.2. If there are no homeomorphism classes of in�nite hyperbolic
boundaries ∂Gi, then all graphs Gi are either �nite or two-ended and so are the
graphsHi. Since two-ended quasi-transitive locally �nite graphs are quasi-isometric
to the double ray, they have a terminal factorisation with only �nite factors, cp. [9,
Theorem 7.3]. Thus, G and H have factorisations with only �nite factors. By
Lemma 2.8, G and H are quasi-isometric to 3-regular trees and hence G is quasi-
isometric to H. So Lemma 2.3 implies that ∂G and ∂H are homeomorphic.

Let us now assume that there is at least one homeomorphism class of in�nite
hyperbolic boundaries ∂Gi. By replacing every two-ended Gi or Hi by a factorisa-
tion of it into �nite graphs, we may assume that all in�nite Gi and Hi also have an
in�nite hyperbolic boundary. First, we will throw out the �nite graphs Gi and Hi

since, in the current case, Theorem 2.9 will imply that they can be neglected for
Theorem 1.2. For this, let Gi1 , . . . , Gik and Hj1 , . . . ,Hjℓ be representatives of the
quasi-isometry types of the in�nite G1, . . . , Gn and H1, . . . ,Hm, respectively. By
Theorem 2.9, G is quasi-isometric to either Gi1 ∗Gi1 , if k = 1, or Gi1 ∗ . . . ∗Gik , if
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k > 1, and similarly H is quasi-isometric to either Hj1 ∗Hj1 or Hj1 ∗ . . .∗Hjℓ . Since
all Gip 's and Hiq 's are in�nite, the sets of their homeomorphism types are the same.
We apply Theorem 2.9 again to duplicate factors such that G is quasi-isometric to
G′ := G′

1 ∗ . . .∗G′
m′ and H is quasi-isometric to H ′ := H ′

1 ∗ . . .∗H ′
m′ , where G′

i and
H ′

i have homeomorphic in�nite hyperbolic boundaries. Lemma 2.3 implies that G
and G′ as well as H and H ′ have homeomorphic hyperbolic boundaries. Applying
Proposition 3.4 iteratively, we obtain for all i ≤ n that G′

1 ∗ . . .∗G′
i and H

′
1 ∗ . . .∗H ′

i

have homeomorphic hyperbolic boundaries. Thus, G′ and H ′ have homeomorphic
hyperbolic boundaries, which implies the assertion. □

Proof of Theorem 1.3. If the factors have the same homeomorphism types of in�-
nite hyperbolic boundaries, it follows from Theorem 1.2 that the hyperbolic bound-
aries of G and H are homeomorphic.

Let us now assume that ∂G and ∂H are homeomorphic. By Lemmas 2.1, 2.2, 2.4
and 3.3, the non-singular connected components of ∂G are the hyperbolic bound-
aries of the Gi's and the non-singular connected components of ∂H are the hy-
perbolic boundaries of the Hi's. Thus, the homeomorphism types of the in�nite
elements of {∂G1, . . . , ∂Gn} are those of in�nite elements of {∂H1, . . . , ∂Hm}. □
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