
PLANAR TRANSITIVE GRAPHS

MATTHIAS HAMANN

Abstract. We prove that the first homology group of every planar locally

finite transitive graph G is finitely generated as an Aut(G)-module and we

prove a similar result for the fundamental group of locally finite planar Cay-
ley graphs. Corollaries of these results include Droms’s theorem that planar

groups are finitely presented and Dunwoody’s theorem that planar locally fi-

nite transitive graphs are accessible.

1. Introduction

A finitely generated group is planar if it has some locally finite planar Cayley
graph. Droms [2] proved that finitely generated planar groups are finitely presented.
In this paper, we shall present an alternative proof of his result. Whereas Droms’s
proof uses an accessibility result of Maskit [9] for planar groups, our self-contained
proof does not. We will prove the following theorem directly, in which, for a set S,
we denote by FS the free group with free generating set S.

Theorem 1.1. Let G be a locally finite planar Cayley graph of a finitely generated
group Γ = 〈S | R〉. Then the fundamental group of G has a generating set consisting
of finitely many FS-orbits.

Note that Droms’s theorem about the finite presentability of planar groups fol-
lows directly from Theorem 1.1.

Another result about the fundamental group of planar graphs that we obtain is
Theorem 1.2 for which we state a definition first. We call a graph finitely separable
if no two distinct vertices are joined by infinitely many edge disjoint paths, or
equivalently, any two vertices are separable by finitely many edges.

Theorem 1.2. Let G be a planar 3-connected finitely separable graph. Then there
is a canonical nested set of closed walks whose homotopy classes generate the fun-
damental group of G.

Our proof of Theorem 1.2 is constructive and this construction commutes with
graph isomorphisms, i. e. whenever we run this construction for two isomorphic
graphs G and H, then this isomorphism maps the set of closed walks in G we
obtain to that of H. In particular, the resulting set of closed walks is invariant
under the automorphisms of the graph. Nested means that we can draw the closed
walks in the embedding of the planar graph without crossings of the lines. We
refer to Section 2 for the precise definition. The definition of nested cycles is easier
to state than nestedness of closed walks: Let G be a planar graph with planar
embedding ϕ : G → R2. Two cycles C1, C2 in G are nested if no Ci has vertices
or edges in distinct faces of ϕ(C3−i). A set of cycles is nested if every two of its
elements are nested.
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From our intermediate results we will be able to directly deduce the following
two results on the homology group of planar graphs.

Theorem 1.3. Every 3-connected finitely separable planar graph has a canonical
nested set of cycles generating the first homology group.

Theorem 1.4. Every planar locally finite transitive graph G has a set of cycles
that generates the first homology group and consists of finitely many Aut(G)-orbits.

Note that Theorems 1.3 and 1.4 are easy to prove if the graph has no accumula-
tion points in the plane, i. e. if it is VAP-free, as you may then take the finite face
boundaries as generating set, see e. g. [5, Lemma 3.2].

Theorem 1.3 has various analogues in the literature: in [6] the author proved the
corresponding result for the cycle space1 of 3-connected finitely separable planar
graphs and, previously, Dicks and Dunwoody [1] proved the analogous result for
the cut space2 of arbitrary graphs.

The mentioned theorem of Dicks and Dunwoody is one of the central theorems
for the investigation of transitive graphs with more than one end and hence of
accessible graphs and of accessible groups. (We refer to Section 8 for definitions.)
Even though accessibility has a priori more in common with the cut space than
with the cycle space or the first homology group, the main result of [7] exhibited a
connection between accessibility and the cycle space:

Theorem 1.5. [7] Every transitive graph G whose cycle space is a finitely generated
Aut(G)-module is accessible.

As an application of our results and Theorem 1.5 we shall obtain Dunwoody’s [4]
theorem that locally finite transitive planar graphs are accessible.

The proofs for Theorems 1.3 and 1.4 and their variants for closed walks are very
similar. Therefore, we present only the proof for the more involved case of closed
walks and then discuss in Section 7 the situation for the first homology group.

In Section 2, we shall give the most important basic definitions and prove some
small results about indecomposable closed walks. In Section 3, we consider for a
given cycle the number of closed walks of a bounded length that cross this cycle.
We will prove our first main step in Section 4: we will see that in finitely separable
3-connected planar graphs the space of all closed walks has a nested generating set
(Theorem 4.3). In Section 5, we will see that the spaces of closed walks of locally
finite planar quasi-transitive graphs have generating sets consisting of only finitely
many orbits (Theorem 5.12). We will use these two theorems to prove in Section 6
the analogues of Theorems 1.3 and 1.4 for the fundamental groups. In Section 7,
we discuss the situation for the first homology group, and in Section 8 we apply
our results to obtain the above mentioned accessibility result.

2. Indecomposable closed walks

The sum of two walks W1,W2 where W1 ends at the starting vertex of W2 is
their concatenation. Let W = x1x2 . . . xn be a walk. By W−1 we denote its inverse
xn . . . x1. For i < j, we denote by xiWxj the subwalk xi . . . xj . If xi−1 = xi+1 for
some i, we call the walk W ′ := x1 . . . xi−1xi+2 . . . xn a reduction of W . Conversely,

1The cycle space of a graph is the set of finite sums of edge sets of cycles over F2.
2The cut space of a graph is the set of finite sums over F2 of minimal separating edge sets.
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we add the spike xi−1xixi+1 to W ′ to obtain W . If W is a closed walk, we call
xi . . . xnx1 . . . xi−1 a rotation of W . ByW(G) we denote the set of all closed walks.

Let V be a set of closed walks. The smallest set V ′ ⊇ V of closed walks that is
invariant under taking sums, reductions and rotations and under adding spikes is
the set of closed walks generated by V. We also say that any V ∈ V ′ is generated
by V. A closed walk is indecomposable if it is not generated by closed walks of
strictly smaller length. Note that no indecomposable closed walk W has a shortcut,
i. e. a (possibly trivial) path between any two of its vertices that has smaller length
than any subwalk of any rotation of W between them. Indeed, let P be a shortest
shortcut of W and Q1, Q2 be two subwalks of W whose end vertices are those of W
and whose concatenation is W . Then Q1P and P−1Q2 sum to a closed walk that
has W as a reduction. As shortcuts may be trivial, we immediately obtain the
following.

Remark 2.1. Every indecomposable closed walk is a cycle.

Let G be a planar graph. The spin of a vertex x ∈ V (G) is the cyclic order of the
set of edges incident with x in clockwise order. Let R = x0 . . . x` and W = y1 . . . y`
be two walks in a planar graph G such that xi = yi for all 1 ≤ i ≤ ` − 1. We call
R a crossing of W if one of the following holds:

(i) the edges x0x1, x1x2, y0x1 are contained in this order in the spin of x1 and
x`−2x`−1, x`−1y`, x`−1x` are contained in this order in the spin of x`−1;

(ii) the edges y0x1, x1x2, x0x1 are contained in this order in the spin of x1 and
x`−2x`−1, x`−1x`, x`−1y` are contained in this order in the spin of x`−1.

These crossing are shown in Figure 1. Note that this definition is symmetric in R
and W . So R is a crossing of W if and only if W is a crossing of R.

x1
x0

y0
xl-1

yl

xl
x2

xl-2
x1

y0

x0
xl-1

xl

yl
x2

xl-2

Figure 1. The two possible crossings

For a closed walk W and n ∈ N let Wn be the n-times concatenation of W with
itself. Two closed walks R and W cross if there are i, j ∈ N such that Ri contains
a crossing of a subwalk of W j . They are nested if they do not cross.

Lemma 2.2. Let G be a planar graph and let W1,W2 ⊆ G be two indecomposable
closed walks of lengths n1, n2, respectively. Let P1 ⊆ W1 be a non-trivial subwalk
of shortest length that meets W2 in precisely its end vertices. Let P2 ⊆ W2 be a
shortest walk with the same end vertices as P1. Then one of the following is true.

(i) |P1| = |P2| and P2 meets W1 only in its end vertices;
(ii) |P1| ≥ |P2| and P1P

−1
2 is a rotation of W1;

(iii) |P1| ≥ |P2| and (W1 − P1)P2 is a rotation of W2 or W−1
2 .

Proof. Let v, w be the end vertices of P1 and recall from Remark 2.1 that W1

and W2 are cycles. Let Q1 and Q2 are the two subpaths of W2 with end vertices
v and w.3 Then W2 is a reduction of a rotation of the sum of vP1wQ

−1
1 v and

3Strictly speaking, one is just a subwalk of a rotation of the reflection of C2.
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vQ2wP
−1
1 v. First, assume |P1| < |P2|. By the choice of P2, we have |P2| ≤ |Q1|

and |P2| ≤ |Q2|, so P1 is a shortcut of W2, which is impossible. Hence, we have
|P1| ≥ |P2|.

If P2 is a subwalk of W1, then we directly have that P1P2 is a rotation of W1

and (ii) holds. So we may assume that P2 contains an edge outside of W1.
Let us suppose that P2 has an inner vertex on W1. So any subwalk xP2y that

intersects W1 in precisely its end vertices has shorter length than P2 and hence
has shorter length than P1. Note that such a subpath exists as P2 has an edge
outside W1. But xP2y cannot be a shortcut of W1. So the distance between x
and y on W1 is at most |xP2y|. The subpath Q of W1 realising the distance of x
and y on W1 together with xP2y does not contain v and w. So it cannot be W2.
As W2 is a cycle, some edge of Q does not lie on W2 and hence Q contains some
subwalk that contradicts the choice of P1.

So P2 meets W1 only in its end vertices. Then W1 is a reduction of the sum of
(W1 − P1)P2 and P−1

2 P1. As W1 is indecomposable, P2 is not a shortcut of W1

and thus we have either |P2| = |P1| or |P2| = |W1 − P1|. The first case implies (i)
while, if the first case does not hold, we have |P1| > |P2| = |W1 − P1|. Thus, the
minimality of |P1| implies that W1 − P1 lies on W2. So we have that (W1 − P1)P2

is a rotation of W2 or W−1
2 as P2 meets W1 only in its end vertices. This shows

(iii) in this situation. �

If C is a cycle in a planar graph G, we denote by f0
C the bounded face of C and

by f1
C the unbounded face.

For two closed walks C,D of G, we call a non-trivial maximal subwalk P of D
that has precisely its end vertices in C a C-path in D. By n(C,D) we denote the
number of C-paths in D.

Lemma 2.3. Let G be a planar graph and let C,D ⊆ G be two indecomposable

closed walks. Then there are nested indecomposable closed walks C̃ and D̃ with

|C| = |C̃| and |D| = |D̃| that are either the boundaries of f0
C ∩ f0

D and of f1
C ∩ f1

D

or the boundaries of f0
C ∩ f1

D and f1
C ∩ f0

D.

In addition, we may choose C̃ and D̃ so that, if E is a set of closed walks gene-
rating all closed walks of length smaller than |C|, then E generates C or D as soon

as it generates C̃ or D̃.

Proof. If C and D are nested, then the assertion holds trivially. This covers the
situation that n(D,C) is either 0 or 1, as n(C,D) ∈ {0, 1} implies that C and D
are nested. In particular, we may assume that C contains some smallest D-path
P1. Note that the cases (ii) and (iii) of Lemma 2.2 imply n(D,C) = 1. Hence,
Lemma 2.2 implies that D contains a C-path Q1 with the same end vertices as P1

and with |P1| = |Q1|. By definition, neither P1 nor Q1 has an inner vertex that lies
in D or C, respectively. Let D′ := D and let C ′ be obtained from C by replacing P1

with Q1. Recursively, we obtain two sequences (Pi)i≤n and (Qi)i≤n of D-paths in C
and C-paths in D, respectively, which are ordered by the length of the paths Pi.
Note that – just as above – Lemma 2.2 ensures |Pi| = |Qi| for all but at most one
i ≤ n. (The case with |Pi| 6= |Qi| occurs if C and D are nested and either (ii)
or (iii) of Lemma 2.2 holds.)

Consider a cyclic ordering of C and let i1, . . . , in ∈ {1, . . . , n} be pairwise dis-
tinct such that Pi1 , . . . , Pin appear on C in this order. Then, using planarity, it
immediately follows by their definitions as C-path or D-path, respectively, that
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Qi1 , . . . , Qin appear in this order on D. Note that one face of Pi ∪ Qi contains
no vertices or edges of C ∪ D. The assertion follows except for the fact that the
obtained closed walks are indecomposable and the additional statement.

Let E be a set of closed walks generating all closed walks of length smaller
than |C|. Assume that the boundaries C ′ andD′ of f0

C∩f0
D and f1

C∩f1
D, respectively,

have the desired property up to being indecomposable. Let us assume that C ′ is
generated by E . (Note that this covers also the case that C ′ is not indecomposable.)

If all closed walks P−1
i Qi have length less than |C| and |D|, then we add every

closed walk P−1
i Qi to C ′ – after the canonical rotation – for which Qi lies on the

boundary of f0
C∩f0

D and we consider the smallest reduction. Thereby, we obtain C.
So C is generated by E as C ′ and all of the added closed walks are generated by E .

If all but exactly one of the closed walks P−1
i Qi have length less than |C| and |D|,

then P−1
n Qn has largest length of all those closed walks. If Pn lies on the boundary

of f0
C ∩ f0

D, then we add every closed walk P−1
i Qi to C ′ for which Qi lies on the

boundary of f0
C ∩ f0

D and consider the smallest reduction. As before, we obtain
that C is generated by E . If Pn lies on the boundary of f1

C ∩ f1
D, then we add every

closed walk PiQ
−1
i to C ′ for which Pi lies on the boundary of f0

C ∩f0
D and obtain D

and consider the smallest reduction. So D is generated by E .
If at least two closed walks Pi∪Qi have length at least min{|C|, |D|}, then n = 2

follows immediately. Hence, the boundaries C ′′ and D′′ of f0
C ∩ f1

D and f1
C ∩ f0

D,
respectively, are cycles. So we may have chosen them instead of C ′ and D′. If one
of them, C ′′ say, is generated by E , too, then C ′(C ′′)−1 is generated by E . As this
sum reduces to either C or D, the assertion follows. �

Note that it follows from the proof of Lemma 2.3 that there is a canonical
bijection between the C-paths in D and the D-paths in C. In particular, we have
n(C,D) = n(D,C).

3. Counting crossing cycles

Our restiction to finitely separable graphs implies that each cycle in such a planar
graph is nested with all but finitely many cycles of bounded length, which directly
carries over to indecomposable closed walks.4 Without finite separability this need
not be true.

Proposition 3.1. Let i ∈ N. Every cycle in a finitely separable planar graph is
nested with all but finitely many cycles of length at most i.

Proof. Let us assume that some cycle C crosses infinitely many cycles of length
at most i. Then there are two vertices x1, x2 of C that lie on infinitely many of
these cycles and thus we obtain infinitely many distinct x1–x2 paths of length at
most i − 1. Either there are already infinitely many edge disjoint x1–x2 paths or
infinitely many share another vertex x3. In the latter situation, there are either
infinitely many distinct x1–x3 or x2–x3 paths of length at most i − 2. Continuing
this process, we end up at some point with two distinct vertices and infinitely many
edge disjoint paths between them, since we reduce the length of the involved paths
in each step by at least 1. So we obtain a contradiction to finite separability. �

4As cycles define closed walk canonically, nestedness of closed walks carries over to cycles in
the obvious way. Equivalently, two cycles are nested if neither has vertices or edges in both faces

of the other and vice versa.
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Let E be a set of indecomposable closed walks of length at most i in a finitely
separable graph G and C ⊆ G be an indecomposable closed walk. We define
µE(C) to be the number of elements of E that are not nested with C. Note that
Proposition 3.1 says that µE(C) is finite. If F is another set of indecomposable
closed walks of length at most i, we set µE(F) as minimum over all µE(C) with
C ∈ F .

Proposition 3.2. Let G be a finitely separable planar graph. Let E be a set of
indecomposable closed walks in G of length at most i ∈ N and let C,D be two
indecomposable closed walks in G that are not nested. Then we have

µE(C) + µE(D) ≥ µE(C̃) + µE(D̃),

where C̃ and D̃ are the closed walks obtained by Lemma 2.3. Furthermore, if D ∈ E,
then the inequality is strict.

Proof. Using homeomorphisms of the sphere, we may assume that C̃ is the bound-

ary of f0
C ∩ f0

D and D̃ is the boundary of f1
C ∩ f1

D. Let F ∈ E be nested with C

and D. We may assume that F avoids f0
C . Thus, it is nested with C̃. If F avoids

f0
D, too, then it lies in f1

C ∩ f1
D with its boundary and is nested with D̃. So let

us assume that it avoids f1
D. Thus, F does not contain any points of f1

C ∩ f1
D and

hence is nested with D̃.
Now consider the case that F ∈ E is nested with C but not with D. We may

assume that F avoids f0
C . Hence, it avoids f0

C ∩ f0
D, too, and is nested with C̃.

This shows that every F ∈ E that is not counted on the left side of the inequality
is not counted on the right side either and that every F ∈ E that is counted on the
left side precisely once is counted on the right side at most once, which implies the
first part of the assertion.

To see the additional statement, just note that D is counted on the left for µE(C)

but not for µE(D) and that both closed walks C̃ and D̃ are nested with D. �

4. Finding a nested generating set

The main theorem of [6] says that the cycle space of any 3-connected finitely
separable planar graph G is generated by some canonical nested set of cycles as
F2-vector space. We shall prove the analogous result for the set W(G) of all closed
walks.

Throughout this section, let G be a 3-connected planar finitely separable graph.
Let Wi :=Wi(G) be the subset of W(G) generated by all closed walks of length at
most i. So W(G) =

⋃
i∈NWi. We shall recursively define canonical nested subsets

Ci ofWi that generateWi and consist only of indecomposable closed walks of length
at most i. So

⋃
i∈N Ci will generate W(G). We shall define the Ci recursively. For

the start, let Ci = ∅ for i ≤ 2. Now let us assume that we already defined Ci−1.
In order to define Ci, we construct another sequence of nested Aut(G)-invariant

sets Cκi of indecomposable closed walks. Set C0
i := Ci−1. Let κ be some ordinal such

that Cλi is defined for all λ < κ. If κ is a limit ordinal, then set Cκi =
⋃
λ<κ Cλi . So

let κ be a successor ordinal, say κ = ν + 1. Any closed walk of length i that is not
generated by Cνi must be indecomposable by definition of Ci−1. If there is not such
a closed walk, set Ci := Cνi . So in the following, we assume that there is at least
one indecomposable closed walk of length i that is not generated by Cνi . Hence, the



PLANAR TRANSITIVE GRAPHS 7

set Dκi of all indecomposable closed walks of length i that are not generated by Cνi
is not empty.

Lemma 4.1. The set Dκi 6= ∅ contains a closed walk that is nested with Cνi .

Proof. Let C ∈ Dκi with minimum µCνi (C). (As all involved closed walks are inde-
composable, µCνi (C) is well-defined.) We shall show µCνi (C) = 0. So let us suppose
that C is not nested with some D ∈ Cνi . Since C and D are indecomposable, we

obtain by Lemma 2.3 two indecomposable closed walks C̃ and D̃ with |C| = |C̃|
and |D| = |D̃| such that Proposition 3.2 implies

µCνi (C) = µCνi (C) + µCνi (D) > µCνi (C̃) + µCνi (D̃).

Note that, if C̃ and D̃ are generated by Cνi , then C being generated by D, C̃, and D̃

is generated by Cνi , too. But then it does not lie in Dκi . As it does, either C̃ or D̃ is
not generated by Cνi . In particular, this closed walk must lie in Dκi , a contradiction
to the choice of C. �

Let Eκi be the set of all closed walks inDκi that are nested with Cνi . By Lemma 4.1,
this set is not empty.

For a set E of closed walks of length at most i, we call C ∈ E optimally nested in E
if µE(C) = µE(E). Note that µE(E) is finite by Proposition 3.1 and, furthermore, as
3-connected planar graphs have (up to homeomorphisms) unique embeddings into
the sphere due to Whitney [12] for finite graphs and Imrich [8] for infinite graphs,
µE(C) = µE(Cα) for all α ∈ Aut(G).

Lemma 4.2. The set Fκi of optimally nested closed walks in Eκi is non-empty and
nested.

Proof. Since Eκi is non-empty, the same is true for Fκi . Let us suppose that Fκi
contains two closed walks C,D that are not nested. Let C̃ and D̃ be the indecom-

posable closed walks obtained by Lemma 2.3 with |C| = |C̃| and |D| = |D̃| each of
which is not generated by Cνi and such that Proposition 3.2 yields

µCνi (C) + µCνi (D) ≥ µCνi (C̃) + µCνi (D̃).

As Eκi is nested with Cνi by definition, we have µCνi (C) + µCνi (D) = 0. Note that

C̃ and D̃ lie in Dκi by definition. As both are nested with Cνi , they lie in Eκi . We
apply Proposition 3.2 once more and obtain

µEκi (C) + µEκi (D) > µEκi (C̃) + µEκi (D̃).

Thus either C̃ or D̃ is not nested with less elements of Eκi than C. This contradiction
to the choice of C shows that Eκi is nested. �

So we set Cκi := Cνi ∪ Fκi . Then Cκi is nested as Cνi is nested and by the choice
of Eκi all elements of Cκi are indecomposable.

This process will terminate at some point as we strictly enlarge the sets Cκ in
each step but we cannot put in more closed walks than there are in G. Let Ci be
the union of all Cκi . Note that we made no choices at any point, i. e. all sets Ci are
Aut(G)-invariant and canonical. Thus, we proved Theorem 1.3. More precisely, we
have proved the following theorem.

Theorem 4.3. For every finitely separable 3-connected planar graph G there is a
sequence (Ci)i∈N of sets of closed walks in G such that
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(i) Ci−1 ⊆ Ci;
(ii) Ci r Ci−1 consists of indecomposable closed walks of length i;

(iii) Ci generates Wi(G);
(iv) Ci is canonical and nested.

In particular, W(G) has a canonical nested generating set. �

Note that the only situation where we used 3-connectivity was when we concluded
that we have µE(C) = µE(Cα) for any closed walk C, set E of closed walks of
bounded length and automorphism α. That is, the above proof also give us the
existence of a nested generating set for lower connectivity, but we lose canonicity.
Note that, in general, not only our proof fails but the statement of Theorem 1.3 is
false if we do not require the graph to be 3-connected: let G be the graph obtained
by two vertices joined by four internally disjoint paths of length 2. Then all cycles
have length 4 and lie in the same Aut(G)-orbit, but it is not hard to find two
of them which are not nested. So you cannot find a canonical nested generating
set of W(G) consisting only of indecomposable closed walks. Similarly, whichever
generating set you take, none of its elements is nested with all of its Aut(G)-images.

5. Finding a finite generating set

We call a graph quasi-transitive if its automorphism group has only finitely
many orbits on the vertex set. If a group Γ acts on a graph G, we denote by
|G/Γ| the number of Γ-orbits on G. In particular, if G is quasi-transitive, then
|G/Aut(G)| < ∞. If H is a subgraph of G, we denote by StabΓ(H) the (setwise)
stabiliser of H in Γ.

In this section, we give up nestedness of our generating set for W(G) in order to
obtain a generating set consisting of only finitely many orbits. More precisely, we
shall prove the following theorem.

Theorem 5.1. Let G be a locally finite quasi-transitive planar graph. Then W(G)
has an Aut(G)-invariant generating set that consists of finitely many orbits.

Let us introduce the notion of a degree sequence of orbits because the general
idea to prove Theorem 1.1 will mainly be done by induction on this notion.

Let Γ act on a locally finite graph G with |V (G)| > 1 such that |G/Γ| is finite.
We call a tupel (d1, . . . , dm) of positive integers with di ≥ di+1 for all i < m the
degree sequence of the orbits of (G,Γ) if for some set {v1, . . . , vm} of vertices that
contains precisely one vertex from each Γ-orbit the degree of vi is di. We consider
the lexicographic order on the finite tupels of positive integers (and thus on the
degree sequences of orbits), that is, we set

(d1, . . . , dm) ≤ (c1, . . . , cn)

if either m ≤ n and di = ci for all i ≤ m or di < ci for the smallest i ≤ m with
di 6= ci. Note that any two finite tupels of positive integers are ≤-comparable.

A direct consequence of this definition is the following lemma.

Lemma 5.2. Any strictly decreasing sequence in the set of finite tupels of positive
integers is finite. �

Lemma 5.2 for degree sequences of orbits reads as follows and enables us to use
induction on the degree sequence of the orbits of graphs:
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Lemma 5.3. Let (Gi,Γi) be a sequence of pairs, where Gi is a locally finite graph
and Γi acts on Gi such that |Gi/Γi| is finite. If the corresponding sequence of degree
sequences of the orbits is strictly decreasing, then the sequence (Gi,Γi) is finite. �

Lemma 5.4. Let G be a locally finite graph and let Γ act on G so that |G/Γ| is
finite. Let S ⊆ V (G) and H ⊆ G be such that the following conditions hold:

(i) G− S is disconnected;
(ii) each Sα with α ∈ Γ meets at most one component of G− S;

(iii) no vertex of S has all its neighbours in S;
(iv) H is a maximal subgraph of G such that no Sα with α ∈ Γ disconnects H.

Then the degree sequence of the orbits of (H,StabΓ(H)) is smaller than the one
of (G,Γ).

Proof. First we show that any two vertices in H that lie in a common Γ-orbit of G
and whose degrees in G and in H are the same also lie in a common StabΓ(H)-orbit.
Let x, y be two such vertices and α ∈ Γ with xα = y. Suppose that Hα 6= H. Then
there is some Sβ that separates some vertex of H from some vertex of Hα by the
maximality of H. But as y and all its neighbours lie in H and in Hα, they lie in
Sβ, which is a contradiction to (iii). Thus, we have α ∈ ΓH .

Now, we consider vertices x such that {x} ∪ N(x) lies in no Hα with α ∈ Γ
and such that x has maximum degree with this property. Let {x1, . . . , xm} be a
maximal set that contains precisely one vertex from each orbit of those vertices. If
xi lies outside every Hα, then no vertex of its orbit is considered for the degree
sequence of the orbits of (H,StabΓ(H)). If xi lies inH, then its degree in someHα is
smaller than its degree in G. By replacing xi by xiα

−1, if necessary, we may assume
dH(xi) < dG(xi). So its value in the degree sequence of orbits of (H,StabΓ(H))
is smaller than its value in the degree sequence of orbits of (G,Γ); but it may
be counted multiple times now as the Γ-orbit containing xi may be splitted into
multiple ΓH -orbits. Nevertheless, the degree sequence of orbits of (H,StabΓ(H)) is
smaller than that of (G,Γ). �

Remember that a block of a graph is a maximal 2-connected subgraph. As any
indecomposable closed walk is a cycle and hence lies completely in some block and
as any locally finite quasi-transitive graph has only finitely many orbits of blocks,
we directly have:

Proposition 5.5. Let G be a locally finite quasi-transitive graph and let Γ act on G
so that |G/Γ| is finite. Then W(G) has a Γ-invariant generating set consisting of
finitely many orbits if and only if the same is true for every block B with respect to
the action of StabΓ(B). �

Remark 5.6. In the situation of Proposition 5.5 we can take the orbits of the
cutvertices one-by-one and apply Lemma 5.4 for each such orbit. It follows recur-
sively that each block has a smaller degree sequence of its orbits than the original
graph. Since |G/Γ| is finite, there are only finitely many orbits of cut vertices. So
we stop at some point.

For the reduction to the 3-connected case for graphs of connectivity 2, we apply
Tutte’s decomposition of 2-connected graphs into ‘3-connected parts’ and cycles.
Tutte [11] proved it for finite graphs. Later, it was extended by Droms et al. [3] to
locally finite graphs.
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A tree-decomposition of a graph G is a pair (T,V) consisting of a tree T and a
family V = (Vt)t∈T of vertex sets Vt ⊆ V (G), one for each vertex of T , such that

(T1) V =
⋃
t∈T Vt;

(T2) for every edge e ∈ G there exists a t ∈ V (T ) such that both ends of e lie in Vt;
(T3) Vt1 ∩ Vt3 ⊆ Vt2 whenever t2 lies on the t1–t3 path in T .

The sets Vt are the parts of (T,V) and the intersections Vt1 ∩ Vt2 for edges t1t2
of T are its adhesion sets; the maximum size of such a set is the adhesion of (T,V).
Given a part Vt, its torso is the graph with vertex set Vt and whose edge set is

{xy ∈ E(G) | x, y ∈ Vt} ∪ {xy | {x, y} ⊆ Vt lies in an adhesion set}.
If Γ acts on G, then it acts canonically on vertex sets of G. If every part of

the tree-decomposition is mapped to another of its parts and this map induces an
automorphism of T then we call the tree-decomposition Γ-invariant.

Theorem 5.7. [3, Theorem 1] Every locally finite 2-connected graph G has an
Aut(G)-invariant tree-decomposition of adhesion 2 each of whose torsos is either
3-connected or a cycle or a complete graph on two vertices. �

Remark 5.8. In addition to the conclusion of Theorem 5.7, we may assume that
the tree-decomposition is such that the torsos of tree vertices of degree 2 are either
3-connected or cycles and that no two torsos of adjacent tree vertices t1, t2 are
cycles if Vt1 ∩ Vt2 is no edge of G. (Remember that edges are two-element vertex
sets.) We call a tree-decomposition as Theorem 5.7 with this additional property
a Tutte decomposition.

Now we reduce the problem of Theorem 5.1 from 2-connected graphs to 3-connec-
ted ones.

Proposition 5.9. Let G be a locally finite 2-connected graph and let Γ act on G
so that |G/Γ| is finite. Then W(G) has a Γ-invariant generating set consisting of
finitely many orbits if and only if the same is true for each of its torsos B in every
Tutte decomposition with respect to the action of StabΓ(B).

Proof. Let (T,V) be a Tutte decomposition of G. Note that every vertex lies in
only finitely many 2-separators (cf. [10, Proposition 4.2]). Thus, the graph H
given by G together with all edges xy, where {x, y} forms an adhesion set, is also
locally finite, the action of Γ on G extends canonically to an action on H and we
have |H/Γ| <∞ for this action. There are only finitely many orbits of (the action
induced by) Aut(G) on T , since any 2-separator of G uniquely determines the parts
Vt of (T,V) it is contained in and since there are only finitely many Aut(G)-orbits
of 2-separators. Obviously, the restriction of H to any Vt ∈ V is the torso of Vt.

Let us assume that W(G) has a Γ-invariant generating set consisting of finitely
many orbits and let C be a finite set of closed walks that generates together with its
images W(G). Every C ∈ C can be generated by (finitely many) indecomposable
closed walks C1, . . . , Cn in H. So the set D of all those Ci for all C ∈ C together
with the images under Γ generates W(H). Each of the closed walks Ci lies in a
unique part Vt of (T,V) as they have no shortcut and as every adhesion set in H
is complete. Note that closed walks which lie in the same Γ-orbit and in some Vt
also lie in the same orbit with respect to the automorphisms of the torso Gt of Vt.
Let Dt be the set of all closed walks in D that lie in Gt. Let C be a closed walk
in Gt. Then it is generated by C1, . . . , Cn ∈ D. Since all Ci 6⊆ Gt add to spikes,
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those Ci ⊆ Gt cancel out. Thus, W(Gt) has an StabΓ(Gt)-invariant set of closed
walks consisting of finitely many StabΓ(Gt)-orbits.

For the converse, let W(Gt) for every torso Gt of (T,V) have a StabΓ(Gt)-
invariant generating set Ct of closed walks consisting of finitely many StabΓ(Gt)-
orbits. We may choose the sets Ct so that Ct = Ct′α if α ∈ Γ maps Vt to Vt′ . Let
A be a set of ordered adhesion sets (x, y) of (T,V) consisting of one element for
each Γ-orbit. For every (x, y) ∈ A with xy /∈ E(G) we fix an x–y path Pxy in G.
Then xPxyyx is a closed walk Cxy in H. If xy ∈ E(G), let Pxy = xy and, for
later conveniences, let Cxy = ∅ be the empty walk. Note that for an adhesion set
{x, y} we may have fixed two distinct paths Pxy and Pyx. We canonically extend
the definition of the paths Pxy and cycles Cxy to all ordered adhesion sets (x, y),
i.e. if (x, y) = (x′, y′)α with (x′, y′) ∈ A, set Pxy := P(x′y′)α and Cxy := C(x′y′)α.

Note that there are only finitely many Γ-orbits of parts of (T,V). So the union
C of all Ct is a set of closed walks in H meeting only finitely many Γ-orbits and
generating W(H), as it has a generating set of induced closed walks, each of those
lies in some Gt and thus is generated by C. For every C ∈ C let WC be the element
of W(G) that is obtained from C by replacing its edges xy that form an adhesion
set {x, y} of (T,V) by Pxy. Let C′ := {WC | C ∈ C}.

To see that C′ generates W(G), let C be any closed walk of G. Thus it is also
a closed walk of H and is generated by some C1, . . . , Cm ∈ C. Now we replace
each edge xy – passed in this order on the walk – on any of these Ci that forms an
adhesion set of (T,V) by its path Pxy and obtain a closed walk C ′i. (Formally, we
insert the closed walk yxPxy directly after passing xy and remove the spike xyx.)
Then C ′i lies in W(G) since it contains no edge of H rG. We now follow the sums,
reductions and rotations and addings of spinkes we used to generate C from the Ci.
Each time we removed a spike xyx for an adhesion set {x, y} of (T,V), we instead
remove many spike, namely PxyP

−1
xy . In that way, the C ′i generate C, too. Thus C

can be generated by C′. �

Remark 5.10. Unfortunately, we are not able to apply Lemma 5.4 directly for
Proposition 5.9 to see that the torsos in a Tutte decomposition have a smaller
degree sequence of orbits, as the orbits are not subgraphs of G. But as not both
vertices of any adhesion set have degree 2, it is possible to follow the argument
of the proof of Lemma 5.4 for each of the finitely many orbits of the 2-separators
one-by-one to see that each torso has a smaller degree sequence of orbits than G.

Now we are able to attack the general VAP-free case.

Proposition 5.11. Let G be a locally finite VAP-free planar graph and let Γ act
on G so that |G/Γ| is finite. Then W(G) has an Aut(G)-invariant generating set
consisting of only finitely many orbits.

Proof. Due to Propositions 5.5 and 5.9, it suffices to show the assertion if G is
3-connected. As 3-connected planar graphs have (up to homeomorphisms) unique
embeddings into the sphere, every automorphism of G induces a homeomorphism of
the plane. So faces are mapped to faces and closed walks that are face boundaries
are mapped to such walks. As G is locally finite and |G/Γ| < ∞, there are only
finitely many Γ-orbits of finite face boundaries.

SinceW(G) is generated by the indecomposable closed walks, it suffices to prove
that every indecomposable closed walk is generated by the face boundaries. Since
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every indecomposable closed walk W is a cycle in G, it determines an inner face
and an outer face in the plane. The inner face of W contains only finitely many
edges as G is VAP-free. Let xy be an edge of W and f the face of G in the inner
face of W containing e. Let Pxy be the second x-y path apart from xy on the
boundary of f . Replacing in W the edge xy by Pxy is summing yxPxy to W and
removing the spike xyx. Thus, the resulting closed walk W ′ is generated by the
face boundaries if and only if W is generated by them. Inductively on the number
of edges in the inner face of W ′, we obtain the assertion. �

Now we are able to prove that W(G) has a generating set consisting of only
finitely many orbits.

Theorem 5.12. Let G be a locally finite planar graph and let Γ act on G so that
|G/Γ| is finite. Then W(G) has an Γ-invariant generating set consisting of only
finitely many orbits.

Proof. Due to Propositions 5.5 and 5.9, we may assume that G is 3-connected and
due to Proposition 5.11 we may assume that G is not VAP-free. Let ϕ : G → R2

be a planar embedding of G. Let C be a non-empty Γ-invariant nested set of
indecomposable closed walks that generates W(G), which exists by Theorem 4.3.
Since G is not VAP-free, there is some cycle C of G such that both faces of R2 r
ϕ(C) contain infinitely many vertices of G. As C generates W(G), one of the
indecomposable closed walks in C has the same property as C. Hence, we may
assume C ∈ C. In particular, {Cα | α ∈ Γ} is nested.

We consider maximal subgraphs H of G such that no Cα with α ∈ Γ discon-
nects H. In particular, H is connected and for every Cα with α ∈ Γ one of the
faces of R2 r ϕ(Cα) is disjoint from H. Note that there are only finitely many
Γ-orbits of such subgraphs H as we find in each orbit some element that contains
vertices of C by maximality of H. Due to Lemma 5.4, the pair (H,StabΓ(H)) has a
strictly smaller degree sequence of its orbits than (G,Γ) as C disconnects G. Since
H is again a locally finite planar graph and |G/Γ| <∞, we conclude by induction
on the degree sequence of the orbits of such graphs (cf. Lemma 5.3) with base case
if G is VAP-free that W(H) has a StabΓ(H)-invariant generating set consisting of
finitely many StabΓ(H)-orbits. Let EH be such a set.

There are only finitely many pairwise non-Γ-equivalent such subgraphs H. So
let H be a finite set of such subgraphs consisting of one per Γ-orbit. Let

E :=
⋃
H∈H

⋃
α∈Γ

EHα.

Then E is Γ-invariant and has only finitely many orbits. We shall show that E
generates W(G). It suffices to show that every indecomposable closed walk is
generated by E .

Let D be an indecomposable closed walk of G. If D lies entirely inside some of
the subgraphs H ∈ H or its Γ-images, then, obviously, it is generated by E . So let
us assume that there is some α ∈ Γ such that both faces of Cα contain vertices
or edges of D. By considering Dα−1 instead of D, we may assume α = 1Γ. We
add all vertices and edges of C to D that lie in the bounded face of D to obtain a
subgraph F of G. Then D is the generated by all boundaries C1, . . . , Ck of bounded
faces of F .

Assume that Cβ with β ∈ Γ is not nested with Ci and suppose that it is nested
with D. Remember that C and Cβ are nested. Since Cβ contains points in both
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faces of Ci, there is some (possibly trivial) common walk P of Ci and Cβ such that
the edges on Cβ incident with the end vertices of P lie in different faces of Ci and
also the edges of Ci incident with the end vertices of P lie in different faces of Cβ.
As Cβ is nested with C and with D, one of these edges belongs to C and the other
to D. Thus, C and D must lie in distinct faces of Cβ and hence must be nested.
This contradiction shows that every Cβ that is not nested with Ci is not nested
with D either.

As C is not nested with D but with every Ci, every Ci is not nested with
less closed walks Cβ than D and this is a finite number by Proposition 3.1 as all
involved closed walks are indecomposable and all closed walks Cβ have the same
length. Induction on the number of closed walks Cβ the current closed walk is not
nested with implies that each Ci is generated by E and so is D. �

6. Fundamental group of planar graphs

In this section, we want to find two special generating sets for the fundamental
group of planar graphs G. In order to do that, we first prove a general statement
about the interplay of generating sets for W(G) and for π1(G). If W is a closed
walk starting and ending at a vertex v, we denote by [W ] the homotopy class of W .

Proposition 6.1. Let G be a planar graph, let v ∈ V (G), and let V be a generating
set for W(G) that is closed under taking inverses. Then

Vπ := {[PWWP−1
W ] |W ∈ V, PW is a v-W walk}

generates π1(G).

Proof. Let η ∈ π1(G) and W ∈ η be a reduced closed walk. Then W is generated
by W1, . . . ,W` ∈ V. We assume that the walks Wi were used in this order to
generate W , in particular, there is a closed walk R that starts at v and is generated
by W1, . . .W`−1 such that R and W` generate W . By induction on `, we may
assume that [R] ∈ π1(G).

Since R and W` generate W , there is some vertex x0 on R such that adding
spikes recursively, that is, adding a ‘large’ spike x0x1 . . . xnxn−1 . . . x0, and then
inserting a rotation of W` at xn results in W . (Note that we can assume that
we need not take the inverse of W` since V is closed under taking inverses.) But
then W is just the same as PR for P := vRx0 . . . xnW`xn . . . x0R

−1v. Since [R] is
already generated and [P ] ∈ Vπ, we conclude that [W ] is generated by Vπ. �

For any η ∈ π1(G), let Pη ∈ η be the unique reduced closed walk in η and P ◦η be
its cyclical reduction. Similarly to the proof of the uniqueness of Pη, it is possible
to show that P ◦η is unique. If Vπ ⊆ π1(G), set

V◦π := {P ◦η | η ∈ Vπ}.

Now we are able to prove that the fundamental group of every planar 3-connected
finitely separable graph has a canonical generating set that comes from a nested
generating set of W(G).

Theorem 6.2. Let G be a planar 3-connected finitely separable graph. Then π1(G)
has a generating set Vπ such that V◦π is a canonical nested generating set for W(G)
consisting only of indecomposable closed walks.
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Proof. Let v ∈ V (G) and V be a canonical nested set of closed walks generating
W(G) such that V consists of indecomposable closed walks. This set exists by
Theorem 4.3. Then the set

Vπ := {[PWWP−1
W ] |W ∈ V, PW is a v-W walk}

generates π1(G) by Proposition 6.1. Since V = V◦π, the assertion follows. �

In the second theorem on the fundamental group, we look at the sitution in
Cayley graphs G of finitely generated groups Γ and for a generating set of π1(G)
consisting of only finitely many orbits. But in order to talk about orbits, we have
to define the action on the fundamental group. If Γ = 〈S | R〉, let FS be the free
group freely generated by S. For a word w ∈ FS , let Pw be the walk in G that starts
at the vertex v and corresponds to the word w, where v is the vertex representing
the group element 1Γ. We assume that π1(G) is defined with respect to the base
vertex v. Let W be a closed walk in G that starts at v and let Ww be the image
of W under the action of the element gw ∈ Γ that is given by w. Then Pw(Ww)P−1

w

is a closed walk with first vertex v, it is the image of W under w. In this way, FS
acts on the closed walks starting at v, and as the images of homotopy equivalent
closed walks are again homotopy equivalent, FS acts on π1(G).

Theorem 6.3. Let G be a locally finite planar Cayley graph of a finitely generated
planar group Γ = 〈S | R〉. Then π1(G) has a generating set consisting of finitely
many FS-orbits.

Proof. Let v be the vertex of G corresponding to 1 ∈ Γ and let V be a generating set
of W(G) consisting of only finitely many FS-orbits. This exists by Theorem 5.12.
By Proposition 6.1, it suffices to show that the set

Vπ := {[PWWP−1
W ] |W ∈ V, PW is a v-W walk}

has only finitely many FS-orbits. To see this, it suffices to show that any two
[PWWP−1

W ] and [QWWQ−1
W ], where PW and QW are v-W walks, are in the same

FS-orbit. But this is immediate: just take the group element corresponding to the
word w defined by the walk PWxWyQ−1

W , where x is the end vertex of Pw and y is

the end vertex of QW . Since conjugation of [PWWP−1
W ] by W is [QWWQ−1

W ], the
assertion follows. �

Theorem 6.3 has an immediate consequence to groups: Droms [2] proved that
finitely generated planar groups are finitely presented. His proof uses an accessibil-
ity result of Maskit [9]. As an application of Theorem 6.3 we obtain a self-contained
proof of Droms’s result as follows.

Let Γ = 〈S | R〉 be a group with its presentation. Then Γ ∼= FS/RN , where FS
is the free group with S as a free generating set and RN is the normal subgroup
generated by R. There is a canonical bijection between RN and the fundamental
group π1(G) of the Cayley graph of Γ with respect to S. Via this bijection, every
generating set for π1(G) leads to a generating set for RN . In particular, we obtain
as a corollary of Theorem 6.3 Droms’s theorem on the finite presentability of planar
groups.

Theorem 6.4. [2] Every finitely generated planar group is finitely presented. �
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7. Homology group of planar graphs

Instead of looking at the fundamental group, we consider in this section the first
simplicial homology group H1(G) of graphs G as a module over Z. In particular,
compared to the first section, the sum of two cycles or closed walks is no longer
dependent on the question where we insert the first in the second one but just
depends on the edge sets and the direction in which we pass the edges. E.g.,
adding a spike does not change an element of the module and taking the inverse of
a closed walk is just the same as taking the negative of the corresponding element
of H1(G).

Let V be a finite set of closed walks and

V ′ = {E(V ) | V ∈ V},
where E(V ) is the multiset of (oriented) edges of the closed walk V . If a closed
walk W is generated by V but by no proper subset of V, then E(W ) is the sum of
V ′ with coefficients either 1 or −1.

We can directly translate our results from the previous sections: Theorem 6.2
implies Theorem 7.1 and Theorem 5.12 implies Theorem 7.2. Another possibility
to prove Theorems 7.1 and 7.2 is to go through the proofs of the previous sections
once more and see that they stay true with the new summation.

Theorem 7.1. Let G be a planar 3-connected finitely separable graph. Then H1(G)
has a canonical nested generating set. �

We call the Aut(G)-module H1(G) finitely generated if it has a generating set
consisting of finitely many Aut(G)-orbits.

Theorem 7.2. Let G be a locally finite planar quasi-transitive graph. Then H1(G)
is a finitely generated Aut(G)-module. �

8. Accessibility

A ray is a one-way infinite path and two rays are equivalent if they lie in the same
component whenever we remove a finite vertex set. This is an equivalence relation
whose classes are the ends of the graph. We call a quasi-transitive graph accessible
if there is some n ∈ N such that any two ends can be separated by removing at
most n vertices.

The cycle space of a graph G is the same as the first simplicial homology group
except that we sum over F2 instead of Z. In [7] the author proved the following
accessibility result for quasi-transitive graphs.

Theorem 8.1. [7, Theorem 3.2] Every quasi-transitive graph G whose cycle space
is a finitely generated Aut(G)-module is accessible. �

As a corollary of Theorem 7.2 together with Theorem 8.1, we obtain Dun-
woody’s theorem of the accessibility of locally finite quasi-transitive planar graphs,
a strengthened version of Theorem 1.5. (Note that any generating set of the first
homology group of a graph is also a generating set of its cycle space.)

Theorem 8.2. [4] Every locally finite quasi-transitive planar graph is accessible.
�

Note that, in order to prove Theorem 8.2, we do not need the full strength of
a nested canonical generating set for the first homology group. Indeed, instead of
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applying Theorem 1.3, we could just do the same arguments as in Section 5 using
a nested canonical generating set for the cycle space obtained from [6, Theorem 1]
to obtain a finite set of cycles generating the cycle space as module.
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