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Abstract. We prove that the cycle space of every planar finitely separable 3-
connected graph G is generated by some Aut(G)-invariant nested set of cycles.

We also discuss the situation in the case of smaller connectivity.

1. Introduction

Dicks and Dunwoody [2] showed that the cut space of every connected graph is
generated by some nested set of cuts that is invariant under the automorphisms of
the graph, where a set of cuts is nested if no cut separates any two edges of any
other cut. Recently, Dunwoody [5] strengthened this by showing that there is also
a canonical such set. This means roughly that no choices were made during the
construction of this set or, more precisely, that the construction of the set commutes
with graph isomorphisms.

In this note, we present a similar result for the cycle space of a planar graph.
Roughly speaking, two cycles in a planar graph are nested if their embeddings in the
plane do not cross (see Section 2 for a precise definition). Similarly as above, a set of
cycles is canonical if one of its constructions commutes with graph isomorphisms.1

We call a graph finitely separable if

(1) there are only finitely many pairwise internally disjoint paths between any
two vertices.

With these definitions, we are able to state our main theorem:

Theorem 1. Every planar finitely separable 3-connected graph G has a canonical
nested set of cycles that generates its cycles space.

Note that Theorem 1 is rather trivial for finite graphs: the face boundaries
form a nested set of cycles that generates the cycle space and is canonical, as
Whitney [12] proved that 3-connected graphs have a unique embedding in the plane
(cf. Theorem 4).2

Theorem 1 can be seen as a dual version of Dunwoody’s theorem [5], and in-
deed, our strategy to prove our main theorem is to deduce it from the fact that
Dunwoody’s theorem holds for its dual graph. Of course, it is necessary to have a
(unique) dual graph. Duals of infinite planar graphs are not straightforward ana-
logues of the finite ones, see Thomassen [10]. But Bruhn and Diestel [1] showed
that the additional assumption that the graphs are finitely separable implies the
existence of unique duals in the 3-connected case.

1Note that for any graph G every canonical set of cuts and every canonical set of cycles is

invariant under the automorphisms of G.
2The same is proof holds for VAP-free planar graphs. These are graphs that admit an embed-

ding in the plane without any accumulation point of the vertices.
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Theorem 1 fails for graphs that have lower connectivity – regardless which em-
bedding in the plane is considered: take a graph G consisting of two vertices x, y
and four distinct paths of length 2 between them. Obviously, this graph is planar.
As all cycles in G, each of which has length 4, lie in the same Aut(G)-orbit, all of
them must be chosen in any canonical set that generates the cycle space. But it is
easy to find two crossing cycles in G.

Even though Theorem 1 fails for graphs of lower connectivity, it is possible to
extend the graph canonically to a graph G′ with equal connectivity such that G′

has a canonical nested set of cycles generating its cycle space. We will discuss this
in Section 4.

It is not clear whether Theorem 1 remains true if we omit the assumption of
finite separability:

Problem. Does every planar 3-connected graph G have a canonical nested set of
cycles that generates its cycles space?

Our main theorem has applications for infinite graphs and infinite groups: in [7],
the author uses it to show that locally finite quasi-transitive planar graphs are
accessible, and in [6], Georgakopoulos and the author apply it to obtain planar
presentations for planar groups. (Planar presentations of planar groups are presen-
tations that directly tell that the group has a planar Cayley graph.)

2. Preliminaries

Throughout the paper, a graph may have loops and multiple edges (what is
usually called a multigraph).3 Let G be a graph. A one-way infinite path is a ray.
Two rays are equivalent if they lie eventually in the same component of G− S for
every finite S ⊆ V (G). This is an equivalence relation whose equivalence classes
are the ends of G. By Ω(G) we denote the set of ends of G.

Now we define a basis of a topology on G ∪ Ω(G). In order to do so, we view
every edge as an isometric copy of the unit interval. For every v ∈ V (G) and every
n ∈ N, the set of all points on edges incident with v that have distance less than
1/n to v are open. For every end ω and every finite vertex set S, let C(S, ω) be

the component of G − S that contains all rays in ω eventually and let Ĉ(S, ω) be

C(S, ω) together with all ends of G that contains rays of C(S, ω). The set Ĉ(S, ω)
together with the interior points of the edges between S and C(S, ω) is open. We
denote by |G| the topological space on G ∪ Ω(G) defined by all these open sets.

A vertex v dominates an end ω if for some ray R in ω there are infinitely many
v–R paths in G that pairwise meet only in v. We call the end ω dominated. We
define G̃ to be the quotient space obtained from |G| by identifying every dominated
end with its dominating vertices. Note that for finitely separable graphs every end
is identified with at most one vertex and that G̃ and |G| coincide if G is locally
finite.

A circle is a homeomorphic copy of the unit circle in G̃ and its circuit is the set
of edges that it contains. The sum (over F2) of finitely many cycles (Ci)i∈I in G
is the set of those edges that occur in an odd number of Ci. The set of all sums of

3Note that all cited results that we need for our main result are valid for this general notion

of graphs. Most of them are stated in this way, e.g. the result of Dicks and Dunwoody. The only
result not stated in this way is Theorem 6, but its proof can easily be adapted to multigraphs.

(Note that its forerunner [2] is stated for multigraphs.)
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cycles forms a vector space over F2, the cycle space C(G) of G. For every n ∈ N,
let Cn(G) be the subspace of the cycle space C that is generated by the cycles of
length at most n. So we have C(G) =

⋃
n∈N Cn(G). The automorphisms of G act

canonically on C(G).
A cut is a subset B of E(G) that is, for some bipartition {X,Y } of V (G), the

set of all those edges that have one of its incident vertices in X and the other in Y .
We call two cuts B1 and B2 nested if for bipartitions {X1, Y1} and {X2, Y2} that
correspond to B1 and B2, respectively, one of the following holds:

X1 ⊆ X2, X1 ⊆ Y1, X1 ⊇ X2, or X1 ⊇ Y1.
A cut B is tight if G−B consists of two components. The sum (over F2) of finitely
many cuts in G is the set of those edges that occur in an odd number of these cuts.
The set of all sums of finite cuts form a vector space over F2, the cut space B(G)
of G. For n ∈ N let Bn(G) be the subspace of B(G) induced by the tight cuts of
size at most n. So we have B(G) =

⋃
n∈N Bn(G). Note that no element of B(G) is

infinite and that Aut(G) acts canonically on B(G).

Let G and G∗ be graphs such that G is finitely separable and let
∗ : E(G)→ E(G∗)

be a bijection. We call G∗ the dual of G if for every (finite or infinite) F ⊆ E(G)
the following holds:

(2) F is a circuit in G if and only if {f∗ | f ∈ F} is a tight non-empty cut.

Theorem 2. [1, Corollary 3.5] Every planar finitely separable 3-connected graph
has a unique dual. �

Theorem 3. [10, Theorem 4.5] Let G and G∗ be dual graphs. Then G is 3-connec-
ted if and only if G∗ is 3-connected. �

A face of a planar embedding ϕ : G → R2 is a component of R2 r ϕ(G). The
boundary of a face F is the set of vertices and edges of G that are mapped by ϕ
to the closure of F . A path in G is facial if it is contained in the closure of a face.
The following theorem is due to Whitney [12, Theorem 11] for finite graphs and
due to Imrich [8] for infinite ones.

Theorem 4. [8] Let G be a 3-connected graph embedded in the sphere. Then every
automorphism of G maps each facial path to a facial path.

In particular, every automorphism of G extends to a homeomorphism of the
sphere. �

So every planar 3-connected graph has, basically, a unique planar embedding
into the plane. In the remainder of this paper we always assume this implicitly if
we talk about planar embeddings of planar 3-connected graphs.

Duals of finite graphs, can be easily found using the plane, which we will just
recall here, as we will use this well-known fact (see e.g. [3, Section 4.6]).

Remark 5. Let G be a finite planar graph with planar embedding ϕ : G → R2.
Let G′ be the graph whose vertices are the faces of ϕ(G) and where two vertices are
adjacent if their boundaries contain a common edge of G. Then G′ is the dual of G.

For a planar graph G with planar embedding ϕ : G → R2, we call a set D of
cycles nested if for no C,D ∈ D both faces of R2 r ϕ(C) contain vertices of D. So
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ϕ(D) lies in one face of R2 r ϕ(C) together with its boundary ϕ(C). We call two
cycles C1, C2 nested if {C1, C2} is nested.

3. Planar 3-connected graphs

Our main tool in the proof of our main theorem will be the following theorem:

Theorem 6. [5, Lemma 3.2] If G is a connected graph, then there is a sequence
E1 ⊆ E2 ⊆ . . . of subsets of B(G) such that each En is a canonical nested set of tight
cuts of order at most n that generates Bn(G). �

Basically, our proof goes as follows. We consider the dual graph G∗ of G and
apply Theorem 6 to G∗ to find canonical nested sets of cuts. These sets then will
define the sequence of canonical nested sets of cycles in G. In preparation of that
proof, we shall prove a proposition first.

Proposition 7. Let G be a planar finitely separable 3-connected graph and let G∗

be its dual. If C1 and C2 are cycles in G such that the cuts C∗i := {e∗ | e ∈ Ci} are
nested, then C1 and C2 are nested.

Proof. Let ϕ : G→ R2 be a planar embedding of G. Let us suppose that C1 and C2

are not nested. Let H ⊆ G∗ be a finite connected subgraph that contains C∗1 and C∗2
as tight cuts. Then H∗ contains the two cycles C1 and C2. For i = 1, 2, let Ai be
the unbounded face of R2rϕ(Ci) and let Bi be its bounded face. As C1 and C2 are
not nested, each of A1 and B1 contains edges from C2. Due to Remark 5, the tight
cut C∗1 separates edges from C∗2 in H. So each of the two components of G∗ − C∗1
contains vertices of each of the two components of G∗ − C∗2 . Thus, C∗1 and C∗2 are
not nested in H and hence neither in G∗. �

Now we are able to prove Theorem 8, a sharpend version of Theorem 1.

Theorem 8. For every planar finitely separable 3-connected graph G and all n ∈ N
there exists a canonical nested set Dn of cycles of length at most n such that Dn
generates Cn(G).

In addition, we may choose the sets Dn such that Dn−1 ⊆ Dn.

Note that Theorem 1 is a direct consequence of Theorem 8: just take the set⋃
n∈NDn. Obviously, this is canonical and nested and it generates the whole cycle

space of G.

Proof of Theorem 8. Let G be a planar finitely separable 3-connected graph with
planar embedding ϕ : G→ R2. Due to Theorem 2, it has a unique dual G∗, which
is 3-connected due to Thomassen [10, Theorem 4.5]. So we can apply Theorem 6
and obtain a sequence E1 ⊆ E2 ⊆ . . . of subsets of B(G∗) such that each En is a
canonical nested set of tight cuts of order at most n that generates Bn(G∗).

We shall prove that the sequence of the sets

Dn := {B∗ | B ∈ En}
with B∗ := {e∗ | e ∈ B} satisfies the assertion. Note that Dn is a set of cycles of
length at most n as En is a set of finite tight cuts of size at most n. The set Dn
is nested due to Proposition 7 and it is canonical, as En is canonical and mapping
this into the edge set of the dual G∗ commutes with graph isomorphisms (for 3-
connected graphs). As En generates Bn(G∗), the set Dn generates Cn(G): it suffices
to show that every cycle C of length at most n is generated by Dn, but as the tight
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cut C∗ is the sum of finitely many elements of En, the dual sets in E(G) of those
summands sum to C. This finishes the proof. �

4. Planar graphs of small connectivity

Tutte [11] proved for finite graphs that 2-connected graphs can be decomposed
into ‘3-connected parts’ and cycles. Later, his result was extended by Droms et
al. [4] to locally finite graphs and by Richter [9] to graphs of arbitrary degree. In
order to state this result formally, we need some definitions.

Let G be a graph. A tree-decomposition of G is a pair (T,V) of a tree T and a
family V = (Vt)t∈T of vertex sets Vt ⊆ V (G), one for each vertex of T , such that

(T1) V =
⋃
t∈T Vt;

(T2) for every e ∈ E(G) there exists some t ∈ V (T ) such that Vt contains both
end vertices of e;

(T3) Vt1 ∩ Vt3 ⊆ Vt2 whenever t2 lies on the t1–t3 path in T .

The sets Vt are the parts of the tree-decomposition (T,V) and we also call the
graph induced by Vt a part of (T,V). The intersections Vt1 ∩Vt2 for edges t1t2 of T
are its adhesion sets and the maximum size of the adhesion sets is the adhesion of
(T,V). For a part Vt, its torso is the graph whose vertex set is Vt and whose edge
set is

{xy ∈ E(G) | x, y ∈ Vt} ∪ {xy | {x, y} ⊆ Vt lies in an adhesion set}.
There are several ways of constructing tree-decompositions. If its construction

commutes with graph isomorphisms4 we call the tree-decomposition canonical.

Theorem 9. [9] Every 2-connected graph G has a canonical tree-decomposition of
adhesion 2 each of whose torsos is either 3-connected or a cycle or a complete graph
on two vertices. �

We call a tree-decomposition as in Theorem 9 a Tutte decomposition. Note that
there may be more than one Tutte decomposition even tough it is a canonical
tree-decomposition.

Theorem 10. Let G be a planar finitely separable 2-connected graph. If G has a
Tutte decomposition (T,V) whose adhesion sets of (T,V) are complete graphs, then
G has a canonical nested set of cycles that generates its cycles space.

In addition, we may choose the generating cycles so that each of them lies in a
unique part of (T,V).

Proof. Due to the assumption on the adhesion sets, we know that not only the
torsos but also the parts theirselves are either cycles or 3-connected. First, we
show:

(3) Cycles of distinct parts are nested.

Let ϕ be the planar embedding of G into R2 and let C1, C2 be cycles in distinct
parts. If C1 and C2 are not nested, then both faces of R2 r ϕ(C1) contain vertices
of C2 and thus C1 and C2 have two common vertices. As they lie in distinct parts
and the intersection of distinct parts lies in some adhesion set, which has size 2,

4Note that graph isomorphisms induce isomorphisms between tree-decompositions in the fol-

lowing sense: every graph isomorphism ϕ : G → G′ induces a canonical bijection between the
vertex sets of G and G′ and for every tree-decomposition (T,V) of G, there is a tree-decomposi-

tion (T,V ′) of G′ with V ′ = {ϕ(Vt) | Vt ∈ V}.
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the cycles C1 and C2 have precisely two common vertices x, y and these form an
adhesion set of (T,V). Let Vi be the part that contains Ci for i = 1, 2. If one of
the parts, say V1, is a cycle, then C1 contains the edge xy. As it contains no other
vertex of C2, it cannot contains vertices of both faces of R2 rϕ(C2). Thus, each of
the two parts Vi is 3-connected. In particular, we find in V1 a third path P from
every vertex of the bounded face of R2 r ϕ(C2) to every vertex of the unbounded
face. But then ϕ(P ) crosses ϕ(C2), so there is a third vertex in V1 ∩ V2. This
contradiction shows (3).

Since (T,V) is canonical, parts that are cycles are mapped to parts that are
cycles. So if we take the set D1 of cycles that appear as a part in (T,V), then this
set is canonical and nested due to (3). Let H be the set of 3-connected parts of
(T,V). For every H ∈ H we find, by Theorem 1, a canonical nested set DH of
cycles generating the cycles space of H. We may also assume that for H ∈ H and
α ∈ Aut(G), we have α(DH) = Dα(H).

As (T,V) is canonical, the set

D2 :=
⋃
H∈H

DH

is canonical and it is nested by (3). We claim that D := D1 ∪ D2 satisfies the
assertion. The additional part is obvious by definition of D. As D is nested and
canonical, it remains to prove that it generates the cycle space of G. So let C be
any element of the cycles space of G. It suffices to consider the case that C is a
cycle, as all cycles generate the cycle space. If C lies in a part of (T,V), then it
is generated by D by defintion of D. If C does not lie in any part of (T,V), then
there is some adhesion set {x, y} of (T,V) that disconnects C. Let P1, P2 be the
two distinct x–y paths on C. Then C is the sum of P1 + yx and P2 + yx. By
induction on the length of C, the cycles P1 + yx and P2 + yx are generated by D
and so is C. �

Note that we can embed any planar 2-connected graph G in a planar 2-connected
graph G′ such that G′ is obtained from G by making the adhesion sets of a Tutte
decomposition (T,V) of G complete. This is always possible as any adhesion set
separates the graph, so lies on the boundary of some face and disconnects this face
boundary; thus, it is not possible that two new such edges ‘cross’5 since no adhesion
set of any tree-decomposition can separate any other of its adhesion sets.

As each cycle of a graph lies in a unique maximal 2-connected subgraph, an
immediate consequence of Theorem 10 using the well-known block-cutvertex tree
and the fact that cycles in distinct components are disjoint is the following:

Theorem 11. Let G be a planar finitely separable graph such that for each of
its maximal 2-connected subgraphs the adhesion sets of a Tutte decomposition are
complete graphs on two vertices. Then G has a canonical nested set of cycles that
generates its cycles space. �

Acknowledgement. I thank M.J. Dunwoody for showing me [5] which led to a
sharpening of our previous main result.

5This shall mean that adding one of those edges results in a planar graph where the end vertices
of the second edge do not lie on any common face boundary.
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